Transcript
Page 1: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

Dpt. Chemical Engineering, Univ. Almería, SPAIN 1

PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER

GREENHOUSE

Emilio Molina GrimaDpto. Ingeniería Química

Universidad de Almería

E-mail: [email protected]

Page 2: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

2Dpt. Chemical Engineering, Univ. Almería, SPAIN

1) Microalgas: caracterización y particularidades

MicroorganismosMicroorganismos unicelularesunicelulares fotoautotróficosfotoautotróficos

LUZLUZMicroalgas

COCO22

Más microalgas

Nutrientes,agua

OO22

MetabolitosMicroorganismos (diferencia con las macroalgas)

Fotótrofos (aunque flexibles) : su fuente de energía es la luz

Autótrofos: Su fuente de carbono es el CO2

Gran velocidad de duplicación por ser microorganismos

Page 3: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

3Dpt. Chemical Engineering, Univ. Almería, SPAIN

1) Microalgas: caracterización y particularidades

BiomasaBiomasa de de composicióncomposición complejacompleja: : componentescomponentes de de interésinterésProteínas y otros nutrientes: alimentación humana y piensos para ganadoProteínas y otros nutrientes: alimentación humana y piensos para ganado

Capacidad quelante: biorremediaciónCapacidad quelante: biorremediación

Ácidos grasos poliinsaturadosÁcidos grasos poliinsaturados

ClorofilasClorofilas

CarotenoidesCarotenoides

Enzimas antioxidantes (SOD)Enzimas antioxidantes (SOD)

Pigmentos fluorescentesPigmentos fluorescentes

Componentes de gran interés en comparación con otrasbiomasas de origen vegetal (plantas terrestres o macroalgas)

Componentes de gran interés en comparación con otrasbiomasas de origen vegetal (plantas terrestres o macroalgas)

ExopolisacáridosExopolisacáridos

Compuestos bioactivos: antifúngicos, antivirales, citotóxicosCompuestos bioactivos: antifúngicos, antivirales, citotóxicos

ACUICULTURAACUICULTURA

Biotoxinas marinasBiotoxinas marinas

Page 4: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

4Dpt. Chemical Engineering, Univ. Almería, SPAIN

1) Microalgas: caracterización y particularidades

DiversidadDiversidad de de especiesespecies

Muchas especies catalogadas y disponiblesMuchas especies catalogadas y disponibles

Sólo unas pocas estudiadas y aprovechadas comercialmenteSólo unas pocas estudiadas y aprovechadas comercialmente

Gran potencialidad de productos y aplicacionesGran potencialidad de productos y aplicaciones

Haematococcus pluvialisHaematococcus pluvialis Phaeodactylum tricornutumPhaeodactylum tricornutumDunaliela salinaDunaliela salina

Protoceratium reticulatumProtoceratium reticulatum

Page 5: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

5Dpt. Chemical Engineering, Univ. Almería, SPAIN

1) Microalgas: caracterización y particularidades

DiversidadDiversidad de de especiesespeciesIsochrysis galbanaIsochrysis galbana

Skeletonema costatumSkeletonema costatum Tetraselmis suecicaTetraselmis suecica

Phorphyridium cruentumPhorphyridium cruentum Chlorella sp.Chlorella sp.

Anabaena.Anabaena.

Page 6: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

6Dpt. Chemical Engineering, Univ. Almería, SPAIN

2) Sistemas de cultivo y producción a gran escala

Sistemas abiertos: Sistemas abiertos: openopen pondsponds y y racewaysraceways

Cultivo de SpirulinaCultivo de Spirulina

Cultivo de Dunaliella salinaCultivo de Dunaliella salina

Biomasa rica en proteínaCrece a pH muy altoResistente a condiciones agresivas

Biomasa rica en proteínaCrece a pH muy altoResistente a condiciones agresivas

Producción de β-carotenoHalotoleranteLuminosidad y salinidad favorecen el proceso

Producción de β-carotenoHalotoleranteLuminosidad y salinidad favorecen el proceso

D. salina en open ponds D. salina en raceways

Page 7: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

7Dpt. Chemical Engineering, Univ. Almería, SPAIN

Page 8: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

8Dpt. Chemical Engineering, Univ. Almería, SPAIN

Objective

To study the business possibilities that may offer the tubular photobioreactor technology under a farmer greenhouse, as those existing in Almería, South Spain, to produce algal biomass.

Page 9: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

9Dpt. Chemical Engineering, Univ. Almería, SPAIN

Starting-up

• Discovery of new strain,Scenedesmus almeriensis.

