Download pdf - Nhóm 3 - Sắc Ký Khí

Transcript
Page 1: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 1

Tiểu Luận:

Giảng viên hướng dẫn : Ts. Nguyễn Trung Khương

Sinh viên : Nhóm 3

Lớp : K1 - Lọc Hóa Dầu

Trần Thị Thủy Tiên

Phạm Quyết Tùng

Lê Duy Phú

Nguyễn Năng Lượng

Hoàng Trí Dũng

TẬP ĐOÀN DẦU KHÍ VIỆT NAM

TRƯỜNG ĐẠI HỌC DẦU KHÍ VIỆT NAM

Page 2: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 2

Mục Lục

I. Các Phương Pháp Xác Định Nồng Độ Hydrocacbon. ............... 4 1. Phương Pháp Điện Hoá: ......................................................................... 4

1.1 Phương pháp điện dẫn: ......................................................................................... 4

1.2 Phương pháp điện thế: .......................................................................................... 5

2. Phương Pháp Ion Hóa: ........................................................................... 5 2.1 Chân không kế: .................................................................................................................. 6 2.2 Khối phổ kế: ....................................................................................................................... 6 2.3 Phương pháp ion hoá nhiệt:.............................................................................................. 6

3. Phương Pháp Phổ: .................................................................................. 6 3.1 Phương pháp điện thanh: ................................................................................................. 7 3.2 Phương pháp siêu âm: ....................................................................................................... 7 3.3 Phương pháp phổ kế vô tuyến: ......................................................................................... 7 3.4 Phương pháp điện quang: ................................................................................................. 7 3.5 Phương pháp phóng xạ: .................................................................................................... 7

4. Phương Pháp Phiệt Từ Và Điện Dung: ................................................ 8 4.1 Phương pháp phân tích nhiệt: .......................................................................................... 8 4.2 Phương pháp phân tích theo độ từ thẩm và độ thấm điện môi: .................................... 8

5. Phương Pháp Sắc Ký:............................................................................. 8 5.1 Lịch Sử: .............................................................................................................................. 8 5.2 Định nghĩa: ......................................................................................................................... 9 5.3 Quá trình sắc ký: ............................................................................................................... 9 5.4 Phân loại: .......................................................................................................................... 10

II. Phương Pháp Sắc Ký Khí. .............................................................. 12 1. Giới Thiệu Sắc Ký Khí: ........................................................................ 12

2. Vài Nét Lịch Sử: .................................................................................... 13

3. Sơ Đồ Khối Của Hệ Thống Sắc Ký Khí: ............................................ 13

4. Các Bộ Phận Của Máy Sắc Ký Khí: ................................................... 13 4.1 Hệ thống cung cấp khí mang: .................................................................................... 14

4.2 Hệ thống tiêm mẫu: ...................................................................................................... 15

4.3 Hệ thống cột: .................................................................................................................. 15

4.4 Hệ thống Detector: ........................................................................................................ 17

5. Kỹ Thuật Xác Định Nồng Độ ............................................................... 28 5.1 Nguyên lý hoạt động: ................................................................................................... 28

5.2 Các phương pháp tiến hành tách sắc kí: ................................................................. 30

5.3 Kỹ thuật xác định nồng độ: ........................................................................................ 31

6. Phân Tích Định Tính ............................................................................ 34

7. Phân Tích Định Lượng ......................................................................... 35 7.1 Phương pháp chuẩn hóa diện tích: ........................................................................... 35

7.2 Phương pháp tính theo hệ số hiệu chỉnh: ................................................................ 36

7.3 Phương pháp lập đường chuẩn ................................................................................. 36

7.4 Phương pháp dùng chuẩn nội .................................................................................... 36

Page 3: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 3

MỞ ĐẦU

Cũng như than đá, dầu mỏ và khí đốt là hai nguồn nguyên liệu đặc biệt rất quan trọng

trong việc cung cấp năng lượng cho toàn thế giới, chúng chiếm gần 60% tổng năng lượng

tiêu thụ toàn cầu. Dầu khí được gọi là “Vàng đen”, đóng vai trò quan trọng trong nền kinh

tế toàn cầu. Đây cũng là nguồn nguyên liệu chính dùng để sản xuất điện và vận hành các

phương tiện giao thông vận tải. Bên cạnh đó, dầu khí cũng sử dụng trong công nghiệp hóa

dầu để sản xuất các chất dẻo và nhiều sản phẩm khác phục vụ cho đời sống con người.

Đối với nước ta, vai trò và ý nghĩa của dầu khí nói chung trong đó dầu mỏ và khí đốt nói

riêng càng trở nên cực kỳ quan trọng trong thời kỳ đẩy mạnh sự nghiệp công nghiệp hóa,

hiện đại hóa. Không chỉ là ngành công nghiệp đơn thuần, trong những năm qua dầu khí đã

góp phần đáng kể vào nguồn ngân sách quốc gia, góp phần tạo nên sự phát triển ổn định

nước nhà trong những năm đổi mới đất nước.

Trong khi đó hydrocacbons là những cấu tử chủ yếu (>98%) trong thành phần của dầu mỏ

và khí đốt. Ngoài ra còn các hợp chất với oxy, lưu huỳnh, nitơ là những cấu tử phụ. Với vai

trò to lớn và có ý nghĩa quyết định tới sự “sống còn” tới vận mệnh của một quốc gia như

vậy, việc phân tích thành phần và xác định nồng độ hydrocacbon đã sớm được chú trọng

và phát triển với nhiều phương pháp khác nhau. Trong bài tiểu luận này, nhóm xin được

đưa ra một số phương pháp đã được ứng dụng rộng rãi trước đây cũng như hiện nay.

Page 4: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 4

I. Các Phương Pháp Xác Định Nồng Độ Hydrocacbon.

Phân tích vật chất có ý nghĩa rất quan trọng, nhờ đó có thể tiến hành chính xác quá

trình nghiên cứu các lĩnh vực hoá học, sinh học, y học, vũ trụ... Đối tượng khảo sát là

tất cả các chất trong đó cần xác định nồng độ và thành phần của chất khí, chất lỏng và

vật rắn.

Nhiệm vụ phân tích thường rất phức tạp do phải đo nồng độ của riêng từng chất hoặc một

nhóm chất trong môi trường nhiều thành phần với những điều kiện khác nhau như nhiệt

độ, áp suất, tốc độ di chuyển.... Dải nồng độ thay đổi khá rộng với các điều kiện khác

nhau nên các phương pháp và dụng cụ đo cũng rất khác nhau. Ở đây ta chỉ xét đến

phương pháp điện dùng để đo nồng độ và thành phần của vật chất.

1. Phương Pháp Điện Hoá

Phương pháp điện hoá là các dụng cụ đo nồng độ của vật chất dựa trên sự ứng dụng các

chuyển đổi điện hoá. Các phương pháp điện hoá phổ biến là phương pháp điện dẫn, điện

thế, culông và phân cực.

1.1 Phương pháp điện dẫn:

Nguyên lý hoạt động: đo điện dẫn của dung dịch nhờ các chuyển đổi điện dẫn

tiếp xúc và không tiếp xúc.

Hình 1.1: Sơ đồ cấu trúc của thiết bị đo nồng độ dung dịch bằng phương pháp điện dẫn

Hình 1.2: Mạch đo của thiết bị đo nồng độ dung dịch bằng phương pháp điện dẫn sử dụng

các dụng cụ có mạch đo tần số

Page 5: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 5

Đặc điểm, phạm vi ứng dụng: phương pháp này dùng để đo nồng độ muối trong

dung dịch, trong nước ngưng và nước của các máy hơi nước, độ mặn của nước biển...

Nó còn được dùng để xác định nồng độ chất khí do sự thay đổi điện dẫn của dung dịch

khi đưa vào các chất khí cần phân tích.

1.2 Phương pháp điện thế:

Nguyên lý hoạt động: là phương pháp đo điện thế cực, trong đo sử dụng các chuyển

đổi Ganvanic, đo nồng độ thấp của oxi trong hỗn hợp khí.

Hình 1.3: Sơ đồ của một thiết bị phân tích khí với chuyển đổi

Dụng cụ đo pH của dung dịch (pH-mét): đo pH của dung dịch (pH-mét), nó được

sử dụng rộng rãi để kiểm tra các quá trình hóa học khác nhau

Ngoài ra còn có một số các phương pháp khác như:

Phương pháp Culong: là phương pháp đo số lượng điện tích hoặc dòng điện khi

điện phân chất cần nghiên cứu được sử dụng để đo nồng đồ và thành của chất lỏng và

chất khí cũng như để đo độ ẩm của khí.

Phương pháp phân cực: là phương pháp dựa trên hiện tượng phân cực đây là một

trong các phương pháp điện hoá nhạy nhất, nó cho phép phân tích dung dịch gồm nhiều

thành phần.

2. Phương Pháp Ion Hóa

Nguyên lý hoạt động chung: đây là phương pháp dựa trên sự iôn hoá các chất

cần phân tích và đo dòng điện iôn hoá để xác định nồng độ của các chất đó.

Phân loại: dựa trên các phương pháp iôn hoá được sử dụng phổ biến:

o Chân không kế

o Khối phổ kế

o Các thiết bị phân tích iôn hoá nhiệt

Page 6: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 6

2.1 Chân không kế:

Chuyển đổi tự phát xạ điện tử với katốt lạnh:

o Nguyên lý hoạt động: là sự ion hoá chất khí xảy ra dưới tác dụng của điện áp cao.

Chuyển đổi phát xạ nhiệt điện tử

o Nguyên lý hoạt động: là quá trình ion hoá do katốt bị đốt nóng làm các điện tử

bắn ra với năng lượng đến 15eV, đủ để iôn hoá chất khí.

Chuyển đổi phóng xạ iôn:

o Nguyên lý hoạt động: là các chuyển đổi sử dụng các nguồn bức xạ α và β để ion

hoá chất khí với chu kỳ bán phân huỷ lớn.

