Transcript
Page 1: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Reflexive polytopes, Gorenstein polytopes, andcombinatorial mirror symmetry

Benjamin Nill

U Kentucky 10/04/10

Benjamin Nill (U Georgia) Gorenstein polytopes 1 / 46

Page 2: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Goals of this talk:

Convince you that (reflexive &) Gorenstein polytopes

1 turn up naturally

2 consist of interesting examples

3 have fascinating and not yet understood properties

4 have relations to

Combinatorics, Algebraic Geometry, Topology, Statistics

Benjamin Nill (U Georgia) Gorenstein polytopes 2 / 46

Page 3: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Goals of this talk:

Convince you that (reflexive &) Gorenstein polytopes

1 turn up naturally

2 consist of interesting examples

3 have fascinating and not yet understood properties

4 have relations to

Combinatorics,

Algebraic Geometry, Topology, Statistics

Benjamin Nill (U Georgia) Gorenstein polytopes 2 / 46

Page 4: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Goals of this talk:

Convince you that (reflexive &) Gorenstein polytopes

1 turn up naturally

2 consist of interesting examples

3 have fascinating and not yet understood properties

4 have relations to

Combinatorics, Algebraic Geometry,

Topology, Statistics

Benjamin Nill (U Georgia) Gorenstein polytopes 2 / 46

Page 5: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Goals of this talk:

Convince you that (reflexive &) Gorenstein polytopes

1 turn up naturally

2 consist of interesting examples

3 have fascinating and not yet understood properties

4 have relations to

Combinatorics, Algebraic Geometry, Topology,

Statistics

Benjamin Nill (U Georgia) Gorenstein polytopes 2 / 46

Page 6: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Goals of this talk:

Convince you that (reflexive &) Gorenstein polytopes

1 turn up naturally

2 consist of interesting examples

3 have fascinating and not yet understood properties

4 have relations to

Combinatorics, Algebraic Geometry, Topology, Statistics

Benjamin Nill (U Georgia) Gorenstein polytopes 2 / 46

Page 7: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

I. Reflexive polytopes

Benjamin Nill (U Georgia) Gorenstein polytopes 3 / 46

Page 8: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Combinatorial polytopes and duality

Combinatorial types of polytopesIsomorphisms: combinatorially isomorphic face posets

Benjamin Nill (U Georgia) Gorenstein polytopes 4 / 46

Page 9: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Combinatorial polytopes and duality

Combinatorial types of polytopesIsomorphisms: combinatorially isomorphic face posets

Benjamin Nill (U Georgia) Gorenstein polytopes 5 / 46

Page 10: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Realized polytopes and duality

Embedded polytopes: P ⊂ Rd

Isomorphisms: affine isomorphisms

P ⊂ Rd d-polytope with interior point 0 =⇒

P∗ := y ∈ (Rd)∗ : 〈y , x〉 ≥ −1 ∀ x ∈ P

Benjamin Nill (U Georgia) Gorenstein polytopes 6 / 46

Page 11: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Realized polytopes and duality

Embedded polytopes: P ⊂ Rd

Isomorphisms: affine isomorphisms

P ⊂ Rd d-polytope with interior point 0 =⇒

P∗ := y ∈ (Rd)∗ : 〈y , x〉 ≥ −1 ∀ x ∈ P

Benjamin Nill (U Georgia) Gorenstein polytopes 6 / 46

Page 12: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Lattice polytopes and duality

Lattice polytopes: P = conv(m1, . . . ,mk) for mi ∈ Zd

isomorphisms: affine lattice isomorphisms of Zd (unimodular equivalence)

Definition (Batyrev ’94)

A reflexive polytope is a lattice polytope P with 0 ∈ int(P) such thatP∗ is also a lattice polytope.

origin only interior lattice point.

Benjamin Nill (U Georgia) Gorenstein polytopes 7 / 46

Page 13: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Lattice polytopes and duality

Lattice polytopes: P = conv(m1, . . . ,mk) for mi ∈ Zd

isomorphisms: affine lattice isomorphisms of Zd (unimodular equivalence)

Definition (Batyrev ’94)

A reflexive polytope is a lattice polytope P with 0 ∈ int(P) such thatP∗ is also a lattice polytope.

origin only interior lattice point.

Benjamin Nill (U Georgia) Gorenstein polytopes 7 / 46

Page 14: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Lattice polytopes and duality

Lattice polytopes: P = conv(m1, . . . ,mk) for mi ∈ Zd

isomorphisms: affine lattice isomorphisms of Zd (unimodular equivalence)

Definition (Batyrev ’94)

A reflexive polytope is a lattice polytope P with 0 ∈ int(P) such thatP∗ is also a lattice polytope.

origin only interior lattice point.

Benjamin Nill (U Georgia) Gorenstein polytopes 7 / 46

Page 15: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Reflexive polytopes

Facts1 [Lagarias/Ziegler ’91]: In each dimension only finitely many reflexive

polytopes up to lattice isomorphisms.

2 [Haase/Melnikov ’06]: Any lattice polytope is a face of a(higher-dimensional) reflexive polytope.

3 [Kreuzer/Skarke ’98-00]: Tons of them:d 2 3 4

# 16 4,319 473,800,776

4 Even basic questions are open: maximal number of vertices?d 2 3 4

vertices ≤ 6 14 36

Benjamin Nill (U Georgia) Gorenstein polytopes 8 / 46

Page 16: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Reflexive polytopes

Facts1 [Lagarias/Ziegler ’91]: In each dimension only finitely many reflexive

polytopes up to lattice isomorphisms.

2 [Haase/Melnikov ’06]: Any lattice polytope is a face of a(higher-dimensional) reflexive polytope.

3 [Kreuzer/Skarke ’98-00]: Tons of them:d 2 3 4

# 16 4,319 473,800,776

4 Even basic questions are open: maximal number of vertices?d 2 3 4

vertices ≤ 6 14 36

Benjamin Nill (U Georgia) Gorenstein polytopes 8 / 46

Page 17: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Reflexive polytopes

Facts1 [Lagarias/Ziegler ’91]: In each dimension only finitely many reflexive

polytopes up to lattice isomorphisms.

2 [Haase/Melnikov ’06]: Any lattice polytope is a face of a(higher-dimensional) reflexive polytope.

3 [Kreuzer/Skarke ’98-00]: Tons of them:d 2 3 4

# 16 4,319 473,800,776

4 Even basic questions are open: maximal number of vertices?d 2 3 4

vertices ≤ 6 14 36

Benjamin Nill (U Georgia) Gorenstein polytopes 8 / 46

Page 18: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Reflexive polytopes

Facts1 [Lagarias/Ziegler ’91]: In each dimension only finitely many reflexive

polytopes up to lattice isomorphisms.

2 [Haase/Melnikov ’06]: Any lattice polytope is a face of a(higher-dimensional) reflexive polytope.

3 [Kreuzer/Skarke ’98-00]: Tons of them:d 2 3 4

# 16 4,319 473,800,776

4 Even basic questions are open:

maximal number of vertices?d 2 3 4

vertices ≤ 6 14 36

Benjamin Nill (U Georgia) Gorenstein polytopes 8 / 46

Page 19: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Reflexive polytopes

Facts1 [Lagarias/Ziegler ’91]: In each dimension only finitely many reflexive

polytopes up to lattice isomorphisms.

2 [Haase/Melnikov ’06]: Any lattice polytope is a face of a(higher-dimensional) reflexive polytope.