• Local bloom: adapted to environment

• Extraordinary producer of Lutein (and Zeaxantin)

• Clean carotenoid profile

Page 10: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

10Dpt. Chemical Engineering, Univ. Almería, SPAIN

• 18S rDNA and ITS rDNA sequencing was employed

• Sequences deviated from the most closely related species by 11 sequences position in the 18S rDNA exon region and in the two group I introns

• The new strain Scenedesmus almeriensis has been deposited in the Culture Collection of Algae and Protozoa (CCAP) code CCAP 276/24

Scenedesmus almeriensisCHARACTERIZATION: rDNA analysis

Prof. Thomas FriedlExp. Phycol. Cult. Collect. AlgaeSAG, Gottingen 37073 Germany

1.- S. almeriensis and the interest of lutein: the new strain

TITULO: Nueva especie de microalga y su aplicación para consumo animal, humano y en la obtención de carotenoidesNÚMERO DE PATENTE: Solicitud Nº P200500374FECHA: 5 de Febrero de 2005SOLICITANTE: Cajamar, Universidad de Almería.

Page 11: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

11Dpt. Chemical Engineering, Univ. Almería, SPAIN

1.- S. almeriensis and the interest of lutein: LUTEIN

• An adequate intake of this product might help to prevent or ameliorate the effects of degenerative human diseases, such as age-related macular degeneration (AMD)

• Supplements containing lutein enriched extracts are usually prescribed for these patients in order to supply the recommended daily intake of lutein (6 mg/day)

• Using microalgal biomass makes possible to formulate lutein complements with only 1 g of dry biomass, that supply the recommended daily dose of lutein

•Potential market of lutein is around 90 millions people in the world and increasing

Lutein is the major carotenoid present in the biomass of Scenedesmus almeriensis

Page 12: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

12Dpt. Chemical Engineering, Univ. Almería, SPAIN

1.- S. almeriensis and the interest of lutein: OTHER SOURCES

SourceSource foodfood Lutein Lutein contentcontent((mgmg/100g)/100g)

KaleKale 38.538.5

SpinachSpinach 12.212.2

CressCress 12.112.1

ChardChard 11.911.9

CollardCollard 8.98.9

S. almeriensisS. almeriensis 600*600*

Comparison withdietary sources of lutein

Digestibility and effective absorption of most dietary sources is unknown and may vary with patient, clinical condition and food elaboration.

Comparison withcommercial sources of lutein

SpeciesSpecies Free Free luteinlutein

(mg/100(mg/100g)g)

Mono/diestMono/diestersers

(mg/100g)(mg/100g)

Total Total lutein lutein

(mg/100(mg/100g)g)

TagetesTagetes patulapatula 3.63.6 128.8128.8 132.4132.4

TagetesTagetes erectaerecta 1.21.2 67.267.2 68.468.4

Calyces (mean)Calyces (mean) 0.380.38 4.294.29 4.674.67

Champion Champion orange (orange (T T patulapatula))

00 569569 569569

Mixed speciesMixed species((T. T. erectaerecta))

2.82.8 137.3137.3 140.1140.1

S almeriensisS almeriensis -- -- 600*600*

Piccaglia et al (1998) “Lutein and lutein ester content in different types of Tagetes patula and T. erecta” Industrial Crops and Products, 8, 45-51

Lutein content of Scenedesmus almeriensis greatly overpassesthe dietary and commercial sources of this compound

*Average content

*Preliminary data

Page 13: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

13Dpt. Chemical Engineering, Univ. Almería, SPAIN

Microalgal sources of lutein

*Average content Del Campo et al., (2000) J. Biotechnol. 76, 51–59Del Campo et al., (2001) J. Biotechnol. 85, 289-295Shi et al. (2002) Biotechnol. Prog. 18, 723-727

In addition to Scenedesmus almeriensis, very few other microalgae strains has been proposed as lutein producers, S. almeriensis being the most promising of them

a referred to the land area shaded by the tubes

MicroalgaeMicroalgae ContentContent(mg/100g)(mg/100g)

Lutein productivity and Lutein productivity and conditionsconditions

Chlorella Chlorella zofigiensiszofigiensis 342342 Laboratory scale.Laboratory scale.

MuriellopsisMuriellopsis spsp 430430 Outdoors 50 L external tubular Outdoors 50 L external tubular photobioreactor 170 mg/mphotobioreactor 170 mg/m22 dayday

Chlorella Chlorella protothecoidesprotothecoides 535535 Heterotrophic, laboratory scale, Heterotrophic, laboratory scale, productivity 49 mg/L dayproductivity 49 mg/L day

Scenedesmus almeriensisScenedesmus almeriensis 600*600* Outdoors 4000 L external tubular Outdoors 4000 L external tubular photobioreactor 386.66 mg/mphotobioreactor 386.66 mg/m22

dayday

1.- S. almeriensis and the interest of lutein: OTHER SOURCES

Page 14: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

14Dpt. Chemical Engineering, Univ. Almería, SPAIN

1.- S. almeriensis vs. Marigold

Yield of Marigold vs S. almeriensis

Biomass Marigold:

S. almeriensis:

1200 kg dry petals/yr = 480 g/m2 yr

18000 g/m2 yr

Lutein Marigold:

