Download pdf - Teoremas Cap.2

Transcript

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 1/30

Chapter 2 – Linear Transformations and Matrices

Per-Olof [email protected]

Department of Mathematics

University of California, Berkeley

Math 110 Linear Algebra

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 2/30

Linear Transformations

Definition

We call a function T :  V  → W a  linear transformation from V to W if, for all  x, y ∈ V and  c ∈ F , we have

(a)   T(x + y) = T(x) + T(y)  and

(b)   T(cx) = cT(x)

1 If T is linear, then T(0 ) =  0 

2 T is linear  ⇐⇒ T(cx + y) = cT(x) + T(y)  ∀x, y ∈ V,  c ∈  F 

3 If T is linear, then T(x − y) = T(x) − T(y)  ∀x, y ∈ V

4 T is linear  ⇐⇒ for x1, . . . , xn ∈ V and  a1, . . . , an  ∈ F ,

T (

ni=1 aixi) =

ni=1 aiT(xi)

Special linear transformations

The   identity transformation   IV  : V → V: IV(x) = x,  ∀x ∈ V

The  zero transformation  T0 : V  →  W: T0(x) =  0   ∀x ∈ V

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 3/30

Null Space and Range

Definition

For linear T : V  →  W, the  null space  (or kernel ) N(T)  of T is theset of all  x ∈ V such that T(x) =  0 : N(T) = {x ∈ V : T(x) =  0 }The  range  (or  image ) R(T)  of T is the subset of W consisting of all images of vectors in V: R(T) = {T(x) : x ∈ V}

Theorem 2.1

For vector spaces V , W and linear T  : V  →  W, N (T )  and R (T )  are subspaces of V and W, respectively.

Theorem 2.2For vector spaces V , W and linear T  : V  →  W, if  β  = {v1, . . . , vn}is a basis for V, then

R (T ) = span(T (β )) = span({T (v1), . . . , T (vn)})

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 4/30

Nullity and Rank

Definition

For vector spaces V, W and linear T : V  →  W, if N(T)  and R(T)are finite-dimensional, the  nullity  and the  rank  of T are thedimensions of N(T)  and R(T), respectively.

Theorem 2.3 (Dimension Theorem)

For vector spaces V , W and linear T  : V  →  W, if V is finite-dimensional then

nullity(T ) + rank(T ) = dim(V )

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 5/30

Properties of Linear Transformations

Theorem 2.4

For vector spaces V , W and linear T  : V  →  W, T is one-to-one if and only if N (T ) = {0 }.

Theorem 2.5For vector spaces V , W of equal (finite) dimension and linear T  : V  →  W, the following are equivalent:

(a)  T is one-to-one 

(b)  T is onto (c)   rank(T ) = dim(V )

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 6/30

Linear Transformations and Bases

Theorem 2.6

Let V , W be vector spaces over  F   and  {v1, . . . , vn}  a basis for V.For  w1, . . . , wn   in W, there exist exactly one linear transformation

T  : V  →  W such that T (vi) = wi   for  = 1, . . . , n.

Corollary

Suppose  {v1, . . . , vn}   is a finite basis for V, then if U , T  :  V  → W 

are linear and U (vi) = T (vi)  for  i = 1, . . . , n, then U  = T.

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 7/30

Coordinate Vectors

Definition

For a finite-dimensional vector space V, an  ordered basis  for V is abasis for V with a specific order. In other words, it is a finitesequence of linearly independent vectors in V that generates V.

Definition

Let  β  = {u1, . . . , un} be an ordered basis for V, and for  x ∈ V leta1, . . . , an  be the unique scalars such that

x =n

i=1aiui.

The  coordinate vector of  x relative to  β   is

[x]β  =

a1...

an

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 8/30

Matrix Representations

Definition

Suppose V, W are finite-dimensional vector spaces with orderedbases  β  = {v1, . . . , vn},  γ  = {w1, . . . , wm}. For linear T :  V  →  W,there are unique scalars  aij  ∈ F   such that

T(v j) =

mi=1

aijwi   for 1 ≤  j ≤ n.