3 [Kreuzer/Skarke ’98-00]: Tons of them:d 2 3 4

# 16 4,319 473,800,776

4 Even basic questions are open: maximal number of vertices?

d 2 3 4

vertices ≤ 6 14 36

Benjamin Nill (U Georgia) Gorenstein polytopes 8 / 46

Page 20: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Reflexive polytopes

Facts1 [Lagarias/Ziegler ’91]: In each dimension only finitely many reflexive

polytopes up to lattice isomorphisms.

2 [Haase/Melnikov ’06]: Any lattice polytope is a face of a(higher-dimensional) reflexive polytope.

3 [Kreuzer/Skarke ’98-00]: Tons of them:d 2 3 4

# 16 4,319 473,800,776

4 Even basic questions are open: maximal number of vertices?d 2 3 4

vertices ≤ 6 14 36

Benjamin Nill (U Georgia) Gorenstein polytopes 8 / 46

Page 21: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Reflexive polytopes

Let P be a lattice polytope with 0 in its interior.

Definition

P is reflexive if and only if

each vertex is a primitive lattice point.

`P∗ `-reflexive and P = `(`P∗)∗.

Duality of `-reflexive polytopes!

Benjamin Nill (U Georgia) Gorenstein polytopes 9 / 46

Page 22: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Reflexive polytopes

Let P be a lattice polytope with 0 in its interior.

Definition

P is reflexive if and only if

each facet F has lattice distance 1 from the origin,

each vertex is a primitive lattice point.

`P∗ `-reflexive and P = `(`P∗)∗.

Duality of `-reflexive polytopes!

Benjamin Nill (U Georgia) Gorenstein polytopes 9 / 46

Page 23: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Reflexive polytopes

Let P be a lattice polytope with 0 in its interior.

Definition

P is reflexive of Gorenstein index 1 if and only if

each facet F has lattice distance 1 from the origin,

each vertex is a primitive lattice point.

`P∗ `-reflexive and P = `(`P∗)∗.

Duality of `-reflexive polytopes!

Benjamin Nill (U Georgia) Gorenstein polytopes 9 / 46

Page 24: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Reflexive polytopes of higher index! (Joint work with A. Kasprzyk)

Let P be a lattice polytope with 0 in its interior.

Definition (Kasprzyk/N. ’10)

P is reflexive of Gorenstein index ` if and only if

each facet F has lattice distance ` from the origin,

each vertex is a primitive lattice point.

`P∗ `-reflexive and P = `(`P∗)∗.

Duality of `-reflexive polytopes!

Benjamin Nill (U Georgia) Gorenstein polytopes 9 / 46

Page 25: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Reflexive polytopes of higher index! (Joint work with A. Kasprzyk)

Let P be a lattice polytope with 0 in its interior.

Definition (Kasprzyk/N. ’10)

P is reflexive of Gorenstein index ` if and only if

each facet F has lattice distance ` from the origin,

each vertex is a primitive lattice point.

`P∗ `-reflexive

and P = `(`P∗)∗.

Duality of `-reflexive polytopes!

Benjamin Nill (U Georgia) Gorenstein polytopes 9 / 46

Page 26: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Reflexive polytopes of higher index! (Joint work with A. Kasprzyk)

Let P be a lattice polytope with 0 in its interior.

Definition (Kasprzyk/N. ’10)

P is reflexive of Gorenstein index ` if and only if

each facet F has lattice distance ` from the origin,

each vertex is a primitive lattice point.

`P∗ `-reflexive and P = `(`P∗)∗.

Duality of `-reflexive polytopes!

Benjamin Nill (U Georgia) Gorenstein polytopes 9 / 46

Page 27: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Examples of `-reflexive polygons?!

Benjamin Nill (U Georgia) Gorenstein polytopes 10 / 46

Page 28: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Classification of `-reflexive polygons (Joint work with A. Kasprzyk)

Theorem

P `-reflexive polygon; Λ :=< ∂P ∩ Z2 >Z =⇒P is 1-reflexive w.r.t. Λ.

Benjamin Nill (U Georgia) Gorenstein polytopes 11 / 46

Page 29: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Classification of `-reflexive polygons (Joint work with A. Kasprzyk)

Theorem

P `-reflexive polygon; Λ :=< ∂P ∩ Z2 >Z =⇒P is 1-reflexive w.r.t. Λ.

Applications

No `-reflexive polygons for ` odd.

Yields fast classification algorithm:` 1 3 5 7 9 11 13 15 17 · · ·# 16 1 12 29 1 61 81 1 113 · · ·

Benjamin Nill (U Georgia) Gorenstein polytopes 12 / 46

Page 30: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Classification of `-reflexive polygons (Joint work with A. Kasprzyk)

Theorem

P `-reflexive polygon; Λ :=< ∂P ∩ Z2 >Z =⇒P is 1-reflexive w.r.t. Λ.

Applications

No `-reflexive polygons for ` odd.

Yields fast classification algorithm:

` 1 3 5 7 9 11 13 15 17 · · ·# 16 1 12 29 1 61 81 1 113 · · ·

Benjamin Nill (U Georgia) Gorenstein polytopes 12 / 46

Page 31: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Classification of `-reflexive polygons (Joint work with A. Kasprzyk)

Theorem

P `-reflexive polygon; Λ :=< ∂P ∩ Z2 >Z =⇒P is 1-reflexive w.r.t. Λ.

Applications

No `-reflexive polygons for ` odd.

Yields fast classification algorithm:` 1 3 5 7 9 11 13 15 17 · · ·# 16 1 12 29 1 61 81 1 113 · · ·

Benjamin Nill (U Georgia) Gorenstein polytopes 12 / 46

Page 32: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

The “number 12”

Benjamin Nill (U Georgia) Gorenstein polytopes 13 / 46

Page 33: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

The “number 12”

Benjamin Nill (U Georgia) Gorenstein polytopes 14 / 46

Page 34: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

The “number 12”

12-Property

P reflexive polygon =⇒

|∂P ∩ Z2|+ |∂P∗ ∩ Z2| = 12.

Benjamin Nill (U Georgia) Gorenstein polytopes 15 / 46

Page 35: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

The “number 12” generalizes! (Joint work with A. Kasprzyk)

12-Property

P `-reflexive polygon =⇒

|∂P ∩ Z2|+ |∂P∗ ∩ Z2| = 12.

What else can be generalized?What about higher dimensions?What about algebro-geometric implications?

Benjamin Nill (U Georgia) Gorenstein polytopes 16 / 46

Page 36: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

The “number 12” generalizes! (Joint work with A. Kasprzyk)

12-Property

P `-reflexive polygon =⇒

|∂P ∩ Z2|+ |∂P∗ ∩ Z2| = 12.

What else can be generalized?What about higher dimensions?What about algebro-geometric implications?

Benjamin Nill (U Georgia) Gorenstein polytopes 16 / 46

Page 37: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

II. Gorenstein polytopes

Benjamin Nill (U Georgia) Gorenstein polytopes 17 / 46

Page 38: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Definition and duality

Def.[Batyrev/Borisov ’97] A Gorenstein polytope of codegree r is alattice polytope P such that rP is a reflexive polytope (up to latticetranslation).

Benjamin Nill (U Georgia) Gorenstein polytopes 18 / 46

Page 39: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Definition and duality

Let CP := R≥0(P × 1).

Proposition (Batyrev/Borisov ’97)

P is a Gorenstein polytope if and only if

(CP)∗ ∼= CQ

for some lattice polytope Q.

Then Q is called dual Gorenstein polytope P∗.

codeg(P) = codeg(P∗).

Natural duality of Gorenstein polytopes!