2.2 Khối phổ kế:

Để phân tích hợp chất có nhiều thành phần có thể dùng dụng cụ phân tích khối

phổ trong đó cũng sử dụng phương pháp iôn hoá.

Hình 1.4: sơ đồ nguyên lí của khối phổ kế (sử dụng phương pháp ion hoá)

Thực chất của thiết bị phân tích khí phối phổ là để phân tích tự động, liên tục

chất khí và điều khiển quá trình công nghệ.

2.3 Phương pháp ion hoá nhiệt:

Muốn đạt độ nhạy cao hơn nữa có thể dùng phương pháp iôn hoá nhiệt: dựa

trên sự iôn hoá các phân tử của chất cần nghiên cứu trong khí hyđrô cháy.

3. Phương Pháp Phổ

Nguyên lý hoạt động chung: phương pháp phổ là phương pháp dựa trên khả năng

hấp thụ, bức xạ, tán xạ, phản xạ hoặc khúc xạ có chọn lọc của các chất khác nhau với

các loại bức xạ khác nhau. Đây là nhóm các phương pháp sử dụng phổ rộng có chiều

dài sóng từ dải âm thanh 103Hz đến độ dài sóng của các tia bức xạ, Rơnghen, Gama

(1018

Hz).

Phân loại: tuỳ thuộc vào dải sóng, các phương pháp phổ được chia thành:

Page 7: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 7

3.1 Phương pháp điện thanh:

Nguyên lý hoạt động: là phương pháp dựa trên sự phụ thuộc tốc độ của âm thanh

vào thành phần và nồng độ của chất trong môi trường nghiên cứu dùng để phân tích khí

nhị phân.

3.2 Phương pháp siêu âm:

Nguyên lý hoạt động: phương pháp dựa trên độ khác nhau về độ suy giảm hoặc tốc

độ lan truyền của dao động siêu âm trong các môi trường lỏng và khí khác nhau.

Phương pháp này có thể phân tích các chất có khối lượng lớn như đo độ ẩm trong các

kiện bông.

3.3 Phương pháp phổ kế vô tuyến:

Nguyên lý hoạt động: là phương pháp cộng hưởng từ hạt nhân, cộng hưởng thuận từ

điện tử và quang phổ sóng cực ngắn.

Các phương pháp này được ứng dụng rộng rãi để nghiên cứu tính chất của các hạt

nhân, các nguyên tử, các tinh thể và còn để nghiên cứu các tính chất lý hoá khác. Có 2

loại phương pháp phổ kế vô tuyến:

Phương pháp cộng hưởng thuận từ điện tử: là một trong các phương pháp có độ

nhạy cao để phân tích các chất thuận từ có số lượng rất nhỏ

Phương pháp quang phổ sóng cực ngắn: có nhiều thuận lợi khi phân tích khí.

3.4 Phương pháp điện quang:

Là phương pháp dựa trên sự hấp thụ có chọn lọc tia bức xạ hoặc tán xạ ánh sáng của thành

phần chất cần phân tích trong dải sóng siêu âm và hồng ngoại.

Phổ biến là hai phương pháp sau:

Phương pháp phổ hồng ngoại (phương pháp quang âm):

o Nguyên lý hoạt động: dựa trên sự hấp thụ chọn lọc các bức xạ hồng ngoại tần số

thấp của các chất khí khác nhau và nhờ Micrôphôn biến đổi dao động âm

thanh thành tín hiệu điện.

Phương pháp so màu:

o Nguyên lý hoạt động: là phương pháp trong đó nồng độ được xác định theo mức

độ nhuộm của các chất cần phân tích, sau đó nhờ các phần tử quang điện hay

quang điện trở mà tín hiệu được đưa ra chỉ thị.

3.5 Phương pháp phóng xạ:

o Nguyên lý hoạt động: là phương pháp dựa trên sự khác nhau về mức độ hấp

thụ hoặc phản xạ các tia bức xạ rơnghen và các tia phóng xạ của thành phần

chất phân tích.

Page 8: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 8

4. Phương Pháp Phiệt Từ Và Điện Dung

4.1 Phương pháp phân tích nhiệt:

Nguyên lý hoạt động: phương pháp phân tích nhiệt là phương pháp đo tính chất

nhiệt hoặc xác định sự thay đổi nhiệt độ với sự thay đổi tính chất lý - hoá khác nhau của

các chất.

Hình 1.5: Sơ đồ của thiết bị phân tích khí với mạch cầu tự động

4.2 Phương pháp phân tích theo độ từ thẩm và độ thấm điện môi:

Là các phương pháp dùng để xác định nồng độ của các thành phần có các thông số

khác nhau. Thiết bị phân tích khí từ dùng để phân tích khí nitơ và ôxi, các chất trên có

độ nhạy cảm lớn hơn các chất khí khác. Các ẩm kế điện dung là các dụng cụ dùng

chuyển đổi điện dung để đo độ ẩm của các vật rắn và các chất khí khác nhau.

5. Phương Pháp Sắc Ký

5.1 Lịch Sử:

Năm 1903, nhà bác học Nga Michael Tswett đã cho dung dịch các sắc tố thực vật

trong ete dầu hỏa lên cột nhồi bột mịn canxi cacbonat, ông thấy các sắc tố bị hấp phụ

lên trên đầu cột. Khi cho ete dầu hỏa lên cột, các sắc tố di chuyển trong cột từ trên

xuống dưới, mỗi sắc tố có một tốc độ riêng, tách thành những vùng hay vòng màu xếp

chồng lên nhau, hình thành một hệ mà Tswett gọi đó là sắc đồ. Ông đặt tên cho phương

pháp tách này là sắc ký (Chromatography). Trong tiếng Hy Lap, "chroma" có nghĩa là

chất màu, graphein có nghĩa là viết. Tên gọi này ngày nay vẫn được sử dụng mặc dù

phương pháp này còn được dùng tách các chất không màu.

Đến thập kỷ 1930-1940, phương pháp này được phát triển nhanh chóng với nhiều kỷ

thuật khác nhau như sắc ký giấy, sắc ký lớp mỏng, sắc ký trao đổi ion, sắc ký ái lực...

Page 9: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 9

Năm 1954, Mould D.L phát triển sắc ký gel để tách các hợp chất mang điện tích theo

trọng lượng phân tử của chúng. Đến năm 1964, Moor gọi là "gel permeation

chromatography" hay gọi là sắc ký lọc gel.

Năm 1906, sắc ký khí được biết đến nhưng đến 1952, kỹ thuật này mới phát triển

mạnh mẽ, nhất là trong thập niên 1960. Năm 1967, Horvath C. là tác giả tạo máy sắc ký

lỏng cao áp.

5.2 Định nghĩa:

Định nghĩa của Mikhail S. Tsvett (1906): Sắc kí (Chromatography) là một phương

pháp tách trong đó các cấu tử của một hỗn hợp được tách trên một cột hấp thụ đặt trong

một hệ thống đang chảy.

Định nghĩa của IUPAC (1993): Sắc kí là một phương pháp tách trong đó các cấu tử

được tách được phân bố giữa hai pha, một trong hai pha là pha tĩnh đứng yên còn pha

kia chuyển động theo một hướng xác định.

5.3 Quá trình sắc ký:

Sắc kí là một kỹ thuật tách trong đó các cấu tử cần tách trong một hỗn hợp mẫu được

vận chuyển bởi pha động đi qua pha tĩnh. Mẫu đi vào tướng động được mang theo dọc

hệ thống sắc kí (cột, bản phẳng) có chứa pha tĩnh phân bố đều khắp.

Pha động có thể là pha lỏng hoặc khí, pha tĩnh có thể là một lớp phim được phủ trên

bề mặt của chất mang trơ hoặc một bề mặt rắn. Khi tiếp xúc với pha tĩnh, các cấu tử của

hỗn hợp sẽ phân bố ra giữa pha động và pha tĩnh tương ứng với tính chất của chúng

(tính bị hấp phụ, tính tan…..), chỉ có phần tử pha động mới chuyển động dọc theo hệ

sắc ký. Sự tương tác xảy ra giữa các cấu tử với pha tĩnh nhờ đó các cấu tử sẽ phân bố

theo một trật tự dựa vào tích chất thành phần của chất cần phân tích.

Sự ái lực khác nhau của các chất tan trên pha tĩnh làm chúng di chuyển với những

vận tốc khác nhau trong pha động của hệ thống sắc kí. Kết quả là chúng được tách thành

những dải trong pha động và vào lúc cuối của quá trình các cấu tử lần lượt hiện ra theo

trật tự tương tác với pha tĩnh. Cấu tử di chuyển chậm (tương tác yếu) ra trước, cấu tử bị

lưu giữ mạnh hơn ra sau dưới dạng các đỉnh (peak) tách riêng rẻ (hoặc bậc thang) tùy

thuộc vào cách tiến hành sắc kí và được hiển thị dưới dạng sắc kí đồ. Nhờ đặc điểm này

mà người ta có thể tách các chất qua quá trình sắc ký.

Nếu đặt một detectơ có khả năng phát hiện các chất tan (cấu tử A và B) tại cuối cột

tách và tín hiệu của nó được vẽ lại như một hàm của thời gian (hoặc thể tích được thêm

vào) thì một loạt peak đối xứng sẽ được ghi lại và được gọi là sắc kí đồ.

Page 10: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 10

Vị trí của các peak theo thời gian được dùng để nhận diện định tính và diện tích của

peak được dùng cho phép phân tích định lượng của cấu tử đang xét.

5.4 Phân loại:

Các tiêu chuẩn phân loại sắc ký:

o Cơ chế truyền khối sắc kí: hấp phụ, phân bố, trao đổi ion, thẩm thấu gel.

o Dạng cơ chế sắc ký: dạng cột hoặc bản phẳng.

o Phương pháp tiến hành: tiền lưu, rửa giải, rửa đẩy.

o Tính chất của pha tĩnh : lỏng, lỏng siêu tới hạn, khí.