The  m × n  matrix  A  defined by  Aij  = aij   is the  matrix representation of T in the ordered bases  β  and  γ , written

A = [T]γ 

β. If V = W and  β  = γ , then  A = [T]β .

Note that the  jth column of  A  is  [T(v j)]γ , and if  [U]γ β  = [T]γ β   forlinear U : V  →  W, then U = T.

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 9/30

Addition and Scalar Multiplication

Definition

Let T, U : V  →  W be arbitrary functions of vector spaces V, W over

F . Then T + U, aT : V  →  W are defined by(T + U)(x) = T(x) + U(x)  and  (aT)(x) = aT(x), respectively, forall  x ∈  V and  a ∈ F .

Theorem 2.7

With the operations defined above, for vector spaces V , W over  F 

and linear T , U  : V  →  W:

(a)   aT  + U is linear for all  a ∈  F 

(b)  The collection of all linear transformations from V to W is a

vector space over  F 

Definition

For vector spaces V, W over  F , the vector space of all lineartransformations from V into W is denoted by  L(V, W), or justL(V)   if V = W.

M i R i

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 10/30

Matrix Representations

Theorem 2.8

For finite-dimensional vector spaces V , W with ordered bases  β, γ ,

and linear transformations T , U  :  V  → W:(a)   [T  + U ]γ β  = [T ]γ β + [U ]γ β

(b)   [aT ]γ β  = a[T ]γ β   for all scalars  a

C i i f Li T f i

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 11/30

Composition of Linear Transformations

Theorem 2.9

Let V , W , Z be vector spaces over a field  F , and T : V  → W,U : W  → Z be linear. Then UT : V  → Z is linear.

Theorem 2.10Let V be a vector space and T , U 1, U 2 ∈ L(V ). Then

(a)   T (U 1 + U 2) = TU 1 + TU 2  and  (U 1 + U 2)T  = U 1T  + U 2T 

(b)   T (U 1U 2) = (TU 1)U 2

(c)   TI  = IT  =  T (d)   a(U 1U 2) = (aU 1)U 2 = U 1(aU 2)  for all scalars  a

M i M l i li i

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 12/30

Matrix Multiplication

Let T : V  → W, U : W  → Z, be linear,  α =  {v1, . . . , vn},

β  = {w1, . . . , wm},  γ  = {z1, . . . , z p}  ordered bases for U, W, Z,and  A = [U ]γ β,  B = [T ]βα. Consider  [UT]γ α:

(UT)(v j) = U(T(v j)) = U

 m

k=1Bkjwk

=

m

k=1BkjU(wk)

=mk=1

Bkj

  pi=1

Aikzi

=

 pi=1

 mk=1

AikBkj

zi

Definition

Let  A,B  be  m × n,  n × p  matrices. The  product  AB   is the  m × p

matrix with

(AB)ij  =n

k=1AikBkj ,   for 1 ≤  i ≤ m,   1 ≤  j  ≤ p

M t i M lti li ti

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 13/30

Matrix Multiplication

Theorem 2.11

Let V, W, Z be finite-dimensional vector spaces with ordered bases α,β,γ  , and T : V  → W, U : W  → Z be linear. Then

[UT ]γ α = [U ]γ β[T ]βα

Corollary

Let V be a finite-dimensional vector space with ordered basis  β ,and T , U  ∈ L(V ). Then  [UT ]β  = [U ]β[T ]β.

Definition

The  Kronecker delta  is defined by  δ ij  = 1   if  i = j  and  δ ij  = 0   if i = j . The  n × n  identity matrix  I n   is defined by  (I n)ij  = δ ij .

P ti

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 14/30

Properties

Theorem 2.12

Let  A be  m × n matrix,  B,C   be  n × p  matrices, and  D, E  be q × m matrices. Then

(a)   A(B + C ) = AB + AC   and  (D + E )A = DA + EA

(b)   a(AB) = (aA)B  = A(aB)  for any scalar  a

(c)   I mA =  A  = AI n

(d)   If V is an  n-dimensional vector space with ordered basis  β ,then   [I V ]β  = I n

Corollary

Let  A be  m × n matrix,  B1, . . . , Bk   be  n × p  matrices,  C 1, . . . , C  kbe  q × m matrices, and  a1, . . . , ak  be scalars. Then