S. almeriensis:

22 Kg/Ha yr

1411 Kg/Ha yr

Marigold:

S. almeriensis: 4000 L tubular photobioreactor, occupied land, in greenhouse, current productivity (not optimized)

4 harvest/yr, best conditions for commercial cultures (Bosma et al. 2003)

Bosma et al. (2003) “Optimizing marigold (Tagetes erecta) petal and pigment yield” Crop Science, 43

The yield of Scenedesmus almeriensis greatly overpasses the current sources of lutein

Page 15: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

15Dpt. Chemical Engineering, Univ. Almería, SPAIN

2.- Characterization of the new strain: Growth model (µ vs Iav)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 50 100 150 200 250 300 350 400

Iav, µE/m2s

Gro

wth

rate

, 1/h

The growth rate was a function of average irradiance inside the culture, no influence of external irradiance was observed

• The maximum growth rate is high, 0.09 1/h

• Ik value is low, 70 µE/m2s, thus indicating a high efficiency of light utilization

Sanchez et al., (2005) “Characterization of the new strain Scenedesmus almeriensis and potential applications” 6th European Workshop of Microalgal Biotechnology

nav

nk

navmax

III

+⋅μ

µmax=0.091 1/h

n=1.8

Ik=70 µE/m2s

Page 16: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

16Dpt. Chemical Engineering, Univ. Almería, SPAIN

2.- Characterization of the new strain: Biochemical profile

Lutein is the major carotenoid. Lutein content increased with the dilution rate, irradiance and extreme temperatures

C = 47.38 %CH = 6.47 %HN = 7.72 %NS = 0.53 %S

Proteins = 48.3 %d.wt.Lipids = 10.0 %d.wt.18:3n3 = 1.78 %d.wt.18:2n6 = 1.60 %d.wt.

• Fuente ventajosa• Elevado contenido en luteína• Pureza elevada• Buena digestibilidad (preliminar)• Obtención de luteína purificada factible

Lutein up to 1.0 %d.wt.

Page 17: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

17Dpt. Chemical Engineering, Univ. Almería, SPAIN

3.- Design and setup of the industrial-size photobioreactor

• Inside a greenhouse

• Type: tubular, double loop, light captation optimized

• Hidrodynamic design for light integration regime

• Enhanced heat and mass transfer

• Self cleaning, long-term operation

Page 18: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

18Dpt. Chemical Engineering, Univ. Almería, SPAIN

LOCATION: El Ejido, Almería (South of Spain)

Almería

El EjidoLongitude : 2º 43’ WLatitude : 36º 48’ N

Altitude : 155 m

SPAIN

Page 19: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

19Dpt. Chemical Engineering, Univ. Almería, SPAIN

3.- Design and setup of the industrial-size photobioreactor

Objective: To design, calculate, setup and operate an industrial size photobioreactor for the production of Scenedesmus almeriensis inside a greenhouse

• Irradiance inside the greenhouse is 35-40% lower than outdoor

• All the solar radiation inside the reactor is disperse radiation due to the composition of the plastic cover used

•The mean daily temperature inside the greenhouse is similar to the exterior, although the maximum temperature inside the greenhouse is 3-5 ºC higher than outdoor

Location: El Ejido, Almería (Southern Spain)

Page 20: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

20Dpt. Chemical Engineering, Univ. Almería, SPAIN

3.- Design and setup of the industrial-size photobioreactor

BiomassProductivity

Temperature

Day of theyear

Growthrate

Geographic andclimatic localization

Light profile,average irradiance

Biomassconcentration

Incident solarradiation

Geometry

Design andorientation

Fluid-dynamic

Masstransfer

Lightregime

Biochemicalcomposition

Bioproductproductivity

HarvestingDownstreamBIOPRODUCT Molina et al., (1999) “Photobioreactors: light regime,

mass transfer, and scaleup” Journal of Biotechnology, 70, 231-248.

First, decide geometry and design to optimize the irradiance on the reactor surface, then work out adequate fluid-dynamics for heat, mass transfer and light integration

Photobioreactor design principles

Page 21: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

21Dpt. Chemical Engineering, Univ. Almería, SPAIN

3.- Design and setup of the industrial-size photobioreactor

Tube diameterAirlift system, heat and masstransfer and liquid velocity

External loop, length and liquid velocity

Acién et al., (2001) “Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance” Chemical Engineering Science, 56, 2721-2732.

Equations relating the growth parameters of the microorganism and fluid-dynamic or mass transfer requirements have been previously reported.