Phân loại theo dạng cơ chế sắc ký:

o Sắc Ký Trên Cột (column chromatography - CC): Pha tĩnh được giữ trong

một cột ngắn (bản kính, polime, kim loại) và pha động được cho chuyển động

qua cột bởi áp suất hoặc do trọng lực.

o Sắc Ký Lớp Mỏng (thin layer chromatography - TLC): Trong sắc kí bản

mỏng, pha tĩnh được phủ trên một mặt phẳng thủy tinh, nhựa hoặc kim loại.

Lớp lỏng pha tĩnh thường là: silicagel, nhôm oxit, xenlulozo, chất nhựa trao

đổi ion và có chiều dày khoảng 0,25 - 0,5mm.

o Sắc Ký Giấy (paper chromatography - PC): pha tĩnh (lỏng) được thấm trên

một lọai giấy lọc đặc biệt gọi là giấy sắc ký.

Hình 1.6: Sắc Ký Dạng Cột Hình 1.7: Sắc Ký Dạng Bản Mỏng

Phân loại theo phương pháp tiến hành

o Phương pháp rửa giải

o Phương pháp tiền lưu

o Phương pháp thế đẩy

Page 11: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 11

Phân loại theo cơ chế quá trình tách:

o Sắc ký trao đổi ion: Sắc ký trao đổi Ion (Ion-exchange chromatography, viết tắt

là IC) là một quá trình cho phép phân tách các ion hay các phân tử phân cực dựa trên

tính chất của chúng.

▪ Phân tích các Cation

▪ Phân tích các Anion

▪ Phân tích hợp chất: polyphosphate, tripolyphosphate,choline,...

o Sắc ký gel: dựa vào dung môi cần tách và ứng dụng, sắc ký gel có thể được

chia thành 2 loại:

▪ Sắc ký thẩm thấu gel (GPC: Gel Permeration Chromatography):

thường sử dụng trong lĩnh vực Polymer hòa tan trong dung môi hữu cơ

(polystyrene, nhựa vinyl clorua, polyethylene, methacrylate polymethyl,

vv) với dung môi rửa giải chủ yếu là nước hoặc dung môi hữu cơ như

tetrahydrofuran. Đặc biệt được ứng dụng trong ngành xác định trọng

lượng phân tử của Polymer.

▪ Sắc ký lọc gel (GFC: Gel Filtration Chromatography): được ứng dụng

rộng rãi trong hóa sinh, sinh học phân tử, công nghệ sinh học, phân tử

miễn dịch học và y học và các lĩnh vực khác liên quan, không chỉ được

sử dụng trong nghiên cứu thực nghiệm khoa học, mà còn được sử dụng

rộng rãi trong sản xuất công nghiệp.

o Sắc ký hấp phụ (absorption chromatography): pha tĩnh là một chất rắn có khả

năng hấp phụ, đó là các phương pháp sắc ký lỏng – rắn và khí – rắn.

o Sắc ký phân bố (partition chromatography): pha tĩnh là chất lỏng không hòa

tan được với pha động, chất lỏng này được bao trên bề mặt của một chất rắn

gọi là giá hay chất mang va phải là chất trơ, không tham gia vào sắc ký. Sắc ký

phân bố bao gồm sắc ký lỏng – lỏng và sắc ký khi – lỏng.

Thường để đơn giản hóa, tuy không chính xác người ta gọi tắt các phương pháp sắc

kí: sắc kí khí, sắc kí lỏng, sắc kí lỏng cao áp, sắc kí lớp mỏng, sắc kí gel… Trong số các

phương pháp sắc kí được biết, quan trọng nhất là sắc kí hấp phụ, sắc kí phân bố và sắc

kí trao đổi ion. Dưới đây sẽ giới thiệu ba phương pháp sắc kí này nhằm vào hai mục

đích: chuẩn bị mẫu cho chất phân tích và phân tích một hỗn hợp chất.

Bảng 1: PHÂN LOẠI CÁC PHƯƠNG PHÁP SẮC KÝ

Phân loại Phương pháp cụ thể Pha tĩnh Kiểu cân bằng

Page 12: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 12

chung

Sắc kí

lỏng(LC)

Pha động là

pha lỏng.

Lỏng - Lỏng hoặc phân

bố

Lỏng được phủ trên

một chất rắn

Phân bố giữa chất lỏng

và bề mặt liên kết

Pha lỏng liên kết Chất hữu cơ được gắn

trên một bề mặt rắn Hấp phụ

Lỏng - Rắn hoặc hấp

phụ trao đổi ion Nhựa trao đổi ion Trao đổi ion

Sắc kí khí

(GC) Pha

động là pha

khí.

Khí - Lỏng Lỏng được phủ trên

một chất rắn

Phân bố giữa khí và

lỏng

Khí - Pha liên kết Chất hữu cơ được liên

kết trên bề mặt rắn.

Phân bố giữa lỏng và

bề mặt liên kết

Khí - Rắn Rắn Hấp phụ, trao dổi ion

Sắc kí lỏng

siêu tới hạn

Pha lỏng: chất lỏng siêu

tới hạn (supercritical

fluid)

Chất hữu cơ được liên

kết trên một bề mặt

rắn

Phân bố giữa chất lỏng

siêu tới hạn và bề mặt

liên kết

II. Phương Pháp Sắc Ký Khí.

1. Giới Thiệu Sắc Ký Khí:

Sắc ký khí là phương pháp được dùng để tách các chất ở thể khí bay hơi, với pha

động là chất khí, gọi là khí mang (carrier gas). Sắc ký khí còn áp dụng cho các chất khí,

lỏng, rắn dễ bay hơi và bền nhiệt độ cao. Pha tĩnh có bề mặt tiếp xúc lớn.

Sắc ký khí rắn (GSC - gas solid chromatography): pha tĩnh rắn là một chất hấp phụ,

chất rắn nhồi cột thường là silicagel, rây phân tử hoặc than hoạt tính. Quá trình này chủ

yếu là hấp phụ.

Sắc ký khí lỏng (GLC - gas liquid chromatography): pha tĩnh lỏng được bao hay gắn

trên một chất mang rắn (solid support) tạo nên một lớp phim mỏng và đây là sắc ký khí

phân bố. Cơ sở cho sự tách ở đây chính là sự phân bố của mẫu trong và ngoài lớp phim

mỏng này.

Sử dụng phương pháp sắc ký khi có khả năng tách được hoàn toàn những chất hữu

cơ tương tự, ví dụ như o-; m-; p-xilen không thể tách được bằng phương pháp chưng cất

phân đoạn nhưng tách được khá đơn giản bằng sắc ký khí, cũng như sử dụng để tách

những hỗn hợp rất phức tạp như khí thải ô tô chứa trên 300 hợp chất. Với việc ra đời

Page 13: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 13

của nhiều loại detector nhiều phương pháp mới xuất hiện như: sắc ký khí - khối phổ

(GS -MS), sắc ký khí - hồng ngoại (GC - IR)... đã làm tăng khả năng phân tích của sắc

ký khí.

2. Vài Nét Lịch Sử:

1905: Ramsey tách hỗn hợp khí và hơi dựa trên cơ sở hấp phụ của than hoạt tính.

1096: Tswett tách các sắc tố thực vật trên cột và gọi quá trình tách là “sắc kí ”.

1941: Martin và Synge (giải thưởng Nobel) trình bày lý thuyết đĩa trong chưng cất và

chiết suất ngược dòng. Trên cơ sở đó James và Martin đề xuất ra sắc kí khí-lỏng (1952).

Từ đó đến nay GC ngày càng hoàn thiện. Đến năm 1968 đã có khoảng 18000 công

trình về GC. Những năm gần đây được sự hỗ trợ của công nghệ điện tử và tin học, GC

đạt được nhiều thành tựu hơn nữa.

3. Sơ Đồ Khối Của Hệ Thống Sắc Ký Khí:

4. Các Bộ Phận Của Máy Sắc Ký Khí:

Hiện nay, hơn 30 nhà sản xuất cung cấp ra thị trường khoảng 150 mẫu khác nhau của

thiết bị sắc kí khí trên toàn thế giới.

Trong thập niên 70, các bộ tích phân kế điện tử và xử lý số liệu dựa trên máy tính trở

nên thông dụng. Các dữ liệu được số hóa, các chương trình phần mềm hỗ trợ phát triển.

Thập niên 80 đã xuất hiện các thiết bị sắc kí khí với các thông số như nhiệt độ của

cột, tốc độ dòng, tiêm mẫu, được điều khiển bằng máy tính với giá cả vừa phải; và có lẽ

quan trọng nhất là sự phát triển của các cột có khả năng tách những mẫu phức tạp có

chứa nhiều cấu tử trong một khoảng thời gian ngắn.

Hình 2.1: Sơ Đồ Máy Sắc Ký Khí

Page 14: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 14

4.1 Hệ thống cung cấp khí mang:

Đặc điểm:

o Các khí mang phải trơ về mặt hóa học như He, Ar, N2, CO2 và H2 và việc chọn

lựa khí mang thường được quyết định bởi loại detector sử dụng. Hệ thống cung

cấp khí mang bao gồm các bộ điều chỉnh áp suất (pressureregulators), các thiết bị

đo áp suất (gauges), và thiết bị đo tốc độ dòng. Hệ thống khí mang còn chứa một

hệ thống lọc phân tử để tách nước và các chất nhiễm bẩn khác.

o Tốc độ dòng được kiểm soát bởi các bộ điều chỉnh áp suất hai giai đoạn được lắp

vào các bình chứa khí mang. Áp suất của khí vào thiết bị nằm trong khoảng từ 10

đến 50 psi để có tốc độ dòng từ khoảng 30 đến 150 ml/ph đối với cột nhồi và

khoảng từ 1 đến 25 ml/ph đối với cột mao quản. Nói chung, nếu áp suất đi vào

thiết bị không đổi thì tốc độ dòng sẽ không đổi. Để đo tốc độ dòng khí người ta

dùng thiết bị đo tốc độ dòng (flowmeter) với bọt xà phòng và đồng hồ bấm giây.