A  k

i=1

aiBi =k

i=1

aiABi  and    k

i=1

aiC iA =k

i=1

aiC iA

Properties

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 15/30

Properties

Theorem 2.13Let  A be  m × n matrix and  B  be  n × p  matrix, and  u j, v j   the  jthcolumns of  AB,B. Then

(a)   u j  = Av j

(b)   v j  = Be j

Theorem 2.14

Let V, W be finite-dimensional vector spaces with ordered bases 

β, γ , and T : V  → W be linear. Then for  u ∈  V:

[T (u)]γ  = [T ]γ β [u]β

Left multiplication Transformations

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 16/30

Left-multiplication Transformations

Definition

Let  A be  m × n matrix. The   left-multiplication transformation  LAis the mapping LA : Fn → Fm defined by LA(x) = Ax for eachcolumn vector  x ∈  Fn.

Theorem 2.15

Let  A be  m × n matrix, then LA : F n

→ F m

is linear, and if  B   is m × n matrix and  β, γ  are standard ordered bases for F n, F m, then:

(a)   [LA]γ β  = A

(b)   LA  = LB   if and only if  A =  B

(c)   LA+B  = LA + LB  and LaA = aLA   for all  a ∈  F (d)  For linear T  :  F n → F m, there exists a unique  m × n  matrix  C 

such that T  =  LC , and  C  = [T ]γ β(e)   If  E   is an  n × p  matrix, then LAE  = LALE 

(f)   If  m =  n  then LI n

= I F n

Associativity of Matrix Multiplication

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 17/30

Associativity of Matrix Multiplication

Theorem 2.16

Let  A, B, C  be matrices such that  A(BC )   is defined. Then(AB)C   is also defined and  A(BC ) = (AB)C .

Inverse of Linear Transformations

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 18/30

Inverse of Linear Transformations

Definition

Let V, W be vector spaces and T : V  → W be linear. A function U: W  → V is an   inverse  of T if TU=IW  and UT=IV. If T has aninverse, it is  invertible  and the inverse T−1 is unique.

For invertible T,U:

1 (TU)−1 = U−1T−1

2 (T−1)−1 = T (so T−1 is invertible)

3 If V,W have equal dimensions, linear T : V  → W is invertibleif and only if  rank(T) = dim(V)

Theorem 2.17

For vector spaces V,W and linear and invertible T : V  → W,T −1 : W  → V is linear.

Inverses

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 19/30

Inverses

DefinitionAn  n × n matrix  A  is   invertible   if there exists an  n × n matrix  B

such that  AB = BA =  I .

Lemma

For invertible and linear T from V to W, V is finite-dimensional if and only if W is finite-dimensional. Then  dim(V ) = dim(W ).

Theorem 2.18

Let V,W be finite-dimensional vector spaces with ordered bases β, γ , and T : V  → W be linear. Then T is invertible if and only if [T ]γ β   is invertible, and   [T −1]βγ   = ([T ]γ β)−1.

Inverses

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 20/30

Inverses

Corollary 1

For finite-dimensional vector space V with ordered basis  β  and linear T : V  → V, T is invertible if and only if  [T ]β   is invertible,

and  [T −1

]β  = ([T β ])−1

.

Corollary 2

An  n × n matrix  A is invertible if and only if LA   is invertible, and (L

A)−1 = L

A−1 .

Isomorphisms

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 21/30

Isomorphisms

DefinitionLet V,W be vector spaces. V is  isomorphic  to W if there exists alinear transformation T : V  → W that is invertible. Such a T is anisomorphism from V onto W.

Theorem 2.19

For finite-dimensional vector spaces V,W, V is isomorphic to W if and only if  dim(V ) = dim(W ).

CorollaryA vector space V over  F   is isomorphic to F n if and only if dim(V ) = n.

Linear Transformations and Matrices

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 22/30

Linear Transformations and Matrices

Theorem 2.20

Let V,W be finite-dimensional vector spaces over  F  of dimensions 

n,m with ordered bases  β, γ . Then the functionΦ : L(V , W ) →  M m×n(F ), defined by  Φ(T ) = [T ]γ 

β

  for T  ∈ L(V , W ), is an isomorphism.