3.08.0 PrRe023.0NuTUAQ

=

Δ=

bv CPb ⋅μ=

nav

nk

navmax

III

+⋅μ

( ))exp(1 baeqeq

oav CKII ⋅⋅−−= φ

φ

T

tva n4

dPbPb⋅⋅π

=

)(θφ

Cosdt

eq =

4 / 7

1 .25

0 .25

0 .316

r r tL

Leq

g h dUµ L

ε

ρ

⎛ ⎞⎜ ⎟

⋅ ⋅ ⋅⎜ ⎟= ⎜ ⎟⎛ ⎞⎜ ⎟⋅ ⋅⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

rb

g L

uu u

βελ

=+

+

(1 )6

L L Lr

b r

k k ad

εε⋅

= −⋅

[ ] [ ]( )2

out2in2L

ROOOu

L−

=

Page 22: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

22Dpt. Chemical Engineering, Univ. Almería, SPAIN

3.- Design and setup of the industrial-size photobioreactor

BASE DESIGN: Two plane, tubular airlift photobioreactor

AIR

CO2

Medium

Harvest

Gas exhaust

Probes

Cooling water

The airlift tubular photobioreactor design is selected, with a two-level external loop configuration.

Torzillo et al., (1993) “A two plane tubular photobioreactor for outdoor culture of Spirulina” Biotechnology and Bioengineering, 42, 891-898.

Page 23: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

23Dpt. Chemical Engineering, Univ. Almería, SPAIN

3.- Design and setup of the industrial-size photobioreactor

0.30 m

0.30 m

0.10 m

18.0 m

4.5 m

Acién et al., (2001) “Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance” Chemical Engineering Science, 56, 2721-2732.

The optimal configuration of the two plane external loop allows to maximize the irradiance on the reactor surface.

External loop: optimizing light capture

Page 24: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

24Dpt. Chemical Engineering, Univ. Almería, SPAIN

INDUSTRIAL SCALE PHOTOBIOREACTORFINAL DESIGN: Frame for the xternal loop

Frames and accessories for the setting-up of the external loop of the reactor were designed and installed

4.0 m

1.25 m 1.25 m 1.25 m

0.10 m 0.10 m0.10 m0.10 m

20.0 m

4.0 m

1.25 m 1.25 m 1.25 m

0.10 m 0.10 m0.10 m0.10 m

20.0 m

4.0 m

1.25 m 1.25 m 1.25 m

0.10 m 0.10 m0.10 m0.10 m

20.0 m

1.25 m 1.25 m 1.25 m

0.10 m 0.10 m0.10 m0.10 m

20.0 m

Page 25: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

25Dpt. Chemical Engineering, Univ. Almería, SPAIN

INDUSTRIAL SCALE PHOTOBIOREACTORFINAL DESIGN: Airlift system and inoculum bubble columns

AIRLIFT SYSTEM INNOCULUM BUBBLE COLUMN INTERNAL HEAT EXCHANGERS

Frames and accessories for the setting-up of the inoculum columns and airlift system were designed and installed, as well as the internal heat exchangers for cooling

4.00 m

0.60 m

0.25 m

0.40 m0.40 m

3.00 m

0.30 m

0.25 m

0.40 m 0.40 m

3.00 m

0.20 m

0.30 m0.10 m

4.00 m

0.60 m

0.25 m

0.40 m0.40 m

4.00 m

0.60 m

0.25 m

0.40 m0.40 m

4.00 m

0.60 m

0.25 m

0.40 m0.40 m

3.00 m

0.30 m

0.25 m

0.40 m 0.40 m

3.00 m

0.30 m

0.25 m

0.40 m 0.40 m

3.00 m

0.30 m

0.25 m

0.40 m 0.40 m

3.00 m

0.20 m

0.30 m0.10 m

3.00 m

0.20 m

0.30 m0.10 m

Page 26: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

26Dpt. Chemical Engineering, Univ. Almería, SPAIN

INDUSTRIAL SCALE PHOTOBIOREACTORSETUP: Build-up

The reactor was set-up inside the greenhouse in two months

• Ground of the greenhouse was covered with a white plastic sheet to increase the irradiance on the reactor surface

Page 27: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

27Dpt. Chemical Engineering, Univ. Almería, SPAIN

INDUSTRIAL SCALE PHOTOBIOREACTORSETUP AND TEST: Hidraulic test

The reactor was setting-up inside the greenhouse in two months

Page 28: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

28Dpt. Chemical Engineering, Univ. Almería, SPAIN

INDUSTRIAL SCALE PHOTOBIOREACTORSETUP AND TEST: Medium and harvest operations

Accessories facilities were set-up and operated

• Medium is prepared on-line by adding a salts stock to the water flow entering the reactor.• Medium is sterilized by 0.2 µm filtration carried out in 5 steps.• Biomass is harvested by centrifugation• Operation of the reactor is AUTOMATICALLY performed.

Page 29: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

29Dpt. Chemical Engineering, Univ. Almería, SPAIN

3.- Design and setup of the industrial-size photobioreactor

3

1

4

1. Instrumentation: DO2, pH, Temp2. Innoculum bubble columns3. Airlift system4. External loop

a. Air flowmeter 0-800 L/min CNb. CO2 flowmeter 0-5 L/min CNc. Air flowmeter 0-30 L/min CNd. CO2 flowmeter 0-1 L/min CN

2a,b

c,d

The inoculum bubble columns and reactor were distributed in the plant.