Khí mang:

Độ giảm áp suất tỉ lệ với độ nhớt khí mang nên cần chọn khí mang có độ nhớt

thấp cho cột mao quản và cột nhồi chặt. Bảng sau dẫn ra một số đặc tính cơ bản

của một số khí mang.

Khí Độ dẫn điện χ,

10-4 cal/cm.oK

Độ nhớt η ở 1 atm

50oC 100oC 200oC 300oC

Argon

Heli

Nito

Hydro

0.52

4.08

0.37

5.47

242

208

188

94

271

229

208

103

321

270

246

121

367

307

-

139

Khi lựa chọn cần chú đến detector đang sử dụng như sau:

o Detector đo độ dẫn cần phải sử dụng khí mang có độ dẫn cao như H2, He.

Khí He có ưu điểm không nguy hiểm.

o Detector ion hóa ngọn lửa thường sử dụng khí mang N2 do rẻ và không nguy

hiểm nhưng trường hợp ghép nối với các thiết bị khác, ví dụ ghép nối với

khối phổ phải dùng khí mang là heli.

o Detector cộng kết ngọn lửa thường dùng khí mang là N2.

Sau đây là đặc điểm của một số khí mang thông dụng:

o Khí H2 khi sử dụng làm khí mang cần dùng khí nitơ làm khí bảo vệ thổi qua

cột trước. Trong các phòng thí nghiệm người ta đã dùng phổ biến máy sản

Page 15: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 15

xuất khí hydro với công suất từ 125 ml/ph đến 225 ml/ph. Khi dùng H2 trong

phòng thí nghiệm phải có mày dò chỗ hở H2 và cấm lửa.

o Khí He, argon là khí trơ hóa học rất thích hợp cho sắc kí ở nhiệt độ cao.

o Khí nitơ do không nguy hiểm, giá rẻ và dễ dàng làm tinh khiết nên N2 được

dùng nhiều cho sắc kí khí. Cần chú y là độ dẫn nhiệt của N2 rất gần với độ

dẫn của nhiều khí và hơi nhiều chất hữu cơ nên có trường hợp peak sắc kí có

thể bị ngược.

4.2 Hệ thống tiêm mẫu:

Đặc điểm:

o Cách thông dụng nhất để đưa mẫu vào cột là sử dụng một bơm tiêm mẫu vi

lượng (microsyringe) để tiêm một mẫu lỏng hoặc khí qua một đệm cao su

silicon (septum) chịu nhiệt vào một buồng hóa hơi (injector). Buồng này được

đốt nóng với nhiệt độ thích hợp và được nối với cột tách (hình 3).

o Đối với các cột tách thông thường, cỡ mẫu thường thay đổi từ một vài đến 20µm.

Cột mao quản đòi hỏi lượng mẫu đưa vào nhỏ hơn nên trong trường hợp này hệ

thống chia dòng mẫu được thiết kế trong bộ injector được sử dụng để chỉ giao

một phần nhỏ lượng mẫu được tiêm đi vào cột, phần còn lại được thải ra ngoài.

4.3 Hệ thống cột:

Trong thực tế có nhiều dạng cột tách khác nhau nhằm thỏa mãn các mục đích nghiên

cứu. Nói chung, cột tách sắc kí cần thỏa mãn các yêu cầu sau:

o Đảm bảo trao đổi chất tôt giữa pha động và pha tĩnh nhờ việc tối ưu hóa các

thông số của phương trình Van Deemter.

o Độ thấm cao tức có độ giảm áp suất nhỏ với một tốc độ khí mang nhất định.

o Khả năng tải trọng cao của cột.

o Có khoảng nhiệt độ sử dụng rộng và chịu được nhiệt độ cao.

4.3.1 Cột nhồi:

Cột thường được làm bằng thép không rỉ, nicken, thủy tinh với đường kính khoảng từ

3 đến 6 mm và chiều dài khoảng từ 1 đến 5 m. Cột nhồi chứa các hạt chất mang rắn

được phủ một lớp pha tĩnh lỏng hoặc bản thân hạt rắn là pha tĩnh. Chất mang rắn thường

là diatomite đã được silan hóa để giảm liên kết hydro với các chất phân cực.

4.3.2 Cột mao quản:

Đa số các phép phân tích trong sắc kí khí sử dụng các cột mao quản dài từ 15 đến

100 m và đường kính trong rất nhỏ từ 0.10 đến 0.53 mm. Các cột này được chế tạo từ

thủy tinh oxit tinh khiết nấu chảy có mức độ liên kết ngang cao hơn nhiều so với thủy

Page 16: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 16

tinh thường nên bền và chịu được nhiệt độ cao đến 350oC. Lực căng cao của ống thủy

tinh cho phép chế tạo các cột có thành mỏng và dễ uốn.

Các cột mao quản mở có lớp phim mỏng tráng trên thành ống cung cấp độ phân giải

cao hơn, thời gian phân tích ngắn hơn và độ nhạy cao hơn cột nhồi nhưng chúng có

dung lượng thấp hơn cho các mẫu. Cột mao quản mở hẹp cung cấp độ phân giải cao hơn

cột mao quản mở rộng hơn nhưng chúng đòi hỏi áp suất cao hơn để hoạt động và có

dung lượng cho mẫu nhỏ hơn.

Lớp phim mỏng lỏng pha tĩnh dày khoảng từ 0.1 đến 5 µm trên bề mặt bên trong như

được minh họa trong hình 2.5. Nếu giảm độ dày của lớp phim này sẽ làm tăng độ phân

giải, giảm thời gian lưu và giảm dung lượng cho mẫu.

Một loại khác là các cột mao quản có các hạt rắn chất mang phủ lớp pha tĩnh lỏng

được gắn trên bề mặt bên trong của cột. Bởi vì diện tích bề mặt của loại này tăng lên,

cột này có thể xử lý những mẫu lớn hơn cột phủ lớp phim mỏng trên thành cột. Loại cột

này là trung gian giữa cột mao quản phủ phim mỏng trên thành và cột nhồi.

Hình 2.2: Cột mao quản được làm bằng polyamide và fused silica

Hình 2.3: Minh họa cấu trúc bên trong của các cột nhồi và cột mao quản

Page 17: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 17

4.4 Hệ thống Detector:

o Detector có chức năng chuyển đổi đại lượng không điện (nồng độ của chất được

tách khỏi cột sắc ký) thành đại lượng điện và có chức năng phát hiện và đo

độ lớn của các cấu tử khi ra khỏi cột sắc ký. Vì vậy detector quyết định một phần

nồng độ chính xác cũng như độ nhạy của phương pháp.

o Nguyên tắc hoạt động dựa vào tính chất vật lý của cấu tử như: tính hấp thụ và

phát xạ ánh sáng, tính phân cực, khúc xạ, tĩnh dẫ nhiệt, đẫn điện, khối lượng

riêng…

4.4.1 Detector dẫn nhiệt:(thermal conductivity detector – TCD)

Hình 2.4: Sơ đồ nguyên lý hoạt động của detector dẫn nhiệt

Nguyên lý hoạt động:

o Phương pháp này còn được gọi là Katharometer dựa trên nguyên tắc cầu

Wheatstone được lần đầu tiên phổ biến cho sắc ký khí. Nó gồm bao gồm 4 điện

trở, được sắp xếp như hình vẽ. Khi các điện trở ở trạng thái cân bằng, điện thế

được đo bằng điện điện kế sẽ bằng 0. Cầu được sử dụng trong detector dẫn nhiệt

bằng cách nối điện trở với dòng khí ra khỏi cột (analytical flow), điện trở thứ 2

được nối với dòng khí tham chiếu (reference flow) (dòng khí chỉ gồm khí mang).

Khi dòng điện đi qua cầu, điện trở sẽ nóng lên. Đối với điện trở được nối với

dòng khí ra khỏi cột thì nhiệt độ trên điện trở sẽ giảm và độ giảm nhiệt độ trên

điện trở phụ thuộc vào độ dẫn nhiệt của khí ra khỏi cột dẫn đến điện trở bị giảm

Page 18: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 18

xuống. Khi đó cầu sẽ bị mất cân bằng và độ thay đổi hiệu điện thế sẽ được đo

bằng vôn kế.

o Để detector hoạt động thì khí mang phải có độ dẫn nhiệt khác với hỗn hợp

khí được đưa vào. Khí H2 và He là các khí mang có độ dẫn nhiệt khác với

hầu hết các hợp chất vô cơ và hữu cơ, nhưng khí H2 không thường được sử

dụng trong detector dẫn nhiệt vi nó có thể phản ứng với oxit kim loại trên

điện trở. Vì vậy khí Heli thường được sử dụng làm khí mang trong detector

dẫn nhiệt.

o Detector TCD có thể thiết kế một số kiểu khác nhau. Trong đó có ba kiểu thường

gặp: tế bào dòng chảy, tế bào bán khuếch tán, tế bào khuếch tán.

A-kiểu tế bào dòng chảy B- tế bào bán khuếch tán C-kiểu tế bào khuếch tán

▪ Loại A ít nhạy hơn cả, thời gian đáp ứng lâu, chỉ thích hợp cho sắc ký điều chế.

▪ Loại B, với thể tích tối thiểu 100µl được sử dụng phổ biến cho sắc ký cột nhồi.

▪ Loại C với giới hạn phát hiện 10-100µl có thể sử dụng cho sắc ký mao quản cột hở.