Benjamin Nill (U Georgia) Gorenstein polytopes 19 / 46

Page 40: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Definition and duality

Let CP := R≥0(P × 1).

Proposition (Batyrev/Borisov ’97)

P is a Gorenstein polytope if and only if

(CP)∗ ∼= CQ

for some lattice polytope Q.Then Q is called dual Gorenstein polytope P∗.

codeg(P) = codeg(P∗).

Natural duality of Gorenstein polytopes!

Benjamin Nill (U Georgia) Gorenstein polytopes 19 / 46

Page 41: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Definition and duality

Let CP := R≥0(P × 1).

Proposition (Batyrev/Borisov ’97)

P is a Gorenstein polytope if and only if

(CP)∗ ∼= CQ

for some lattice polytope Q.Then Q is called dual Gorenstein polytope P∗.

codeg(P) = codeg(P∗).

Natural duality of Gorenstein polytopes!

Benjamin Nill (U Georgia) Gorenstein polytopes 19 / 46

Page 42: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Characterization via Commutative Algebra

Facts (see Bruns & Gubeladze, Miller & Sturmfels)

If P is a lattice d-polytope, then SP := C[CP ∩ Zd+1] is a positivelygraded normal Cohen-Macaulay ring,

and R has a canonical module ωR :

ωSP =< xm : m ∈ int(CP) ∩ Zd+1 >

T.f.a.e.

P Gorenstein polytope

there exists x ∈ int(CP) ∩ Zd+1 s.t.

x + CP ∩ Zd+1 = int(CP) ∩ Zd+1.

SP Gorenstein ring

the Hilbert series HSP (t) satisfies

HSP (t) = (−1)d+1HSP (t−1).

Benjamin Nill (U Georgia) Gorenstein polytopes 20 / 46

Page 43: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Characterization via Commutative Algebra

Facts (see Bruns & Gubeladze, Miller & Sturmfels)

If P is a lattice d-polytope, then SP := C[CP ∩ Zd+1] is a positivelygraded normal Cohen-Macaulay ring, and R has a canonical module ωR :

ωSP =< xm : m ∈ int(CP) ∩ Zd+1 >

T.f.a.e.

P Gorenstein polytope

there exists x ∈ int(CP) ∩ Zd+1 s.t.

x + CP ∩ Zd+1 = int(CP) ∩ Zd+1.

SP Gorenstein ring

the Hilbert series HSP (t) satisfies

HSP (t) = (−1)d+1HSP (t−1).

Benjamin Nill (U Georgia) Gorenstein polytopes 20 / 46

Page 44: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Characterization via Commutative Algebra

Facts (see Bruns & Gubeladze, Miller & Sturmfels)

If P is a lattice d-polytope, then SP := C[CP ∩ Zd+1] is a positivelygraded normal Cohen-Macaulay ring, and R has a canonical module ωR :

ωSP =< xm : m ∈ int(CP) ∩ Zd+1 >

T.f.a.e.

P Gorenstein polytope

there exists x ∈ int(CP) ∩ Zd+1 s.t.

x + CP ∩ Zd+1 = int(CP) ∩ Zd+1.

SP Gorenstein ring

the Hilbert series HSP (t) satisfies

HSP (t) = (−1)d+1HSP (t−1).

Benjamin Nill (U Georgia) Gorenstein polytopes 20 / 46

Page 45: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Characterization via Commutative Algebra

Facts (see Bruns & Gubeladze, Miller & Sturmfels)

If P is a lattice d-polytope, then SP := C[CP ∩ Zd+1] is a positivelygraded normal Cohen-Macaulay ring, and R has a canonical module ωR :

ωSP =< xm : m ∈ int(CP) ∩ Zd+1 >

T.f.a.e.

P Gorenstein polytope

there exists x ∈ int(CP) ∩ Zd+1 s.t.

x + CP ∩ Zd+1 = int(CP) ∩ Zd+1.

SP Gorenstein ring

the Hilbert series HSP (t) satisfies

HSP (t) = (−1)d+1HSP (t−1).

Benjamin Nill (U Georgia) Gorenstein polytopes 20 / 46

Page 46: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Characterization via Commutative Algebra

Facts (see Bruns & Gubeladze, Miller & Sturmfels)

If P is a lattice d-polytope, then SP := C[CP ∩ Zd+1] is a positivelygraded normal Cohen-Macaulay ring, and R has a canonical module ωR :

ωSP =< xm : m ∈ int(CP) ∩ Zd+1 >

T.f.a.e.

P Gorenstein polytope

there exists x ∈ int(CP) ∩ Zd+1 s.t.

x + CP ∩ Zd+1 = int(CP) ∩ Zd+1.

SP Gorenstein ring

the Hilbert series HSP (t) satisfies

HSP (t) = (−1)d+1HSP (t−1).

Benjamin Nill (U Georgia) Gorenstein polytopes 20 / 46

Page 47: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Characterization via Commutative Algebra

Facts (see Bruns & Gubeladze, Miller & Sturmfels)

If P is a lattice d-polytope, then SP := C[CP ∩ Zd+1] is a positivelygraded normal Cohen-Macaulay ring, and R has a canonical module ωR :

ωSP =< xm : m ∈ int(CP) ∩ Zd+1 >

T.f.a.e.

P Gorenstein polytope

there exists x ∈ int(CP) ∩ Zd+1 s.t.

x + CP ∩ Zd+1 = int(CP) ∩ Zd+1.

SP Gorenstein ring

the Hilbert series HSP (t) satisfies

HSP (t) = (−1)d+1HSP (t−1).

Benjamin Nill (U Georgia) Gorenstein polytopes 20 / 46

Page 48: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Characterization via Lattice-Point-Enumeration

P lattice d-polytope.

∑k≥0

|CP ∩ (Zd × k) | tk =h∗(t)

(1− t)d+1,

where h∗(t) is a polynomial with nonnegative integer coefficients ofdegree ≤ d .

Def.: The degree of P is defined as the degree of its h∗-polynomial.Def.: The codegree of P is the minimal k such that kP ∩ Zd 6= ∅.

=⇒ deg(P) = d + 1− codeg(P).

Benjamin Nill (U Georgia) Gorenstein polytopes 21 / 46

Page 49: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Characterization via Lattice-Point-Enumeration

P lattice d-polytope.

∑k≥0

|kP ∩ Zd | tk =h∗(t)

(1− t)d+1,

where h∗(t) is a polynomial with nonnegative integer coefficients of degree≤ d .

Def.: The degree of P is defined as the degree of its h∗-polynomial.Def.: The codegree of P is the minimal k such that kP ∩ Zd 6= ∅.

=⇒ deg(P) = d + 1− codeg(P).

Benjamin Nill (U Georgia) Gorenstein polytopes 21 / 46

Page 50: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Characterization via Lattice-Point-Enumeration

P lattice d-polytope.

∑k≥0

|kP ∩ Zd | tk =h∗(t)

(1− t)d+1,

where h∗(t) is a polynomial with nonnegative integer coefficients of degree≤ d .

Ehrhart theory: k 7→ kP ∩ Zd is a polynomial of degree d .

Def.: The degree of P is defined as the degree of its h∗-polynomial.Def.: The codegree of P is the minimal k such that kP ∩ Zd 6= ∅.

=⇒ deg(P) = d + 1− codeg(P).

Benjamin Nill (U Georgia) Gorenstein polytopes 21 / 46

Page 51: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Characterization via Lattice-Point-Enumeration

P lattice d-polytope.