Colour lines:Red, carbon dioxideBlue, water-mediumBlack, compressed airGreen, harvest

Page 30: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

30Dpt. Chemical Engineering, Univ. Almería, SPAIN

3.- Design and setup of the industrial-size photobioreactor

2

3

1

45

6

1. Filtration: 0.2 µm, manometers2. Medium tank: 1.5 m3

3. Harvest tank: 1.5 m3

4. CO2 Bottles: 8 on two matrix5. Compressor: 700 L/min CN6. Electricity supply: 220 v, 16 A7. Continuous centrifugation8. Waste tank9. Prefiltration10. Mass flowmeter11. Flowmeter

a

cb

e

f

h

a. PVC 50 mmb. PVC 25 mmc. PVC 25 mmd. PVC 25 mme. Poliamida 8 mm redf. Poliamida 8 mm blackg. Electric 3*1.5 mmh. Electronic, 4-20 mA

87

9

10

11

waste

b

b

d

d

da

g

Medium preparation, accessories and harvesting facilitieswere distributed in the control room

Colour lines:Red, carbon dioxideBlue, water-mediumBlack, compressed airGreen, harvestBrown, waste

PLANT LAYOUT: Medium preparation and harvesting

Page 31: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

31Dpt. Chemical Engineering, Univ. Almería, SPAIN

2) Sistemas de cultivo y producción a gran escala

Sistemas tubulares horizontalesSistemas tubulares horizontales

Page 32: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

32Dpt. Chemical Engineering, Univ. Almería, SPAIN

3.- Design and setup of the industrial-size photobioreactor

four months after the commencement of the project, the reactor wasinoculated and the first culture was developed

Reactor:Volume=4.0 m3

Self-cleaning systempH cotrol by CO2 injectionTemp. Control: recirculatingwater from pool

Liquid velocity=0.3 m/s

External loop:Length=400 mDiameter=0.1 mPolymetilmetacrilateSingle loop, two levelsDistance between tubes= 0.3 mArea occupied=81 m2(18x4.5)

Airlift:Diameter=0.30 mHeight=3.5 mTubular heat exchangerAir flow=0-500 L/min

Reactor:Volume=4.0 m3

Self-cleaning systempH cotrol by CO2 injectionTemp. Control: recirculatingwater from pool

Liquid velocity=0.3 m/s

External loop:Length=400 mDiameter=0.1 mPolymetilmetacrilateSingle loop, two levelsDistance between tubes= 0.3 mArea occupied=81 m2(18x4.5)

Airlift:Diameter=0.30 mHeight=3.5 mTubular heat exchangerAir flow=0-500 L/min

Page 33: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

33Dpt. Chemical Engineering, Univ. Almería, SPAIN

4.- Evaluation of the fotobioreactor and the production processAIRLIFT MODE: April-July 2004

When the reactor was operated as airlift, both LOW biomass productivities and global solar efficiencies were measured

• Liquid velocity 0.32 ms-1

• The culture conditions were not correctly controlled• Excessive dissolved oxygen accumulation• Irradiance inside the greenhouse was low• Biomass productivities of 0.56 gL-1day-1 were measured, with global solar efficiencies of 2.5 % with respect to solar irradiance inside the greenhouse (1.5% with respect to solar irradiance outdoor)

DateDate DilutionDilution,,1/h1/h

IoIo,,µµEmEm--22ss--11

IavIav,,µµEmEm--22ss--11

DODO22,,%Sat%Sat..

pHpH Temp.,Temp.,°°CC

CbCb,,gLgL--11

PbPb,,gLgL--11dayday--11

EfficiencyEfficiencyaa,,% global % global radiationradiation

1414--AprilApril 0.030.03 581581 114114 272.0272.0 8.258.25 24.324.3 0.990.99 0.260.26 1.31.3

2525--AprilApril 0.030.03 836836 105105 244.4244.4 8.038.03 24.024.0 1.441.44 0.380.38 1.71.7

22--MayMay 0.030.03 582582 117117 251.9251.9 8.248.24 20.820.8 0.880.88 0.180.18 1.71.7

1111--MayMay 0.040.04 650650 203203 194.0194.0 7.847.84 22.622.6 0.630.63 0.230.23 1.01.0

2626--JunJun 0.020.02 540540 5959 369.9369.9 8.028.02 29.529.5 1.641.64 0.390.39 1.21.2

1212--JulJul 0.030.03 578578 7575 262.8262.8 8.278.27 30.630.6 1.391.39 0.500.50 1.71.7

2020--JulJul 0.050.05 550550 9898 191.3191.3 8.308.30 30.130.1 0.930.93 0.560.56 2.52.5a Related to the total land area occupied by the photobioreactor (81 m2)