Sơ đồ nguyên lý hoạt động của máy sắc kí sử dụng detector dẫn nhiệt:

Hình 2.5: Sơ đồ nguyên lý hoạt động của máy sắc kí sử dụng detector dẫn nhiệt

Page 19: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 19

Đặc điểm:

Độ nhạy của detector TCD phụ thuộc vào hai yếu tố:

o Khả năng dẫn nhiệt của khí mang.

o Độ nhạy tỷ lệ với dòng điện nuôi cầu. Dòng điện này điều chỉnh tùy thuộc

vào loại và lưu lượng khí mang, nhiệt độ detector và nhiệt độ cột tách.

Ưu điểm và nhược điểm:

o Ưu điểm:

▪ Vì tất cả các hợp chất hữu cơ và vô cơ, có độ dẫn nhiệt khác với Heli nên

tất cả các hợp chất có thể được nhận biết bởi detector.

▪ Dòng khí sau khí ra khỏi detector không bị phân hủy nên có thể đi qua

thiết bị phân tích khác. Vì vậy, detector dẫn nhiệt này có thể được nối với

các loại detector khác trong phân tích sắc kí.

o Nhược điểm:

▪ Detector dẫn nhiệt rất nhạy cảm với sự thay đổi tốc độ của dòng khí mang.

▪ Thời gian cho tín hiệu khá lâu.

▪ Độ nhạy thấp.

4.4.2 Detector ion hóa ngọn lửa (flame ionization detector – FID):

o Detector ion hóa ngọn lửa là loại detector gần như phổ biến nhất trong tất cả

detector sử dụng trong sắc kí khí, detector này có khả năng đo được sự có

mặt của hầu hết các chất hữu cơ và rất nhiều các hợp chất vô cơ khác.

o Nguyên lý hoạt động:

Hình 2.6: Cấu tạo và hoạt động của detector ion hóa ngọn lửa

Page 20: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 20

o Nguyên tắc làm việc dựa trên sự biến đổi độ dẫn điện ngọn lửa của hydro đặt

trong điện trường khi có chất hữu cơ cần tách chuyển qua. Nhờ nhiệt độ cao, các

chất hữu cơ từ cột tách đi vào detector bị bẻ gãy mạch, bị ion hóa nhờ có oxy của

không khí để tạo thành các ion trái dấu tương ứng.

Ví dụ: Nguyên lý hoạt động tạo thành ion trong trường hợp benzen như sau:

C6H6 6CH

6CH + 3O2 6CHO+ + 6e

o Các ion tạo thành được chuyển về các bản điện cực trái dấu nằm ở hai phía

của ngọn lửa (thế hiệu giữa hai bản điện cực này khoảng 250-300V).

o Dòng ion được giảm áp trên một điện trở có chỉ số rất cao (108-1012Ω) và độ

giảm hiệu điện thế này được khuếch đại và ghi lại trên máy tự ghi. Số lượng của

ion tạo thành (chính là độ nhạy của detector) phụ thuộc vào các yếu tố sau:

▪ Cấu trúc hình học của detector

▪ Tỷ lệ thành phần của hydro/không khí

▪ Nhiệt độ của ngọn lửa

▪ Cấu trúc của các phần tử mẫu cần xác định

Hình 2.7: Sơ đồ hoạt động của sắc kí sử dụng detector ion hóa ngọn lửa FID

o Các hợp chất hữu cơ được đốt cháy bằng ngọn lửa hydro/không khí tạo thành các

ion. Khí mang từ cột sẽ được được trộn trước với hydro và đốt cháy bằng ngọn

lửa ở buồng đốt. Một điện cực hình trụ đựợc đặt cách vài mm phía trên ngọn lửa

để thu thập các ion sinh ra. Dòng ion này sẽ được đo bằng cách đặt một điện thế

giữa đầu phun của ngọn kửa và điện hình trụ để hạn chế đến mức tối đa sự tái kết

hợp của các ion, phải đặt điện thế chọn lọc vào vùng bảo hòa (vùng mà khi tăng

Page 21: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 21

điện thế sẽ không làm tăng dòng ion) các tính hiệu tạo thành sẽ được khuếch đại

bằng bộ khếch đại điện tử rồi qua bộ sử lý và ghi tính hiệu.

Đặc điểm của detector ion hóa ngọn lửa:

o Giới hạn phát hiện dưới 10-12g/s

o Khoảng động học từ 106-107.

o Nhiệt độ làm việc tới 4000C.

o Phân hủy chất đòi hỏi 3 khí: khí mang, hydro, oxi.

Ưu và nhược điểm của detector ion hóa ngọn lửa:

o Ưu điểm:

▪ Là một trong những detector có độ nhạy cao.

▪ Độ ổn định cao, ít bị ảnh hưởng bởi vận tốc và nhiệt độ của khí mang.

▪ Thời gian chi tín hiệu nhỏ hơn 0.1 giây,có độ nhạy gấp 1000 detector TCD.

Nhược điểm:

▪ Phải dùng thêm hệ thống khí đốt.

▪ Ngoài khí mang không được dùng khi mẫu có khí : SO2, CO2, H2O, NOx.

▪ Cấu tử mẫu bị phân hủy trong ngọn lửa nên không thể dùng trong trường

hợp muốn cho cấu tử qua tiếp một thiết bị phân tích khác.

▪ Chỉ đáp ứng với các hợp chất hữu cơ, một số hợp chất vô cơ, không có

đáp ứng đối với các khí bền và nước.

4.4.3 Detector cộng kết điện tử (Electron capture detector – ECD):

Nguyên lý hoạt động:

o Detector cộng kết điện tử sử dụng hoạt độ phóng xạ β phóng ra để ion hóa các

khí mang và phát sinh ra dòng điện ở giữa cặp điện cực. Khi những phân tử hữu

cơ có chứa nhóm electron mang điện tích như: halogen, photpho và nhóm nitro đi

qua detector, detector giữa lại một vài electron và làm biến đổi số đo của dòng

điện giữa các điện cực.

Hình 2.8:Cấu tạo của detector cộng kết điện tử

Page 22: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 22

Hình 2.9: Hoạt động của detector cộng kết điện tử

o Detector gồm có điện trường, bên trong có nguồn phát tia β (do Ni63, được phủ

bên ngoài tấm bạch kim hay titan), khí mang được dùng là Ar. Điện tử sơ cấp của

tia β sẽ ion hóa phân tử khí mang làm bắn ra điện tử thứ cấp, tạo dòng điện trong

điện trường, phản ứng dây chuyền xảy ra. Khi có sự hiện diện của mẫu, thường là

chất có độ âm điện cao, sẽ nhận điện tử thứ cấp, làm giảm cường độ dòng điện,

tương ứng với sự xuất hiện mũi sắc kí.

o Detector hoạt động dựa trên đặt tính của các chất có khả năng cột kết các điện tử

tự do trong pha khí (trừ trường ngoại lệ của các khí trơ) khả năng cộng kết điện

tử lớn hay nhỏ là phụ thuộc vào các hợp chất cần được phát hiện. Khả năng đó

tương đối nhỏ đối với các hợp chất hdrocacbon no. Ngược lại, khi các hợp chất

có chứa các nhóm chức hoặc đa liên kết (đôi hoặc ba) thì khả năng các điện tử sẽ

tăng hẳn lên. Đặc biệt là nếu trong phân tử của hợp chất này có chứa các nguyên

tử halogen (Cl, Br….) Bởi vậy, độ nhạy phát hiện của detector ECD rất đặc thù

cho các nhóm chức và có thể dao động trong phạm vi khá rộng (1-106).

Hình 2.10: Các quá trình ion hóa, cộng kết điện tử và tái kết hợp xảy ra trong một

detector cộng kết điện tử

Page 23: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 23

▪ Bộ phận chính của detector ECD là một buồng ion. Tại đây diễn ra quá

trình ion hóa, bắt giữa điện tử và tái kết hợp.

▪ M: là phân tử khí mang, EC: và phân tử của chất có khả năng giữ điện tử.

▪ Cũng chính vì khả năng bắt giữ điện tử (electron-capture) mà detector còn

được gọi là detector bắt giữ điện tử.

o Trong detector cộng kết điện tử xảy ra 3 quá trình:

▪ Quá trình ion hóa: một nguồn tia phóng xạ được lắp sẵn trong detector,

phát ra một chùm tia β- với tốc độ 108-109 hạt/s. Các hạt β- này sẽ ion hóa

phân tử khí mang (M) tạo ra các ion dương của phân tử khí mang và điện

tử tự do sơ cấp (e-). So với các điện tử của chùm tia β- các điện tử tự do

này chậm hơn hẳn. Chúng được gia tốc nhờ một điện trường và được

chuyển dịch về phía anôt.Tại đây chúng bị lấy mất điện tích và qua đó cho

dòng điện nền của detector.

▪ Quá trinh công kết điện tử các nguyên tử hoặc là phân tử của các chất

(EC), sau khi rời bỏ cột tách, được đưa thẳng vào buồng ion cùng với khí

mang. Tùy theo ái lực điện tử của các phân tử này, các điện tử tự do sơ

cấp nói trên sẽ bị các phân tử đó bắt giữ và do vậy tạo ra các ion âm.

▪ Quá trình tái kết hợp: các ion âm được tạo ra như vậy sẽ kết hợp với các

ion dương của phân tử khí mang để tạo thành các phân tử trung hòa.

▪ Như vậy do khả năng cột kết điện tử của chất cần phân tích, điện tử bị lấy

mất khỏi hệ và dòng điện nền bị giảm đi so với lúc chỉ có khí mang tinh

khiết đi qua detector. Mức độ suy giảm của dòng điện nền trong thời điểm

có chất đi qua được thể hiện bằng peak sắc ký của chất đó.

Đặc điểm:

Độ nhạy của detector ECD phụ thuộc vào :

▪ Độ lớn của dòng điện nền

▪ Mức năng lượng ái điện tử của chất cần phát hiện

▪ Bản chất của khí mang

▪ Điện thế được đặt vầo detector

Những chất có ái lực điện tử cao sẽ cho các tính hiệu mạnh, để tạo ra các điện thế cần

thiết cho quá trình vận chuyển ion, có thể đặt vào detector thế một chiều không đổi

hoặc là thế một chiều dưới dạng xung.