∑k≥0

|kP ∩ Zd | tk =h∗(t)

(1− t)d+1,

where h∗(t) is a polynomial with nonnegative integer coefficients of degree≤ d .

Def.: The degree of P is defined as the degree of its h∗-polynomial.

Def.: The codegree of P is the minimal k such that kP ∩ Zd 6= ∅.

=⇒ deg(P) = d + 1− codeg(P).

Benjamin Nill (U Georgia) Gorenstein polytopes 21 / 46

Page 52: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Characterization via Lattice-Point-Enumeration

P lattice d-polytope.

∑k≥0

|kP ∩ Zd | tk =h∗(t)

(1− t)d+1,

where h∗(t) is a polynomial with nonnegative integer coefficients of degree≤ d .

Def.: The degree of P is defined as the degree of its h∗-polynomial.Def.: The codegree of P is the minimal k such that kP ∩ Zd 6= ∅.

=⇒ deg(P) = d + 1− codeg(P).

Benjamin Nill (U Georgia) Gorenstein polytopes 21 / 46

Page 53: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Characterization via Lattice-Point-Enumeration

P lattice d-polytope.

∑k≥0

|kP ∩ Zd | tk =h∗(t)

(1− t)d+1,

where h∗(t) is a polynomial with nonnegative integer coefficients of degree≤ d .

Def.: The degree of P is defined as the degree of its h∗-polynomial.Def.: The codegree of P is the minimal k such that kP ∩ Zd 6= ∅.

=⇒ deg(P) = d + 1− codeg(P).

Benjamin Nill (U Georgia) Gorenstein polytopes 21 / 46

Page 54: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Characterization via Lattice-Point-Enumeration

P lattice d-polytope.

∑k≥0

|kP ∩ Zd | tk =h∗(t)

(1− t)d+1,

where h∗(t) is a polynomial with nonnegative integer coefficients of degree≤ d .

Proposition (Stanley)

T.f.a.e.

P Gorenstein polytope (of codegree codeg(P))

h∗-polynomial of P is symmetric (of degree deg(P))

Benjamin Nill (U Georgia) Gorenstein polytopes 22 / 46

Page 55: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Finiteness of Gorenstein polytopes

Observation: Lattice pyramids don’t change the h∗-polynomial.

Theorem (Batyrev/N. ’08; Haase/N./Payne ’09; Batyrev/Juny ’09)

There exist only finitely many Gorenstein polytopes of degree s that arenot lattice pyramids.

s 0 1 2

# 1 1 37

Benjamin Nill (U Georgia) Gorenstein polytopes 23 / 46

Page 56: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Finiteness of Gorenstein polytopes

Observation: Lattice pyramids don’t change the h∗-polynomial.

Theorem (Batyrev/N. ’08; Haase/N./Payne ’09; Batyrev/Juny ’09)

There exist only finitely many Gorenstein polytopes of degree s that arenot lattice pyramids.

s 0 1 2

# 1 1 37

Benjamin Nill (U Georgia) Gorenstein polytopes 23 / 46

Page 57: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Finiteness of Gorenstein polytopes

Observation: Lattice pyramids don’t change the h∗-polynomial.

Theorem (Batyrev/N. ’08; Haase/N./Payne ’09; Batyrev/Juny ’09)

There exist only finitely many Gorenstein polytopes of degree s that arenot lattice pyramids.

s 0 1 2

# 1 1 37

Benjamin Nill (U Georgia) Gorenstein polytopes 23 / 46

Page 58: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Gorenstein polytopes in algebraic and polyhedralcombinatorics

Toric ideals of Gorenstein polytopes are “classical”;“Nice initial complexes on some classical ideals”(Conca/Hosten/Thomas ’06).

Order polytope of a pure poset is Gorenstein (Hibi, Stanley)

Tropically & ordinarily convex polytopes are associated to Gorensteinproducts of simplices (Joswig/Kulas ’08)

· · ·

Benjamin Nill (U Georgia) Gorenstein polytopes 24 / 46

Page 59: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Gorenstein polytopes in algebraic and polyhedralcombinatorics

Toric ideals of Gorenstein polytopes are “classical”;“Nice initial complexes on some classical ideals”(Conca/Hosten/Thomas ’06).

Order polytope of a pure poset is Gorenstein (Hibi, Stanley)

Tropically & ordinarily convex polytopes are associated to Gorensteinproducts of simplices (Joswig/Kulas ’08)

· · ·

Benjamin Nill (U Georgia) Gorenstein polytopes 24 / 46

Page 60: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Gorenstein polytopes in algebraic and polyhedralcombinatorics

Toric ideals of Gorenstein polytopes are “classical”;“Nice initial complexes on some classical ideals”(Conca/Hosten/Thomas ’06).

Order polytope of a pure poset is Gorenstein (Hibi, Stanley)

Tropically & ordinarily convex polytopes are associated to Gorensteinproducts of simplices (Joswig/Kulas ’08)

· · ·

Benjamin Nill (U Georgia) Gorenstein polytopes 24 / 46

Page 61: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Gorenstein polytopes in algebraic and polyhedralcombinatorics

Toric ideals of Gorenstein polytopes are “classical”;“Nice initial complexes on some classical ideals”(Conca/Hosten/Thomas ’06).

Order polytope of a pure poset is Gorenstein (Hibi, Stanley)

Tropically & ordinarily convex polytopes are associated to Gorensteinproducts of simplices (Joswig/Kulas ’08)

· · ·

Benjamin Nill (U Georgia) Gorenstein polytopes 24 / 46

Page 62: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

’The’ example of a Gorenstein polytope: the Birkhoffpolytope

Def.: An n × n matrix is called doubly stochastic, if any entry is ≥ 0 andthe row and column sums equal 1.

0.5 0.25 0.250.25 0.5 0.250.25 0.25 0.5

Birkhoff-von Neumann theorem

The set of n × n matrix of doubly stochastic matrices is the convex hull ofthe n! permutation matrices: the Birkhoff polytope Bn.

Benjamin Nill (U Georgia) Gorenstein polytopes 25 / 46

Page 63: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

’The’ example of a Gorenstein polytope: the Birkhoffpolytope

Def.: An n × n matrix is called doubly stochastic, if any entry is ≥ 0 andthe row and column sums equal 1. 0.5 0.25 0.25

0.25 0.5 0.250.25 0.25 0.5

Birkhoff-von Neumann theorem

The set of n × n matrix of doubly stochastic matrices is the convex hull ofthe n! permutation matrices: the Birkhoff polytope Bn.

Benjamin Nill (U Georgia) Gorenstein polytopes 25 / 46

Page 64: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

’The’ example of a Gorenstein polytope: the Birkhoffpolytope

Def.: An n × n matrix is called doubly stochastic, if any entry is ≥ 0 andthe row and column sums equal 1. 0.5 0.25 0.25

0.25 0.5 0.250.25 0.25 0.5

Birkhoff-von Neumann theorem

The set of n × n matrix of doubly stochastic matrices is the convex hull ofthe n! permutation matrices:

the Birkhoff polytope Bn.

Benjamin Nill (U Georgia) Gorenstein polytopes 25 / 46

Page 65: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

’The’ example of a Gorenstein polytope: the Birkhoffpolytope

Def.: An n × n matrix is called doubly stochastic, if any entry is ≥ 0 andthe row and column sums equal 1. 0.5 0.25 0.25

0.25 0.5 0.250.25 0.25 0.5

Birkhoff-von Neumann theorem

The set of n × n matrix of doubly stochastic matrices is the convex hull ofthe n! permutation matrices: the Birkhoff polytope Bn.