Corollary

For finite-dimensional vector spaces V,W of dimensions  n,m,

L(V , W )   is finite-dimensional of dimension  mn.

The Standard Representation

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 23/30

The Standard Representation

Definition

Let  β  be an ordered basis for an  n-dimensional vector space V overthe field  F . The  standard representation of V with respect to  β   is

the function  φβ   : V → Fn

defined by  φβ(x) = [x]β   for each  x ∈ V.

Theorem 2.21

For any finite-dimensional vector space V with ordered basis  β ,  φβis an isomorphism.

The Change of Coordinate Matrix

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 24/30

The Change of Coordinate Matrix

Theorem 2.22Let  β  and  β  be ordered bases for a finite-dimensional vector space V, and let  Q = [I V ]

ββ. Then

(a)   Q  is invertible 

(b)   For any  v ∈ V,   [v]β  = Q[v]β

Q = [IV]ββ   is called a  change of coordinate matrix , and we say thatQ changes  β -coordinates into  β -coordinates .

Note that if  Q changes from  β  into  β  coordinates, then  Q−1

changes from  β   into  β  coordinates.

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 25/30

Linear Functionals

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 26/30

A  linear functional  on a vector space V is a linear transformationfrom V into its field of scalars  F .

Example

Let V be the continuous real-valued functions on  [0, 2π]. For a fix

g ∈ V, a linear functional h :  V → R   is given by

h(x) =  1

   2π

0

x(t)g(t) dt

Example

Let V = Mn×n(F ), then f   : V  →  F   with f (A) = tr(A)   is a linearfunctional.

Coordinate Functions

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 27/30

Example

Let  β  = {x1, . . . , xn}  be a basis for a finite-dimensional vectorspace V. Define f i(x) = ai, where

[x]β  =a1...

an

is the coordinate vector of  x  relative to  β . Then f i   is a linear

functional on V called the  ith coordinate function with respect to the basis  β . Note that f i(x j) = δ ij .

Dual Spaces

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 28/30

p

Definition

For a vector space V over  F , the  dual space  of V is the vectorspace V∗ = L(V, F ).

Note that for finite-dimensional V,

dim(V∗) = dim(L(V, F )) = dim(V) · dim(F ) = dim(V)

so V and V∗ are isomorphic. Also, the  double dual  V∗∗ of V is thedual of V∗.

Dual Bases

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 29/30

Theorem 2.24

Let  β  = {x1, . . . , xn}  be an ordered basis for finite-dimensional 

vector space V, and let f i  be the  ith coordinate function w.r.t.   β ,and  β ∗ = {f 1, . . . , f n}. Then  β ∗ is an ordered basis for V ∗ and for any f  ∈ V ∗,

f  =n

i=1f (xi)f i.

Definition

The ordered basis  β ∗ = {f 1, . . . , f n} of V∗ that satisfies f i(x j) = δ ijis called the  dual basis  of  β .

Theorem 2.25

Let V , W be finite-dimensional vector spaces over  F  with ordered bases  β, γ . For any linear T : V  → W, the mapping T t : W ∗ → V ∗

defined by T t(g ) = gT for all g  ∈ W ∗ is linear with the property 

[T t

]β∗

γ ∗  = ([T γ β)

t

.

Double Dual Isomorphism

8/12/2019 Teoremas Cap.2

http://slidepdf.com/reader/full/teoremas-cap2 30/30

For a vector  x ∈ V, define  x̂ :  V∗ → F   by  x̂(f ) = f (x)  for every

f  ∈ V∗

. Note that  x̂  is a linear functional on V∗

, so  x̂ ∈ V∗∗

.

Lemma

For finite-dimensional vector space V and  x ∈ V, if  x̂(f ) = 0  for all f  ∈ V ∗, then  x = 0.

Theorem 2.26

Let V be a finite-dimensional vector space, and define  ψ : V  → V ∗∗

by  ψ(x) = x̂. Then  ψ   is an isomorphism.

Corollary

For finite-dimensional V with dual space V ∗, every ordered basis for V ∗ is the dual basis for some basis for V.