Nếu sử dụng thế một chiều không đổi, vùng làm việc tối ưu của điện thế đặt vào

detector phụ thuộc vào bản chất của chất nghiên cứu và nhiệt độ của detector các giá

trị này thường dao động giữ 1-30V. Ngược lại, nếu sử dụng điện thế dạng xung khoảng

làm việc tối ưu của detector sẽ không phụ thuộc vào bản chất của chất nghiên cứu, mà

Page 24: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 24

chỉ phụ thuộc khoảng cách giữ các xung trong một điều kiện nhất định. Thông thường

sử dụng thế hiệu một chiều gián đọan khoảng 50V, với độ dài xung từ 0,75-3µs và

khoảng cách giữ hai xung 5-200 µs.

Ưu điểm và nhược điểm:

o Ưu điểm:

▪ Detector cộng kết điện tử không những được dùng để nhận biết hầu hết các

hợp chất có chứa nguyên tử ion âm như halogen-, nitro- và sunlfur- mà còn có thể

được sử dụng để nhận biết các hợp chất nhiều vòng thơm, anhydrides và các chợp

chất của carbonyl có nối đôi liên hợp.

▪ Độ nhạy cao, nhất là khi mẫu thuộc các nhóm chức: halogenua, peroxid,

quinon, nitro…Đặc biệt dùng phân tích thuốc sát trùng.

o Nhược điểm:

▪ Để độ nhạy cao, phải dùng khí Ar (giá trị cao), vì N2 có độ liên kết khá bền

nên khó tạo điện tử thứ cấp.

4.4.4 Detector phát xạ nguyên tử (Atomic – emission detector – AED):

Một trong những bổ sung mới nhất cho máy sắc kí khí là detector phát xạ nguyên tử

(AED). Detector này khá đắt tiền so với các detector khác được sử dụng trong sắc ký

nhưng nó có thế mạnh không thể thay thế được. Thật vậy, thay vì đo đơn giản pha khí

cung cấp ( chứa cacbon) để tạo ra các ion trong ngọn lửa bằng detector ion hóa ngọn

lửa. AED có thể thay đổi nền hiện tại vì sự bắt phần tử không phải điện tử của những

điện tử nhiệt với electron bắt điện tử. AED có nhiều tính khó dùng hơn bởi vì nó dựa

vào sự dò tìm của những phát xạ nguyên tử.

Hình 2.11: Sơ đồ cấu tạo của detector phát xạ nguyên tử

Page 25: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 25

Nguyên lý làm việc:

Hình 2.12: Sơ đồ nguyên lý hoạt động của detector phát xạ nguyên tử

Đây là loại hiện đại. Cấu tử ra khỏi cột được đưa qua trường plasma (tạo bởi heli) có

năng lượng của bức xạ vùng vi sóng. Cấu tử mẫu nhận năng lượng, bị nguyên tử hóa

và nguyên tử bị kích thích, do đó chúng có khả năng phát xạ. Cường độ phát xạ được

ghi nhận và chuyển thành mũi sắc kí.

Đặc điểm:

o Độ nhạy rất cao, thời gian phát xạ tính hiệu nhỏ.

o Đặc biệt máy có thể ghi nhận đồng thời nhiều cấc tử.

o Tuy nhiên chi phí phân tích rất cao vì phải dùng khí heli.

Ưu điểm lớn nhất của detector AED là nó có khả năng xác định những phát xạ nguyên

tử của nhiều phân tử trong một phép phân tích cấu tử từ cột mao quản của sắc ký khí.

Khi cấu tử ra khỏi cột mao quản, chúng được đưa vào trong một trường plasma (hoặc

sự phóng điện) nơi mà cấu tử mẫu nhận năng lượng và bị kích thích bởi năng lượng từ

plasma, do đó chúng có khả năng phát xạ. Máy tính có ghi lại cường độ phát xạ và

chuyển thành mũi sắc kí.

4.4.5 Detector quang kế ngọn lửa (flame photometric detector):

Hình 2.13: Cấu tạo của detector quang kế ngọn lửa

Page 26: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 26

Nguyên lý làm việc:

Hình 2.14: Sơ đồ nguyên lý làm việc của detector quang kế ngọn lửa

o Khí mang thoát từ cột được trộn với hydro và đi tới cuối ống. Dòng không khí

theo một đường khác và được trộn với hổn hợp hydro – khí mang tại ống tạo ra

ngọn lửa hydro. Khi mẫu cuốn theo khí mang, được đốt cháy bằng ngọn lửa hydro

trong ống phát ra ánh sáng ở bước sóng nào đó. Ánh sáng phát ra bởi ngọn lửa

hydro đi qua ống thạch anh để tránh cho bộ lọc quang và bộ nhân quang khỏi bị

nhiễm bẩn bởi hơi và sản phẩm đốt cháy và đi đến bộ lọc quang. Bộ lọc cản chỉ cho

ánh sáng có độ dài sóng đặc thù đi qua. Bộ lọc kiểu S 394nm được dùng để phát

hiện các hợp chất chứa lưu huỳnh và loại P 526nm dùng cho hợp chất chứa

photpho.

o Nếu những hợp chất chứa lưu huỳnh hoặc photpho có trong khí mẫu, chúng được

đốt cháy trong ống, phát ra ánh sáng 394nm đối với lưu huỳnh hoặc 526nm đối với

hợp chất chứa photpho. Chỉ có ánh sáng có độ dài sóng này mới qua được bộ lọc

cản và bộ nhân quang. Cường độ của ánh sáng được chuyển thành tính hiệu thông

qua bộ nhân quang. Tín hiệu này được khuếch đại trong điện kế và chuyển qua bộ

xử lý số liệu.

Đặc điểm:

o Độ nhạy cao: 10-100pg (sulfur), 1-10pg (photphorous).

o Độ chọn lọc: Lưu huỳnh (sulfur) hoặc photpho (photphorous) có chứa các hợp

chất và kim loại như thiếc, bo, asen và crom.

o Dải tuyến tính: không tuyến tính đối với sulfur và 103-105 đối với photphorous.

o Các khí: hỗn hợp khí dùng đốt cháy: H2 và không khí. Khí bổ sung: nitrogen.

o Nhiệt độ phản ứng: 250-300oC

4.4.6 Detector quang hóa ion (photoionization detector):

Page 27: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 27

Hình 2.15: Cấu tạo của detector ion hóa

Phản ứng sử dụng hơn một loại detector cho sắc phổ khí, nó đạt được độ nhạy cao

nhờ hiệu quả của các hợp chất đặc biệt với kĩ thuật phân tích sắc phổ riêng biệt. Sự xác

địnhcó chọn lọc của hydrocacbon thơm hoặc nhóm organo-heteroatom là công việc của

đầu dò quang phổ PID. Thiết bị sử dụng năng lượng ánh sáng cực tím như phương tiện

của kĩ thuật phân tích rừ cột GC. Các ion tạo ra từ quá trình này bởi tiến trình hoạt động

của electron. Dòng điện phát ra được tập trung cho kĩ thuật phân tích.

4.4.7 Detector Nitơ-photpho NPD:

Detector NPD còn gọi là detector ion hóa ngọn lửa cho độ nhạy cao khi phân tích các

hợp chất có chứa nitơ-photpho. Tùy vào điều kiện phân tích nó tỏ ra rất hữu hiệu trong

việc phân tích các dược phẩm, dư lượng của các hợp chất cacbamat và photphat sử dụng

trong nông nghiệp và phân tích lượng vết các hợp chất chứa nitơ và photpho như

nitrosamin, trimetylamin, acrylomitricl trong các chất tổng hợp nhân tạo.

Nguyên lý hoạt động:

o Các hợp chât chứa nitơ đi ra từ cột sắc ký trở thành gốc CN*. Sau khi phân hủy

nhiệt trên bề mặt kim loại kiềm nung đỏ gốc CN* kết hợp với các electron thóat ra

từ bề mặt kiêm lọai kiềm nung đỏ (Rb) và trở thành ion CN-. Các ion này kết hợp

với các nguyên tử hyro. Trong khi đó nguồn kiêm lọai kiềm (Rb) trở thành cation

sau khi giải thóat các electron, tạo ra một dòng tập hợp và chuyển thành tín hiệu.

Đặc điểm:

o Độ nhạy cao: 1-10pg

o Dải tuyến tính: 104-106

o Khí sử dụng: khí để đốt: H2 và không khí. Khí bổ sung (makeup) là heli

o Nhiệt độ làm việc: 250-300oC

Page 28: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 28

4.4.8 Detector tế bào dẫn điện (Electrolytic conductivity detector – ELCD):

Nguyên lý hoạt động:

Hình 2.16: Cấu tạo của detector ion hóa

o Hỗn hợp khí trộn với khi phản ứng ở nhiệt độ cao trong ống phản ứng. Các

sản phẩm cụ thể sẽ được trộn với một dung môi và đi qua tế bào dẫn điện

(electrolytic conductivity cell). Sự thay đổi trên tế bào dẫn điện của dung môi

được đo và được báo hiệu. Nhiệt độ và phản ứng trong ống quyết định đến loại

hợp chất cần nhận biết.

Đặc điểm:

o Dùng để nhận biết các halogens, sulfur hoăc nitơ chứa các hợp chất.

o Nhiệt độ hoạt động cao: 800-10000C với hỗn hợp khí halogens, 850-9250C nếu

hỗn hợp khí nứa nitrogen, và 750-8250C nếu hỗn hợp khí chứa sulfur.

o Khí mang: H2 nếu hỗn hợp khí chứa halogen hoặc nitrogen, không khí nếu hỗn

hợp khí chứa sulfua.