Benjamin Nill (U Georgia) Gorenstein polytopes 25 / 46

Page 66: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

’The’ example of a Gorenstein polytope: the Birkhoffpolytope

Facts

Bn ⊆ Rn2is a lattice polytope

dimension: (n − 1)2

number of facets: n2 (inequalities: xi ,j ≥ 0)

A point in kBn ∩ Zn2is n × n-matrix with entries in 0, . . . , n and row

and column sum k: semi-magic square with magic number k .A semi-magic square is in the interior of kBn if and only if any entry is 6= 0.Semi-magic square x in interior with smallest magic number:1 1 1

1 1 11 1 1

Lattice distance of x equals 1 from any facet =⇒ nBn is reflexive.

Benjamin Nill (U Georgia) Gorenstein polytopes 26 / 46

Page 67: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

’The’ example of a Gorenstein polytope: the Birkhoffpolytope

Facts

Bn ⊆ Rn2is a lattice polytope

dimension: (n − 1)2

number of facets: n2 (inequalities: xi ,j ≥ 0)

A point in kBn ∩ Zn2is n × n-matrix with entries in 0, . . . , n and row

and column sum k: semi-magic square with magic number k .A semi-magic square is in the interior of kBn if and only if any entry is 6= 0.Semi-magic square x in interior with smallest magic number:1 1 1

1 1 11 1 1

Lattice distance of x equals 1 from any facet =⇒ nBn is reflexive.

Benjamin Nill (U Georgia) Gorenstein polytopes 26 / 46

Page 68: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

’The’ example of a Gorenstein polytope: the Birkhoffpolytope

Facts

Bn ⊆ Rn2is a lattice polytope

dimension: (n − 1)2

number of facets: n2 (inequalities: xi ,j ≥ 0)

A point in kBn ∩ Zn2is n × n-matrix with entries in 0, . . . , n and row

and column sum k: semi-magic square with magic number k .

A semi-magic square is in the interior of kBn if and only if any entry is 6= 0.Semi-magic square x in interior with smallest magic number:1 1 1

1 1 11 1 1

Lattice distance of x equals 1 from any facet =⇒ nBn is reflexive.

Benjamin Nill (U Georgia) Gorenstein polytopes 26 / 46

Page 69: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

’The’ example of a Gorenstein polytope: the Birkhoffpolytope

Facts

Bn ⊆ Rn2is a lattice polytope

dimension: (n − 1)2

number of facets: n2 (inequalities: xi ,j ≥ 0)

A point in kBn ∩ Zn2is n × n-matrix with entries in 0, . . . , n and row

and column sum k: semi-magic square with magic number k .A semi-magic square is in the interior of kBn if and only if any entry is 6= 0.

Semi-magic square x in interior with smallest magic number:1 1 11 1 11 1 1

Lattice distance of x equals 1 from any facet =⇒ nBn is reflexive.

Benjamin Nill (U Georgia) Gorenstein polytopes 26 / 46

Page 70: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

’The’ example of a Gorenstein polytope: the Birkhoffpolytope

Facts

Bn ⊆ Rn2is a lattice polytope

dimension: (n − 1)2

number of facets: n2 (inequalities: xi ,j ≥ 0)

A point in kBn ∩ Zn2is n × n-matrix with entries in 0, . . . , n and row

and column sum k: semi-magic square with magic number k .A semi-magic square is in the interior of kBn if and only if any entry is 6= 0.Semi-magic square x in interior with smallest magic number:1 1 1

1 1 11 1 1

Lattice distance of x equals 1 from any facet =⇒ nBn is reflexive.

Benjamin Nill (U Georgia) Gorenstein polytopes 26 / 46

Page 71: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

’The’ example of a Gorenstein polytope: the Birkhoffpolytope

Facts

Bn ⊆ Rn2is a lattice polytope

dimension: (n − 1)2

number of facets: n2 (inequalities: xi ,j ≥ 0)

A point in kBn ∩ Zn2is n × n-matrix with entries in 0, . . . , n and row

and column sum k: semi-magic square with magic number k .A semi-magic square is in the interior of kBn if and only if any entry is 6= 0.Semi-magic square x in interior with smallest magic number:1 1 1

1 1 11 1 1

Lattice distance of x equals 1 from any facet =⇒ nBn is reflexive.

Benjamin Nill (U Georgia) Gorenstein polytopes 26 / 46

Page 72: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

’The’ example of a Gorenstein polytope: the Birkhoffpolytope

Facts

Bn ⊆ Rn2is a Gorenstein polytope of codegree n

dimension: (n − 1)2

number of facets: n2 (inequalities: xi ,j ≥ 0)

A point in kBn ∩ Zn2is n × n-matrix with entries in 0, . . . , n and row

and column sum k: semi-magic square with magic number k .A semi-magic square is in the interior of kBn if and only if any entry is 6= 0.Semi-magic square x in interior with smallest magic number:1 1 1

1 1 11 1 1

Lattice distance of x equals 1 from any facet =⇒ nBn is reflexive.

Benjamin Nill (U Georgia) Gorenstein polytopes 26 / 46

Page 73: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Athanasiadis’ proof of Stanley’s conjecture

Def.: The coefficient vector (h∗0, . . . , h∗s ) is unimodal, if

h∗0 ≤ h∗1 ≤ · · · ≥ · · · ≥ h∗s .

Theorem(Athanasiadis ’03)

The h∗-vector of the Birkhoff polytope is unimodal.

Theorem (Bruns-Roemer ’05)

The h∗-vector of a Gorenstein polytope P is unimodal, if P admits aregular unimodular triangulation.

Proof relies on the notion of special simplices.

Benjamin Nill (U Georgia) Gorenstein polytopes 27 / 46

Page 74: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Athanasiadis’ proof of Stanley’s conjecture

Def.: The coefficient vector (h∗0, . . . , h∗s ) is unimodal, if

h∗0 ≤ h∗1 ≤ · · · ≥ · · · ≥ h∗s .

Theorem(Athanasiadis ’03)

The h∗-vector of the Birkhoff polytope is unimodal.

Theorem (Bruns-Roemer ’05)

The h∗-vector of a Gorenstein polytope P is unimodal

, if P admits aregular unimodular triangulation.

Proof relies on the notion of special simplices.

Benjamin Nill (U Georgia) Gorenstein polytopes 27 / 46

Page 75: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Athanasiadis’ proof of Stanley’s conjecture

Def.: The coefficient vector (h∗0, . . . , h∗s ) is unimodal, if

h∗0 ≤ h∗1 ≤ · · · ≥ · · · ≥ h∗s .

Theorem(Athanasiadis ’03)

The h∗-vector of the Birkhoff polytope is unimodal.

Theorem (Bruns-Roemer ’05)

The h∗-vector of a Gorenstein polytope P is unimodal, if P admits aregular unimodular triangulation.

Proof relies on the notion of special simplices.

Benjamin Nill (U Georgia) Gorenstein polytopes 27 / 46

Page 76: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Athanasiadis’ proof of Stanley’s conjecture

Def.: The coefficient vector (h∗0, . . . , h∗s ) is unimodal, if

h∗0 ≤ h∗1 ≤ · · · ≥ · · · ≥ h∗s .

Theorem(Athanasiadis ’03)

The h∗-vector of the Birkhoff polytope is unimodal.

Theorem (Bruns-Roemer ’05)

The h∗-vector of a Gorenstein polytope P is unimodal, if P admits aregular unimodular triangulation.

Proof relies on the notion of special simplices.