Page 34: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

34Dpt. Chemical Engineering, Univ. Almería, SPAIN

5.- Overcoming difficulties a)- Fixing liquid velocity

Centrifugal pump does not damage the cells at both indoor or outdoor conditions

Indoor experiments Outdoor experiments

Centrifugal pump:Liquid flow rate = 9.0 L/minRepump = 65000Shear rate = 1000 1/s

Centrifugal pump:Liquid flow rate = 420 L/minRepump = 85000Shear rate = 1350 1/s

Experiments carried out in continuous mode in two parallel photobioreactors

Experiments carried out in continuous mode in two consecutive steady-state

Page 35: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

35Dpt. Chemical Engineering, Univ. Almería, SPAIN

5.- Overcoming difficulties: system re-evaluation

Centrifugal pump impulsion: October, 2004-May, 2005

When the reactor was operated with the centrifugal pump HIGH biomass productivities and global solar efficiencies were measured

DateDateDilutionDilution,,

1/h1/hIoIo,,

µµEmEm--22ss--11IavIav,,

µµEmEm--22ss--11DO2, DO2, %Sat%Sat..

pHpH Temp.,Temp.,°°CC

CbCb, , g Lg L--11

PbPb,,gLgL--11dayday--11

EficiencyEficiencyaa, , % global% global

EficiencyEficiencybb, , % global% global

2.0%2.0% 4.0%4.0%

13.4%13.4%

14.4%14.4%

10.6%10.6%2828--novnov--0404 0.0430.043 230230 4141 259259 8.098.09 19.319.3 0.890.89 0.440.44 8.0%8.0% 16.0%16.0% 5.1%5.1%88--janjan--0505 0.0420.042 295295 3636 224224 8.368.36 18.018.0 1.401.40 0.680.68 7.3%7.3% 14.6%14.6% 4.7%4.7%

77--aprapr--0505 0.0420.042 523523 4040 236236 8.138.13 26.826.8 2.182.18 1.051.05 5.9%5.9% 11.7%11.7% 3.8%3.8%

2323--janjan--0505 0.0420.042 314314 3636 210210 8.128.12 19.519.5 1.441.44 0.690.69 7.5%7.5% 15.1%15.1% 4.8%4.8%77--febfeb--0505 0.0420.042 337337 4343 206206 7.817.81 21.121.1 1.391.39 0.670.67 6.3%6.3% 12.5%12.5% 4.0%4.0%2020--febfeb--0505 0.0420.042 359359 4141 207207 8.028.02 22.722.7 1.581.58 0.760.76 9.0%9.0% 17.9%17.9% 5.7%5.7%77--MarMar--0505 0.0420.042 408408 4343 211211 8.048.04 23.323.3 1.721.72 0.830.83 7.2%7.2% 14.4%14.4% 4.6%4.6%

2323--MarMar--0505 0.0420.042 478478 4242 226226 8.328.32 27.327.3 1.971.97 0.950.95 6.3%6.3% 12.5%12.5% 4.0%4.0%

1616--aprapr--0505 0.0420.042 631631 4444 258258 8.058.05 28.428.4 2.412.41 1.161.16 5.2%5.2% 10.3%10.3% 3.3%3.3%1212--maymay--0505 0.0480.048 570570 5252 285285 8.028.02 23.123.1 2.302.30 1.101.10 4.1%4.1% 8.2%8.2% 2.7%2.7%

6.7%6.7%

7.2%7.2%

5.3%5.3%

0.0030.003

0.0290.029

0.0430.043

0.0500.050

EficiencyEficiencycc, , % global% global

1111--octoct--0404 468468 1919 209209 7.997.99 28.128.1 4.164.16 0.320.32 1,3%1,3%

2727--octoct--0404 332332 2828 182182 7.837.83 23.323.3 2.152.15 0.740.74 4.3%4.3%

1111--novnov--0404 296296 4242 254254 8.198.19 21.421.4 1.271.27 0.660.66 4.6%4.6%

2222--novnov--0404 322322 6262 223223 8.168.16 18.918.9 0.960.96 0.580.58 3.4%3.4%

a Related to the total land area occupied by the photobioreactor (80 m2)b Related to the transversal area occupied by the tubes (40 m2)

c Related to the total area of the tubes (125 m2)

Page 36: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

36Dpt. Chemical Engineering, Univ. Almería, SPAIN

5.- Overcoming difficulties: system re-evaluation

Comparison: centrifugal pump vs. airlift impulsion

When the reactor was operated with the centrifugal pump HIGH biomass productivities and global solar efficiencies were measured

DateDateDilutionDilution,,

1/h1/hIoIo,,

µµEmEm--22ss--11IavIav,,

µµEmEm--22ss--11DO2, DO2, %Sat%Sat..

pHpH Temp.,Temp.,°°CC

CbCb, , g Lg L--11

PbPb,,gLgL--11dayday--11

EficiencyEficiency, , % global% global

77--AprilApril 0.0420.042 523523 4040 236236 8.138.13 26.826.8 2.182.18 1.051.05 5.9%5.9%1616--AprilApril 0.0420.042 631631 4444 258258 8.058.05 28.428.4 2.412.41 1.161.16 5.2%5.2%1212--MayMay 0.0480.048 570570 5252 285285 8.028.02 23.123.1 2.302.30 1.101.10 4.1%4.1%