5. Kỹ Thuật Xác Định Nồng Độ

5.1 Nguyên lý hoạt động:

Sắc ký là kỹ thuật tách các cấu tử ra khỏi hỗn hợp dựa trên ái lực khác nhau của mỗi

cấu tử đối pha tĩnh và pha động. Sự ái lực khác nhau của các chất tan trên pha tĩnh làm

chúng di chuyển với những vận tốc khác nhau trong pha động của hệ thống sắc kí. Kết

quả là chúng được tách thành những dải trong pha động và vào lúc cuối của quá trình

các cấu tử lần lượt hiện ra theo trật tự tương tác với pha tĩnh. Cấu tử nào có ái lực nhiều

Page 29: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 29

với pha động thì có xu hướng ra khỏi cột trước, cấu tử nào có ái lực nhiều với pha tĩnh

thì bị giữ lại lâu hơn trong cột và ra sau.

Dựa trên 2 quá trình hấp phụ và giải hấp phụ, 2 quá trình sảy ra liên tục giữa hai pha

tĩnh và pha động.

Hình 5.1 Mô tả quá trình phân tách sắc ký

Ví dụ một hỗn hợp đơn giản có chứa 2 chất là A và B, lực tương tác với pha tỉnh cùa

A bé hơn B, quá trình phân tách sảy ra được mô tã dưới đây

Mẫu chứa A và B được tiêm vào cột. Khi cho một chất rửa giải bắt đầu chảy qua cột,

phần của mẫu được hòa tan trong pha động được di chuyển tại phần đầu của cột (tại thời

điểm to). Ở đây các cấu tử A và B tự phân bố giữa hai pha.

Tiếp tục cho pha động đi qua cột thì nó sẽ đẩy phần hòa tan này chạy xuống dưới và

một sự phân bố mới giữa pha động và pha tĩnh sẽ xảy ra (thời điểm t1). Đồng thời sự

phân bố giữa dung môi mới và pha tĩnh cũng diễn ra tại vị trí của mẫu lúc đầu.

Việc thêm tiếp dung môi sẽ mang các phân tử hòa tan chạy xuống cột trong một loạt

liên tiếp các chuyển biến giữa hai pha. Bởi vì sự di chuyển của chất tan chỉ xảy ra trong

pha động, nên tốc độ trung bình của sự di chuyển chất tan phụ thuộc vào phần thời gian

chất tan ấy nằm trong pha đó. Phần thời gian này là nhỏ đối với chất tan bị lưu giữ

mạnh bởi pha tĩnh (cấu tử B trong ví dụ trên) và lớn đối với chất tan (cấu tử A) có sự

lưu giữ trong pha động mạnh hơn. Sau một thời gian các phân tử chất A và B dần dần

được tách khỏi nhau.

Page 30: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 30

Nếu đặt một detector có khả năng phát hiện được các chất tan (cấu tử A và B) tại

cuối cột tách và tín hiệu của nó được vẽ lại như một hàm của thời gian (hoặc thể tích

được thêm vào) thì một loạt peak đối xứng sẽ được ghi lại và được gọi là sắc kí đồ. Vị

trí của các peak theo thời gian được dùng để nhận diện định tính và diện tích của peak

được dùng cho phép phân tích định lượng của cấu tử đang xét.

Hình 5.2 Quá trình phân tích sắc ký trên cột của 2 chất A và B

5.2 Các phương pháp tiến hành tách sắc kí:

Để thực hiện tách sắc kí người ta có thể sử dụng một trong ba phương pháp sau:

5.2.1 Phương pháp rửa giải:

Kỹ thuật này được sử dụng rộng rãi nhất trong các phương pháp sắc kí hiện nay. Một

lượng nhỏ hỗn hợp mẫu được giới thiệu vào cột với pha động có ái lực với pha tĩnh bé

hơn so với bất kì cấu tử cần tách có trong mẫu. Vì thế các cấu tử cần tách di chuyển với

tốc độ chậm hơn so với chất rửa giải. Tốc độ này được xác định bởi ái lực tương đối của

mỗi cấu tử lên pha tĩnh so với pha động, đó chính là hệ số phân bố K = Csp/Cmp. Ở đây

Csp, Cmp là nồng độ của cấu tử đang xét trên pha tĩnh và trong pha động.

Các cấu tử được rửa giải theo trật tự ái lực của chúng nhưng tốc độ di chuyển tương

đối của chúng phụ thuộc vào tương tác 3 thành phần giữa chúng với pha động, với pha

tĩnh và giữa pha động với pha tĩnh. Bởi vì các cấu tử được tách khỏi nhau với một vùng

pha động ở giữa chúng nên phương pháp này được sử dụng trong các phép tách với mục

đích phân tích.

Page 31: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 31

Pha động có thể không thay đổi thành phần dung môi trong suốt quá trình rửa giải; có

thể thay đổi dung môi rửa giải sau một thời gian định trước (rửa giải theo từng giai

đoạn); cũng có thể không thay đổi các dung môi tạo nên pha động nhưng thay đổi nồng

độ của các thành phần có trong pha động sau một thời gian định trước (rửa giải

gradient).

5.2.2 Phương pháp tiền lưu:

Hỗn hợp cần tách gồm các chất A, B và C được cho chảy liên tục vào phần trên của

cột, trong đó A là cấu tử có ái lực yếu nhất với pha tĩnh.

Do các cấu tử A, B và C bị lưu giữ trên cột, nên trước hết từ cột chảy ra chỉ có dung

môi. A do có lực tương tác trên cột yếu nhất sẽ di chuyển xuống dưới còn các cấu tử có

ái lực mạnh hơn A bị pha tĩnh gi ữ ở phần trên của cột.

Do dung dượng có hạn của pha tĩnh nên khi vượt dung lượng này thì cấu tử A sẽ di

chuyển dọc theo cột và ra khỏi cột ở dạng nguyên chất sau đó là hỗn hợp của các thành

phần tiếp theo A+B rồi A+B+C.

Phương pháp tiền lưu ít được dùng do không thực hiện được việc tách hoàn toàn các

cấu tử, đặc biệt khi sử dụng sự tách sắc kí vào mục đích phân tích.

5.2.3 Phương pháp thế đẩy:

Mẫu được cho vào cột, dùng dung môi rửa giải có ái lực với pha tĩnh mạnh hơn bất

kì một cấu tử nào của hỗn hợp tách để đẩy các cấu tử cần tách thoát ra khỏi cột. Cấu tử

thoát ra khỏi cột đầu tiên là cấu tử tương tác yếu nhất với pha tĩnh, sau đó đến các cấu

tử khác có ái lực với pha tĩnh tăng dần.

Phương pháp này tạo nên các dải rửa giải không hoàn toàn được tách khỏi nhau: có

dải thu được chất nguyên chất nhưng có dải giữa các dải nguyên chất thì gồm hỗn hợp

của chúng.

Trong thực hành phòng thí nghiệm để tách các hỗn hợp phức tạp người ta thường hay

dùng hơn là phương pháp rửa giải.

5.3 Kỹ thuật xác định nồng độ:

Do có nhiều thông số ảnh hưởng đến quá trình sắc ký nên có thể làm bối rối cho

những người mới bắt đầu làm quen với các kỹ thuật cho việc phân tích sắc ký một đối

tượng cụ thể nào đó. Trật tự cần xem xét theo thứ tự sau: mục tiêu phân tích, chuẩn bị

mẫu, detector, lựa chọn cột và bơm mẫu.

5.3.1 Mục tiêu của phép phân tích:

Mục tiêu của phép phân tích là phân tích định tính hay định lượng?

Page 32: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 32

o Có cần phải thực hiện một phép tách phân giải cao một cấu tử hoặc chỉ cần một

phép tách có độ phân giải đủ tốt cho một phần nào đó thôi trong sắc ký đồ?

o Có cần hy sinh độ phân giải để rút ngắn thời gian phân tích?

o Cần phân tích định lượng chỉ một cấu tử hoặc nhiều cấu tử trong mẫu và có cần

độ chính xác cao không?

o Chất phân tích hiện diện trong mẫu ở nồng độ thích hợp hoặc cần có những kỹ

thuật đặc biệt (cô mẫu và một detector rất nhạy) cho phân tích siêu vết.

o Mỗi yếu tố đã đề cập dẫn đến một vài sự thỏa hiệp trong việc chọn các kỹ thuật

thích hợp.

5.3.2 Chuẩn bị mẫu:

Các mẫu trong thực tế rất phong phú và thường có thành phần phức tạp:

o Có mẫu có hàm lượng tương tự nhau, cũng có mẫu bên cạnh cấu tử chính

o Có mẫu có các cấu tử với nhiệt độ sôi khác nhau trong một khoảng rộng.

o Mẫu có thể ở dạng dung dịch nhưng cũng có ở dạng khí hoặc dạng rắn.

Hình 5.3 Các phương pháp rửa giải, tiền lưu, thế đẩy

o Mẫu chứa nhiều cấu tử phân cực hoặc chứa nhiều cấu tử ít hoặc kém phân

cực. Chìa khóa để có một quá trình sắc ký thành công cho một mẫu phức tạp là cần

phải làm “sạch” nó trước khi giới thiệu nó vào cột.

Page 33: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 33

o Các phương pháp như vi chiết pha rắn, chiết lỏng-lỏng, chiết rắn-lỏng, sự giải

hấp nhiệt các các cấu tử dễ bay hơi và nhiều phương pháp mới khác giúp cô lập

những cấu tửcần phân tích trong mẫu phức tạp từ những chất cản trở.

o Các phương pháp này giúp cô lập và làm giàu các cấu tử cần phân tích đến mức

độ có thể dò tìm được.

o Nếu ta không làm “sạch” mẫu thì sắc ký đồ thu được sẽ chứa một rừng các peak

kém phân giải và các cấu tử không bay hơi sẽ còn giữ trong cột và phá hủy các cột

đắt tiền.