Benjamin Nill (U Georgia) Gorenstein polytopes 27 / 46

Page 77: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Special simplices

Let P be a Gorenstein d-polytope of codegree r .

Proposition (Batyrev/N. ’07)

S is a special (r − 1)-simplex, if the vertices of S are r affinelyindependent lattice points of P such that

any facet of P contains precisely r − 1 vertices of S , or

S is not contained in the boundary of P, or

the sum of the vertices of S sum up to unique interior lattice point xof rP.

Then S is unimodular.

Example: Bn contains special (n − 1)-simplex: permutation matricescorresponding to elements in cyclic subgroup generated by (1 2 · · · n).

Benjamin Nill (U Georgia) Gorenstein polytopes 28 / 46

Page 78: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Special simplices

Let P be a Gorenstein d-polytope of codegree r .

Proposition (Batyrev/N. ’07)

S is a special (r − 1)-simplex, if the vertices of S are r affinelyindependent lattice points of P such that

any facet of P contains precisely r − 1 vertices of S , or

S is not contained in the boundary of P, or

the sum of the vertices of S sum up to unique interior lattice point xof rP.

Then S is unimodular.

Example: Bn contains special (n − 1)-simplex: permutation matricescorresponding to elements in cyclic subgroup generated by (1 2 · · · n).

Benjamin Nill (U Georgia) Gorenstein polytopes 28 / 46

Page 79: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Special simplices

Let P be a Gorenstein d-polytope of codegree r .

Proposition (Batyrev/N. ’07)

S is a special (r − 1)-simplex, if the vertices of S are r affinelyindependent lattice points of P such that

any facet of P contains precisely r − 1 vertices of S , or

S is not contained in the boundary of P, or

the sum of the vertices of S sum up to unique interior lattice point xof rP.

Then S is unimodular.

Example: Bn contains special (n − 1)-simplex: permutation matricescorresponding to elements in cyclic subgroup generated by (1 2 · · · n).

Benjamin Nill (U Georgia) Gorenstein polytopes 28 / 46

Page 80: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Special simplices

Let P be a Gorenstein d-polytope of codegree r .

Proposition (Batyrev/N. ’07)

S is a special (r − 1)-simplex, if the vertices of S are r affinelyindependent lattice points of P such that

any facet of P contains precisely r − 1 vertices of S , or

S is not contained in the boundary of P, or

the sum of the vertices of S sum up to unique interior lattice point xof rP.

Then S is unimodular.

Example: Bn contains special (n − 1)-simplex: permutation matricescorresponding to elements in cyclic subgroup generated by (1 2 · · · n).

Benjamin Nill (U Georgia) Gorenstein polytopes 28 / 46

Page 81: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Special simplices

Let P be a Gorenstein d-polytope of codegree r .

Proposition (Batyrev/N. ’07)

S is a special (r − 1)-simplex, if the vertices of S are r affinelyindependent lattice points of P such that

any facet of P contains precisely r − 1 vertices of S , or

S is not contained in the boundary of P, or

the sum of the vertices of S sum up to unique interior lattice point xof rP.

Then S is unimodular.

Example: Bn contains special (n − 1)-simplex: permutation matricescorresponding to elements in cyclic subgroup generated by (1 2 · · · n).

Benjamin Nill (U Georgia) Gorenstein polytopes 28 / 46

Page 82: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Special simplices

Let P be a Gorenstein d-polytope of codegree r .

Proposition (Batyrev/N. ’07)

S is a special (r − 1)-simplex, if the vertices of S are r affinelyindependent lattice points of P such that

any facet of P contains precisely r − 1 vertices of S , or

S is not contained in the boundary of P, or

the sum of the vertices of S sum up to unique interior lattice point xof rP.

Then S is unimodular.

Example: Bn contains special (n − 1)-simplex: permutation matricescorresponding to elements in cyclic subgroup generated by (1 2 · · · n).

Benjamin Nill (U Georgia) Gorenstein polytopes 28 / 46

Page 83: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Special simplices

Proposition (Bruns/Roemer ’05; Batyrev/N.’07)

Projecting P along a special (r − 1)-simplex yields a reflexive polytopewith the same h∗-polynomial.

Benjamin Nill (U Georgia) Gorenstein polytopes 29 / 46

Page 84: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Main open question

Theorem (Bruns-Roemer ’05)

The h∗-vector of a Gorenstein polytope P is unimodal, if P admits aregular unimodular triangulation.

Theorem (Mustata/Payne ’05)

There exist reflexive 6-polytopes with non-unimodal h∗-vector.

Def.: P is normal, if CP ∩ Zd+1 is generated by lattice points in P.

Question: P normal Gorenstein polytope =⇒ h∗P unimodal ?

Benjamin Nill (U Georgia) Gorenstein polytopes 30 / 46

Page 85: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Main open question

Theorem (Bruns-Roemer ’05)

The h∗-vector of a Gorenstein polytope P is unimodal, if P admits aregular unimodular triangulation.

Theorem (Mustata/Payne ’05)

There exist reflexive 6-polytopes with non-unimodal h∗-vector.

Def.: P is normal, if CP ∩ Zd+1 is generated by lattice points in P.

Question: P normal Gorenstein polytope =⇒ h∗P unimodal ?

Benjamin Nill (U Georgia) Gorenstein polytopes 30 / 46

Page 86: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Main open question

Theorem (Bruns-Roemer ’05)

The h∗-vector of a Gorenstein polytope P is unimodal, if P admits aregular unimodular triangulation.

Theorem (Mustata/Payne ’05)

There exist reflexive 6-polytopes with non-unimodal h∗-vector.

Def.: P is normal, if CP ∩ Zd+1 is generated by lattice points in P.

Question: P normal Gorenstein polytope =⇒ h∗P unimodal ?

Benjamin Nill (U Georgia) Gorenstein polytopes 30 / 46

Page 87: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Main open question

Theorem (Bruns-Roemer ’05)

The h∗-vector of a Gorenstein polytope P is unimodal, if P admits aregular unimodular triangulation.

Theorem (Mustata/Payne ’05)

There exist reflexive 6-polytopes with non-unimodal h∗-vector.

Def.: P is normal, if CP ∩ Zd+1 is generated by lattice points in P.

Question: P normal Gorenstein polytope =⇒ h∗P unimodal ?

Benjamin Nill (U Georgia) Gorenstein polytopes 30 / 46

Page 88: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Main open question

Theorem (Bruns-Roemer ’05)

The h∗-vector of a Gorenstein polytope P is unimodal, if P admits aregular unimodular triangulation.

Theorem (Mustata/Payne ’05)

There exist reflexive 6-polytopes with non-unimodal h∗-vector.

Def.: P is normal, if CP ∩ Zd+1 is generated by lattice points in P.

Question: P normal Gorenstein polytope =⇒ h∗P unimodal ?

Benjamin Nill (U Georgia) Gorenstein polytopes 30 / 46

Page 89: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

III. Combinatorial mirror symmetry

Benjamin Nill (U Georgia) Gorenstein polytopes 31 / 46

Page 90: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Philosophy

Gorenstein polytopes are combinatorial models of Calabi-Yau varieties.

Benjamin Nill (U Georgia) Gorenstein polytopes 32 / 46

Page 91: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Mirror symmetry

Y Calabi-Yau n-fold, if its canonical divisor is trivial.

Example: Let P be reflexive polygon. For generic coefficients c(a,b) ∈ C∗

Benjamin Nill (U Georgia) Gorenstein polytopes 33 / 46

Page 92: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Mirror symmetry

Y Calabi-Yau n-fold, if its canonical divisor is trivial.