DateDate DilutionDilution,,1/h1/h

IoIo,,µµEmEm--22ss--11

IavIav,,µµEmEm--22ss--11

DODO22,,%Sat%Sat..

pHpH Temp.,Temp.,°°CC

CbCb,,gLgL--11

PbPb,,gLgL--11dayday--11

EfficiencyEfficiency,,% global % global radiationradiation

1414--AprilApril 0.030.03 581581 114114 272.0272.0 8.258.25 24.324.3 0.990.99 0.260.26 1.31.32525--AprilApril 0.030.03 836836 105105 244.4244.4 8.038.03 24.024.0 1.441.44 0.380.38 1.71.722--MayMay 0.030.03 582582 117117 251.9251.9 8.248.24 20.820.8 0.880.88 0.180.18 1.71.7

1111--MayMay 0.040.04 650650 203203 194.0194.0 7.847.84 22.622.6 0.630.63 0.230.23 1.01.0

AIRLIFT MODE:

CENTRIFUGAL PUMP MODE:

Page 37: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

37Dpt. Chemical Engineering, Univ. Almería, SPAIN

5.- Overcoming difficulties: system re-evaluation

Improving PBR MASS TRANSFER

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 100 200 300 400 500 600

Air flowrate, L/min

Bio

mas

s pr

oduc

tivity

, g/L

day

0

100

200

300

400

500

600

Sol

ar ir

radi

ance

, µE

/m2s

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0% 20% 40% 60% 80% 100% 120%

Transparency, %B

iom

ass

prod

uctiv

ity, g

/Lda

y

•Mass transfer determines the yield of the system•Minimmum air flowrate of 300 L/min (0.1 v/v/min) isneccesary•Maxium biomass producitvity of 1.2 g/Lday wasmeasured

Removing PLASTIC COVER?

•Solar irradiance determines the yield of the system•No enhancing of the productivity was observed underdirect solar irradiance•Covers with minimum light transparency of 65% are required.

Page 38: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

38Dpt. Chemical Engineering, Univ. Almería, SPAIN

5.- Overcoming difficulties: system re-evaluation

• Lutein content varied from 0.44 to 0.98 %d.wt.

•lutein productivities of 8 mg/L day8 mg/L day or 386.66 mg/m2 day 386.66 mg/m2 day were measured

CENTRIFUGAL PUMP MODE: October 2004------------

Page 39: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

39Dpt. Chemical Engineering, Univ. Almería, SPAIN

5.- Overcoming difficulties: system re-evaluation

• The predicted biomass concentration variedfrom 1.3 gL-1 to 3.2 gL-1, during winter andsummer respectively.

• The predicted biomass productivity rangedfrom 0.6 gL-1day-1 to 1.4 gL-1day-1, duringwinter and summer respectively.

• The expected mean annual biomassproductivity is 1.1 gL-1day-1 (60 gm-2day-1)

• The estimated mean lutein content of thebiomass is 0.65 %d.wt., providing a mean annual lutein productivity of 8 mg L-1 day-1

(388 mg m-2 day-1)

• Experimental values obtained using thecentrifugal fit the predicted values

Predicted values for D=0.045 h-1

The expected mean annual biomass productivity is 1.1 gL-1day-1 (60 gm-2day-1)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1-Jan 15-Feb 31-Mar 15-May 29-Jun 13-Aug 27-Sep 11-Nov 26-DecDate

Bio

mas

s co

ncen

tratio

n, g

/L

0.01-Jan 15-Feb 31-Mar 15-May 29-Jun 13-Aug 27-Sep 11-Nov 26-Dec

Date

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Bio

mas

s pr

oduc

tivity

, g/L

day

Page 40: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

40Dpt. Chemical Engineering, Univ. Almería, SPAIN

5.- Overcoming difficulties: system re-evaluation

Fotobiorreactores bajo plástico.

• Tecnología probada

• Ensayos preliminares en campo satisfactorios

• Detalles técnicos resueltos(termostatación, mezcla, inoculación, medios, suministro CO2, etc)

• Elevada productividad y eficienciafotosintética

• Gran estabilidad en la operación

• Biomasa de calidad y composiciónconocida

Page 41: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

41Dpt. Chemical Engineering, Univ. Almería, SPAIN

6.- Economic evaluation of the process.