5.3.3 Chọn detector:

Giai đoạn tiếp theo là chọn detector cho quá trình sắc ký. Vấn đề đặt ra là cần biết

mọi thông tin trong mẫu hay chỉ cần một detector chuyên biệt dò tìm một hoặc một

nhóm các cấu tử đặc biệt nào đó trong mẫu.

Đối với việc phân tích các hợp chất hidrocacbon thì detector ion hóa ngọn lửa loại

đáp ứng tốt nhất.Nếu chỉ cần biết những thông tin định tính để nhận diện các chất rửa

giải, các detector khối phổ và hồng ngoại là những chọn lựa tốt.

5.3.4 Chọn cột

Những chọn lựa chính là pha tĩnh, đường kính cột và chiều dài cột.

o Chọn pha tĩnh theo nguyên tắc các chất có cấu tạo càng giống nhau thì tương tác

tốt với nhau.

o Các pha tĩnh không phân cực được sử dụng nhiều.

o Pha tĩnh có độ phân cực trung bình được sử dụng hầu hết những phép tách mà

pha tĩnh không phân cực không thể.

o Đối với những hợp chất phân cực cao thì một cột phân cực mạnh là cần thiết.

o Các đồng phân quang học và những hợp chất có cấu trúc hình học gần giống

nhau đòi hỏi những pha tĩnh đặc biệt cho phép tách này.

Giữa đường kính cột và bề dày của lớp phim có mối quan hệ trong việc ảnh hưởng

đến độ phân giải.

o Độ phân giải cao nhất có thể đạt được bởi những cột hẹp nhất với pha tĩnh mỏng

nhất.

o Sự kết hợp này làm giảm thiểu độ trở kháng đối với sự chuyển khối trong cả hai

pha tĩnh và pha động nhờ vậy làm giảm chiều cao đĩa lý thuyết.Các cột hẹp và lớp

phim mỏng đặc biệt thích hợp cho việc tách các hỗn hợp của các chất có nhiệt độ

sôi cao nên bị lưu giữ quá mạnh trên các cột có lớp phim mỏng. Các thời gian lưu

ngắn cung cấp những phép phân tích nhanh.

Page 34: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 34

o Tuy nhiên, các cột hẹp có lớp phim mỏng có dung lượng mẫu rất thấp, đòi hỏi

những detector có độ nhạy cao (detecter ion hóa ngọn lửa có thể không tương

thích), không lưu giữ tốt những hợp chất dễ bay hơi và có thể chịu những ảnh

hưởng do những vị trí hoạt động trên bề mặt có thể bị lộ ra.

o Các cột cở hẹp có lớp phim dày cung cấp một thỏa hiệp tốt giữa độ phân giải và

dung lượng mẫu. Chúng có thể được sử dụng với nhiều detector (nhưng thường

không phải các detector đo độ dẫn điện hoặc hồng ngoại) và với những hợp chất dễ

bay hơi. Các thời gian lưu giữ dài hơn so với cột có lớp phim mỏng.

o Các cột cở rộng và có lớp phim dày được đòi hỏi cho việc sử dụng các detector

đo độ dẫn điện và hồng ngoại. Chúng có dung lượng mẫu cao và có thể xử lý các

hợp chất dễ bay hơi nhưng cho độ phân giải thấp và thời gian lưu giữ lâu.

o Việc sử dụng một cột hẹp hơn hoặc lớp pha tĩnh m ỏng hơn sẽ làm tăng độ phân

giải mà không kéo dài thời gian lưu giữ.

o Việc thay đổi pha tĩnh làm thay đổi hoàn toàn sự lưu giữ tương đối của những

hợp chất khác nhau và có thể phân giải các cấu tử đang quan tâm.

5.3.5 Chọn phương pháp tiêm mẫu:

Quyết định chính cuối cùng là làm thế nào để tiêm mẫu.

o Chế độ tiêm mẫu chia dòng: Tốt nhất cho những mẫu phân tích có nồng độ cao

hoặc phân tích khí, nhưng phân tích định lượng có thể có các cấu tử khó bay hơi bị

mất trong suốt quá trình tiêm mẫu.

o Chế độ tiêm mẫu không chia dòng: Được yêu cầu cho những dung dịch rất loãng.

Nó cung cấp độ phân giải tốt nhưng trong phân tích định lượng có thể có các hợp

chất kém bay hơi bị mất trong quá trình tiêm.

o Tiêm mẫu trên cột (on-column injection): Tốt nhất cho phân tích định lượng và

cho những hợp chất kém bền nhiệt. Nó là một kỹ thuật có độ phân giải thấp và

không thể sử dụng cho những cột có đường kính nhỏ hơn 0.25 mm. Nó có thể xử lý

những dung dịch đặc cũng như loãng.

6. Phân Tích Định Tính

Trong phân tích định tính, hai detector có thể nhận diện các hợp chất là detector khối

phổ và detector hồng ngoại chuyển hóa Fourier. Một peak có thể nhận diện bằng cách

so sánh phổ của chúng với một thư viện phổ được lưu giữ trong máy tính.

Một phương pháp kém tinh tế hơn là nhận diện thời gian lưu của một chất với thời

gian lưu của chất đó trong một mẫu đã biết trước (mẫu chuẩn) trên các cột có độ phân

cực khác nhau.

Page 35: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 35

Cách đáng tin cậy nhất là so sánh các thời gian lưu trong cùng một sắc kí đồ thu được

bởi mẫu đã biết trước (mẫu chuẩn) được thêm mẫu cần dò tìm vào trong cùng một điều

kiện sắc kí. Nếu như chất cần dò tìm trùng với chất có trong mẫu chuẩn thì peak của

chất đó trong mẫu đã thêm sẽ có diện tích hay chiều cao tăng lên so với khi chưa thêm

chất chưa biết vào. Sự nhận diện chỉ ở mức thăm dò khi thực hiện trên một cột, nhưng

khẳng định hơn khi thực hiện trên một vài cột trên những loại pha tĩnh khác nhau.

Trong hình cho thấy có thể nhận diện được các đỉnh 2,3,4,7 và 9 là metyl, etyl,

npropyl, n-butyl, và n-amyl alcol. Cần chú rằng có thể có những chất khác nhau nhưng

có thời gian lưu gi ống hoặc rất gần nhau. Vì vậy cần xác định trên nhiều pha tĩnh khác

nhau hoặc sử dụng các detector khối phổ hoặc hồng ngoại để xác định.

Hình 6.1 Phân tích định tính bằng cách so sánh thời gian lưu với chất chuẩn

7. Phân Tích Định Lượng

7.1 Phương pháp chuẩn hóa diện tích:

Đây là phương pháp tính thành phần phần trăm của mẫu bằng cách đo diện tích từng

peak trên sắc kí đồ. Theo cách này đem diện tích peak của chất quan tâm A cho tổng

diện tích của các peak:

%A = (diện tích peak A/tổng diện tích các peak)x100 %

Page 36: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 36

Phương pháp này chỉ đúng nếu tất cả các cấu tử đều được rửa giải và đáp ứng của

detector với mọi cấu tử là giống nhau. Nếu những điều kiện này thõa mãn thì đây là

phương pháp nhanh và hiệu quả.

7.2 Phương pháp tính theo hệ số hiệu chỉnh:

Như đã biết detector đáp ứng khác nhau đối với các chất khác nhau. Vì vậy cần phải tính hệ

số hiệu chỉnh. Nhờ hệ số này có thể tính được thành phần phần trăm của các cấu tử trong

mẫu.

7.3 Phương pháp lập đường chuẩn

Lập các đường chuẩn riêng rẽ đối với từng cấu tử trong hỗn hợp bằng cách tiêm những thể

tích bằng nhau của một loạt dung dịch hỗn hợp chất chuẩn có nồng độ khác nhau.

Từ các diện tích thu được của các cấu tử cần phân tích và đường chuẩn vừa thiết lập suy ra

được nồng độ của chúng.

7.4 Phương pháp dùng chuẩn nội

Phương pháp này được gọi là phương pháp chuẩn hóa tương đối hay gián tiếp. Để

định lượng một cấu tử X ta cần phải chọn một chất chuẩn S sao cho:

o Nếu trộn lẫn X với S ta phải thu được 2 đỉnh riêng biệt trên sắc kí đồ.

o Peak của X và S phải khá gần nhau.

Sau đó ta phải pha các hỗn hợp có tỷ lệ trọng lượng của X và S biết trước, chạy sắc

kí, đo diện tích các peak, lập tỉ số diện tích tương ứng, cuối cùng lập đường chuẩn

tương đối.

Hình 7.1 Đồ thị đường chuẩn nội

o Sc/Ss là tỉ lệ diện tích của các cặp cấu tử cần xác định X và chất chuẩn nội

o Wc/Ws là tỉ lệ trọng lượng của các cặp cấu tử cần xác định X và chất chuẩn nội.

Khi phân tích mẫu thật, ta cho một lượng biết trước chất chuẩn nội S vào mẫu rồi

Page 37: Nhóm 3 - Sắc Ký Khí

NHÓM 8 - KỸ THUẬT ĐO LƯỜNG 37

tiến hành sắc kí hỗn hợp. Từ tỉ lệ diện tích đo được, bằng đường chuẩn tương đối

vừa dựng ta có tỉ lệ trọng lượng. Với trọng lượng chuẩn S thêm vào đã biết ta tính

được trọng lượng của chất X.

Phương pháp này có các ưu điểm:

o Không cần biết đến đáp ứng của detector.

o Không cần duy trì nghiêm ngặt các điều kiện tiến hành sắc kí vì những thay đổi

được loại trừ theo cách tính tỷ số.

Tài Liệu Tham Khảo

1. Chuyên đề hoạt động của một số detector trong sắc ký lỏng và khí, ThS Lê Nhất Tâm, đại học

công nghiệp tp hcm 10/2006

2. Gas chromotography detector http://delloyd.50megs.com/moreinfo/detectors.html

3. Laboratory instrumentation 4th edition Mary C.Haven


Recommended