Example: Let P be reflexive polygon. For generic coefficients c(a,b) ∈ C∗

Y := (x , y) ∈ (C∗)2 :∑

(a,b)∈P∩Z2

c(a,b) xayb = 0

Benjamin Nill (U Georgia) Gorenstein polytopes 33 / 46

Page 93: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Mirror symmetry

Y Calabi-Yau n-fold, if its canonical divisor is trivial.

Example: Let P be reflexive polygon. For generic coefficients c(a,b) ∈ C∗

Y := (x , y) ∈ (C∗)2 :∑

(a,b)∈P∩Z2

c(a,b) xayb = 0

is an elliptic curve (Calabi-Yau 1-fold).

Benjamin Nill (U Georgia) Gorenstein polytopes 33 / 46

Page 94: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Mirror symmetry

String Theory proposes mirror pairs of CY-n-folds Y , Y ∗!

Topological mirror symmetry test

hp,q(Y ) = hp,n−q(Y ∗)

for Hodge numbers hp,q = hq(Y ,ΩpY ).

Benjamin Nill (U Georgia) Gorenstein polytopes 34 / 46

Page 95: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Batyrev’s construction

Theorem (Batyrev ’94)

P, P∗ dual reflexive polytopes Calabi-Yau hypersurfaces YP , YP∗ inGorenstein toric Fano varieties whose stringy Hodge numbers satisfy thetopological mirror symmetry test.

Benjamin Nill (U Georgia) Gorenstein polytopes 35 / 46

Page 96: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Batyrev-Borisov-construction

Theorem (Batyrev/Borisov ’96)

Dual nef-partitions Calabi-Yau complete intersections in Gorensteintoric Fano varieties whose stringy Hodge numbers satisfy the topologicalmirror symmetry test.

Benjamin Nill (U Georgia) Gorenstein polytopes 36 / 46

Page 97: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Nef-partitions

Families of lattice polytopes complete intersections Y .

Y is Calabi-Yau, if Q1 + · · ·+ Qr is reflexive.

Q1, . . . ,Qr nef-partition, if 0 ∈ Q1, . . ., 0 ∈ Qr .

Benjamin Nill (U Georgia) Gorenstein polytopes 37 / 46

Page 98: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Nef-partitions

Families of lattice polytopes complete intersections Y .

Y is Calabi-Yau, if Q1 + · · ·+ Qr is reflexive.

Q1, . . . ,Qr nef-partition, if 0 ∈ Q1, . . ., 0 ∈ Qr .

Benjamin Nill (U Georgia) Gorenstein polytopes 37 / 46

Page 99: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Nef-partitions

Families of lattice polytopes complete intersections Y .

Y is Calabi-Yau, if Q1 + · · ·+ Qr is reflexive.

Q1, . . . ,Qr nef-partition, if 0 ∈ Q1, . . ., 0 ∈ Qr .

Benjamin Nill (U Georgia) Gorenstein polytopes 37 / 46

Page 100: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Gorenstein polytopes enter the picture

Q1 + · · ·+ Qr reflexive Cayley-polytope is Gorenstein of codegree r !

Benjamin Nill (U Georgia) Gorenstein polytopes 38 / 46

Page 101: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Gorenstein polytopes enter the picture

Prop. (Batyrev/N. ’08)

P Gorenstein polytope of codegree r :

Cayley structures of length r on P ←→ Special (r − 1)-simplices of P∗

Benjamin Nill (U Georgia) Gorenstein polytopes 39 / 46

Page 102: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Gorenstein polytopes enter the picture

Prop. (Batyrev/N. ’08)

P Gorenstein polytope of codegree r :

Cayley structures of length r on P ←→ Special (r − 1)-simplices of P∗

Benjamin Nill (U Georgia) Gorenstein polytopes 39 / 46

Page 103: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Duality of nef-partitions

P Cayley polytope of nef-partition

⇐⇒

P and P∗ have special (r − 1)-simplex⇐⇒

P∗ Cayley polytope of nef-partition

Benjamin Nill (U Georgia) Gorenstein polytopes 40 / 46

Page 104: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Duality of nef-partitions

P Cayley polytope of nef-partition

⇐⇒

P and P∗ have special (r − 1)-simplex

⇐⇒

P∗ Cayley polytope of nef-partition

Benjamin Nill (U Georgia) Gorenstein polytopes 40 / 46

Page 105: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Duality of nef-partitions

P Cayley polytope of nef-partition

⇐⇒

P and P∗ have special (r − 1)-simplex⇐⇒

P∗ Cayley polytope of nef-partition

Benjamin Nill (U Georgia) Gorenstein polytopes 40 / 46

Page 106: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

The stringy E -polynomial of Y

Def.: Stringy E -polynomial:

Est(Y ; u, v) :=∑p,q

(−1)p+qhp,qst (Y ) up vq.

Theorem (Batyrev/Borisov ’96; Borisov/Mavlyutov ’03)

Given Gorenstein polytope P as Cayley polytope of length r and CYcomplete intersection Y :

Est(Y ; u, v) = (uv)−r∑∅≤F≤∆

(−u)dim(F )+1 S(F , u−1v) S(F ∗, uv)

whereS(F , t) :=

∑∅≤G≤F

(−1)dim(F )−dim(G) h∗G (t) g[G ,F ](t).

Benjamin Nill (U Georgia) Gorenstein polytopes 41 / 46

Page 107: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

The stringy E -polynomial of Y

Def.: Stringy E -polynomial:

Est(Y ; u, v) :=∑p,q

(−1)p+qhp,qst (Y ) up vq.

Theorem (Batyrev/Borisov ’96; Borisov/Mavlyutov ’03)

Given Gorenstein polytope P as Cayley polytope of length r and CYcomplete intersection Y :

Est(Y ; u, v) = (uv)−r∑∅≤F≤∆

(−u)dim(F )+1 S(F , u−1v) S(F ∗, uv)

whereS(F , t) :=

∑∅≤G≤F

(−1)dim(F )−dim(G) h∗G (t) g[G ,F ](t).

Benjamin Nill (U Georgia) Gorenstein polytopes 41 / 46

Page 108: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

The stringy E -polynomial of Y

Def.: Stringy E -polynomial:

Est(Y ; u, v) :=∑p,q

(−1)p+qhp,qst (Y ) up vq.

Theorem (Batyrev/Borisov ’96; Borisov/Mavlyutov ’03)

Given Gorenstein polytope P as Cayley polytope of length r and CYcomplete intersection Y :

Est(Y ; u, v) = (uv)−r∑∅≤F≤∆

(−u)dim(F )+1 S(F , u−1v) S(F ∗, uv)

whereS(F , t) :=

∑∅≤G≤F

(−1)dim(F )−dim(G) h∗G (t) g[G ,F ](t).

Benjamin Nill (U Georgia) Gorenstein polytopes 41 / 46

Page 109: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

The stringy E -polynomial of Y

Def.: Stringy E -polynomial:

Est(Y ; u, v) :=∑p,q

(−1)p+qhp,qst (Y ) up vq.

Theorem (Batyrev/Borisov ’96; Borisov/Mavlyutov ’03)

Given Gorenstein polytope P as Cayley polytope of length r and CYcomplete intersection Y :

Est(Y ; u, v) = (uv)−r∑∅≤F≤∆

(−u)dim(F )+1 S(F , u−1v) S(F ∗, uv)

where

S(F , t) :=∑∅≤G≤F

(−1)dim(F )−dim(G) h∗G (t) g[G ,F ](t) ∈ Z≥0[t].