MajorMajor EquipmentEquipment ListList andand CostsCosts ((€€) ) ItemItem UnitUnit capacitycapacity DeliveredDelivered costcost No. of No. of unitsunits total total costcost1. Photobioreactors (1. Photobioreactors (PlexiglasPlexiglas)) 6.54 6.54 mm33 45524552 9595 431345431345 32,7%32,7%2. 2. CentrifugeCentrifuge (24" (24" bowlbowl solidssolids dischargedischarge, s.s.), s.s.) 22.7 22.7 mm33/h/h 120000120000 11 122369122369 9,3%9,3%3. 3. MediumMedium filterfilter unitunit 1800018000 88 138600138600 10,5%10,5%4. 4. MediumMedium feedfeed pumpspumps 65006500 22 1300013000 1,0%1,0%5. 5. MediumMedium prepprep tanktank (SS)(SS) 100100 mm33 3000030000 44 120000120000 9,1%9,1%6. 6. HarvestHarvest brothbroth storagestorage (SS)(SS) 100100 mm33 3000030000 22 6000060000 4,6%4,6%7. 7. CentrifugeCentrifuge feedfeed pumpspumps 45504550 22 91009100 0,7%0,7%8. 8. AirAir compressorscompressors 600600 mm33/h/h 2626626266 44 105065105065 8,0%8,0%9. 9. HarvestHarvest biomassbiomass conveyerconveyer beltsbelts 60006000 11 60006000 0,5%0,5%10. Spray10. Spray--dryerdryer 765765 kgkg HH22O/hO/h 8400084000 33 254176254176 19,3%19,3%11. 11. CarbonCarbon dioxidedioxide supplysupply stationstation 1800018000 11 1800018000 1,4%1,4%12. 12. WeightWeight stationstation 50005000 11 50005000 0,4%0,4%13. 13. BiomassBiomass storagestorage 1.31.3 mm33 1200012000 33 3600036000 2,7%2,7%Total (2005 Total (2005 €€)) 13186541318654 100,0%100,0%

COST ANALYSIS: Considerations

285285MediumMedium flowflow raterate, m, m33//dayday477477Culture Culture volumevolume, m, m33

1.0761.076PbPb g/g/LdayLday0.0500.050DilutionDilution raterate, 1/h, 1/h

154154BiomassBiomass productionproduction capacitycapacity, , mtmt biomassbiomass//annunannun650650Lutein Lutein contentcontent of of thethe biomassbiomass, , mgmg lutein/100 g lutein/100 g biomassbiomass

1.001.00Lutein Lutein productionproduction capacitycapacity, , mtmt//annunannun

The major equipments are the photobioreactors, centrifuge and spray-dryers

Page 42: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

42Dpt. Chemical Engineering, Univ. Almería, SPAIN

6.- Economic evaluation of the process.

ECONOMIC ANALYSIS:

0%

10%

20%

30%

40%

50%

60%

70%

80%

Depreciation Direct costs Utilities Labor/Supervision

Cost

Per

cent

age

RecommededRecommeded dailydailyuptakeuptake, g, g

CostCost of of dailydaily dosis, dosis, €€/dosis/dosis

BiomassBiomass, , €€/kg/kg 1515 1.021.02 0.0150.015

ExtractExtract of carotenoids, of carotenoids, €€/kg/kg 24962496 0.00880.0088 0.0180.018

Lutein Lutein purifyedpurifyed, , €€/kg/kg 51255125 0.00600.0060 0.0260.026

Average Average sellingselling priceprice atat pharmaciespharmacies 0.5100.510

Labor and supervision represents the 70% of the total production cost

Contribution of cost type to the total production cost

Production cost of supply the daily recommended dosage of lutein

Page 43: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

43Dpt. Chemical Engineering, Univ. Almería, SPAIN

7.- Current situation

•Volumen de cada reactor=3.2 m3

•Configuración tipo valla, alto 2.0 m, largo 40.0 m•Separación entre reactores 1.0 m•Superficie ocupada por reactor=40 m2

•Relación volumen/superficie=80 L/m2

•Volumen total=32.0 m3

•Superficie total de reactores=500 m2

•Superficie total necesaria=1000 m2

•Capacidad de producción=30 kg biomasa/día (10 Tm/año)•Producción de luteína=50 kg/año

Datos más relevantes de la planta de demostración

Proyecto de desarrollo tecnológico

Page 44: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

Dpt. Chemical Engineering, Univ. Almería, SPAIN 44

Proyecto Industrial:InstalaciInstalacióónn y y puestapuesta en en marchamarcha::

3) Biomoléculas de interés de origen microalgal

Page 45: PRODUCTION OF MICROALGAE BIOMASS - … · Dpt. Chemical Engineering, Univ. Almería, SPAIN 1 PRODUCTION OF MICROALGAE BIOMASS (Scenedesmus almeriensis) IN A FARMER GREENHOUSE Emilio

45Dpt. Chemical Engineering, Univ. Almería, SPAIN

3) Biomoléculas de interés de origen microalgal

EPA

Luteína Ficoeritrinas

Astaxantina

Ficocianinas

β-caroteno

Polisacáridos

Proteínas

DHABiomasa

Biocombustibles(H2, bioetanol, etc.)

ACUICULTURA

Alimentación

Biotoxinas


Recommended