Benjamin Nill (U Georgia) Gorenstein polytopes 42 / 46

Page 110: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

The stringy E -polynomial of P

Definition (Batyrev/N. ’08)

P Gorenstein d-polytope of codegree r . Then define

Est(P; u, v) = (uv)−r∑∅≤F≤∆

(−u)dim(F )+1 S(F , u−1v) S(F ∗, uv).

Let us call n := d + 1− 2r the Calabi-Yau dimension of P.

Beautiful facts (Batyrev/Borisov ’96; Borisov/Mavlyutov ’03)

”Hodge duality”: Est(P; u, v) = Est(P; v , u).

”Poincare duality”: Est(P; u, v) = (uv)n Est(P; u − 1, v − 1).

”Mirror symmetry”: Est(P; u, v) = (−u)n Est(P∗; u − 1, v).

Benjamin Nill (U Georgia) Gorenstein polytopes 43 / 46

Page 111: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

The stringy E -polynomial of P

Definition (Batyrev/N. ’08)

P Gorenstein d-polytope of codegree r . Then define

Est(P; u, v) = (uv)−r∑∅≤F≤∆

(−u)dim(F )+1 S(F , u−1v) S(F ∗, uv).

Let us call n := d + 1− 2r the Calabi-Yau dimension of P.

Beautiful facts (Batyrev/Borisov ’96; Borisov/Mavlyutov ’03)

”Hodge duality”: Est(P; u, v) = Est(P; v , u).

”Poincare duality”: Est(P; u, v) = (uv)n Est(P; u − 1, v − 1).

”Mirror symmetry”: Est(P; u, v) = (−u)n Est(P∗; u − 1, v).

Benjamin Nill (U Georgia) Gorenstein polytopes 43 / 46

Page 112: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

The stringy E -polynomial of P

Definition (Batyrev/N. ’08)

P Gorenstein d-polytope of codegree r . Then define

Est(P; u, v) = (uv)−r∑∅≤F≤∆

(−u)dim(F )+1 S(F , u−1v) S(F ∗, uv).

Let us call n := d + 1− 2r the Calabi-Yau dimension of P.

Beautiful facts (Batyrev/Borisov ’96; Borisov/Mavlyutov ’03)

”Hodge duality”: Est(P; u, v) = Est(P; v , u).

”Poincare duality”: Est(P; u, v) = (uv)n Est(P; u − 1, v − 1).

”Mirror symmetry”: Est(P; u, v) = (−u)n Est(P∗; u − 1, v).

Benjamin Nill (U Georgia) Gorenstein polytopes 43 / 46

Page 113: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

The stringy E -polynomial of P

Definition (Batyrev/N. ’08)

P Gorenstein d-polytope of codegree r . Then define

Est(P; u, v) = (uv)−r∑∅≤F≤∆

(−u)dim(F )+1 S(F , u−1v) S(F ∗, uv).

A priori just a Laurent polynomial!

Benjamin Nill (U Georgia) Gorenstein polytopes 44 / 46

Page 114: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

The stringy E -polynomial of P

Definition (Batyrev/N. ’08)

P Gorenstein d-polytope of codegree r . Then define

Est(P; u, v) = (uv)−r∑∅≤F≤∆

(−u)dim(F )+1 S(F , u−1v) S(F ∗, uv).

A priori just a Laurent polynomial!

Benjamin Nill (U Georgia) Gorenstein polytopes 44 / 46

Page 115: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

The stringy E -polynomial of P

Theorem (N./Schepers ’10)

Est(P; u, v) is a polynomial.

Therefore, there are hp,qst ∈ N s.t.

Est(P; u, v) =∑p,q

(−1)p+q hp,qst (P) up vq.

Proof relies on

Open: Is the degree of Est(P; u, v) 6= 0 equal to 2n ?

Benjamin Nill (U Georgia) Gorenstein polytopes 45 / 46

Page 116: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

The stringy E -polynomial of P

Theorem (N./Schepers ’10)

Est(P; u, v) is a polynomial. Therefore, there are hp,qst ∈ N s.t.

Est(P; u, v) =∑p,q

(−1)p+q hp,qst (P) up vq.

Proof relies on

Open: Is the degree of Est(P; u, v) 6= 0 equal to 2n ?

Benjamin Nill (U Georgia) Gorenstein polytopes 45 / 46

Page 117: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

The stringy E -polynomial of P

Theorem (N./Schepers ’10)

Est(P; u, v) is a polynomial. Therefore, there are hp,qst ∈ N s.t.

Est(P; u, v) =∑p,q

(−1)p+q hp,qst (P) up vq.

Proof relies ondeg(F ) ≤ deg(P)

Open: Is the degree of Est(P; u, v) 6= 0 equal to 2n ?

Benjamin Nill (U Georgia) Gorenstein polytopes 45 / 46

Page 118: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

The stringy E -polynomial of P

Theorem (N./Schepers ’10)

Est(P; u, v) is a polynomial. Therefore, there are hp,qst ∈ N s.t.

Est(P; u, v) =∑p,q

(−1)p+q hp,qst (P) up vq.

Proof relies ondeg(F ) + deg(F ∗) ≤ deg(P)

Open: Is the degree of Est(P; u, v) 6= 0 equal to 2n ?

Benjamin Nill (U Georgia) Gorenstein polytopes 45 / 46

Page 119: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

The stringy E -polynomial of P

Theorem (N./Schepers ’10)

Est(P; u, v) is a polynomial. Therefore, there are hp,qst ∈ N s.t.

Est(P; u, v) =∑p,q

(−1)p+q hp,qst (P) up vq.

Proof relies ondeg(F ) + deg(F ∗) ≤ deg(P)

Open: Is the degree of Est(P; u, v) 6= 0 equal to 2n ?

Benjamin Nill (U Georgia) Gorenstein polytopes 45 / 46

Page 120: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Finally, the main challenge

Conjecture (Batyrev/N. ’08)

There exist only finitely many stringy E -polynomials of Gorensteinpolytopes with fixed Calabi-Yau dimension n and fixed constant coefficient.

Would imply the finiteness of Hodge numbers of irreducible CY-manifoldsconstructed via the Batyrev-Borisov-procedure.

Question (Yau):Only finitely many topological types of irreducible CY-3-folds?

Benjamin Nill (U Georgia) Gorenstein polytopes 46 / 46

Page 121: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Finally, the main challenge

Conjecture (Batyrev/N. ’08)

There exist only finitely many stringy E -polynomials of Gorensteinpolytopes with fixed Calabi-Yau dimension n and fixed constant coefficient.

Would imply the finiteness of Hodge numbers of irreducible CY-manifoldsconstructed via the Batyrev-Borisov-procedure.

Question (Yau):Only finitely many topological types of irreducible CY-3-folds?

Benjamin Nill (U Georgia) Gorenstein polytopes 46 / 46

Page 122: Reflexive polytopes, Gorenstein polytopes, and ...staff.math.su.se/nill/daten/nill-wildcats-seminar-final-version.pdf · Goals of this talk: Convince you that (re exive &) Gorenstein

Finally, the main challenge

Conjecture (Batyrev/N. ’08)

There exist only finitely many stringy E -polynomials of Gorensteinpolytopes with fixed Calabi-Yau dimension n and fixed constant coefficient.

Would imply the finiteness of Hodge numbers of irreducible CY-manifoldsconstructed via the Batyrev-Borisov-procedure.

Question (Yau):Only finitely many topological types of irreducible CY-3-folds?

Benjamin Nill (U Georgia) Gorenstein polytopes 46 / 46


Recommended