Transcript
Page 1: Finite Element Analysis Of Underframe For 5500 Hp WDGS

Simulation Driven Innovation 1

FINITE ELEMENT ANALYSIS OF

UNDERFRAME FOR 5500 HP WDG5 LOCOMOTIVE

P.C.S.Yadav

Sse/Mp Directorate

Research Designs & Standards

Organisation

Manak Nagar, Lucknow-226 011

R. K. Misra

Ade/Mp Directorate

Research Designs & Standards

Organisation

Manak Nagar, Lucknow-226 011

Anurag Mishra

Dy.Dir/Mp Directorate

Research Designs &

Standards Organisation

Manak Nagar,

Lucknow-226 011

Butchi Babu Nalluri

Design Engineer/Emd

Research Designs & Standards

Organisation

Manak Nagar, Lucknow-226 011

Report. No. MP.MISC-271

JUNE-2011

CONTENTS

Page No.

1.0 Executive Summary 6

2.0 Objective 6

3.0 Background 7

4.0 Modeling Details 7

4.1 Modeling Assumptions 7

4.2 Material Properties and section properties 8

4.3 Locomotive Underframe Description 9

4.4 Model Verification (1g Vertical) 9

5.0 Static Analysis – RDSO and EMD Load Cases 11

5.1 RDSO/EMD Yield Load Cases

5.1.1 1.0g vertical load case

5.1.2 1.0gVe+ Drag load case

5.1.3 1.0g Ve + Buff loadcase

5.1.4 2.0g Vertical loadcase

Anil Kumar Director - Motive Power Directorate/RDSO

Research Designs & Standards Organisation

Manak Nagar, Lucknow-226 011

Page 2: Finite Element Analysis Of Underframe For 5500 Hp WDGS

1

5.1.5 1.0g Ve + (+) 3g longitudinal loadcase

5.1.6 1.0g Ve + (-) 3g longitudinal loadcase

5.1.7 1.0g Ve + (+) 1.5g lateral loadcase

5.1.8 1.0g Ve + (-) 1.5g lateral loadcase

5.1.9 1.0g Ve + 2000KN buffload at buffer loadcase

5.1.10 1.0g Ve + 1500KN buffload at 50 mm below buffer loadcase

5.1.11 1.0g Ve + lifting at cabend jack and cabend bogie attach to underframe

other bogie on rail

5.1.12 1.0g Ve + lifting at radend jack and radend bogie attach to underframe

other bogie on rail

5.1.13 1.0g Ve + lifting at cabend and cabend bogie attach to underframe

other bogie on rail

5.1.14 1.0g Ve + lifting at radend and radend bogie attach to underframe

other bogie on rail

5.1.15 Both end lifting at jack with lifting load of 1.5x (locomotive weight).

5.1.16 1g Ve + 3 TE tractive drag loadcase

5.1.17 Pivot pin load (+) 300 kN/(-)270 kN loadcase

5.1.18 Pivot pin load 3.0g long of bogie weight

5.1.19 Anti-climber load of 45300kg verticle loadcase

5.1.20 400 kN force at buffer diagonaly

5.2 RDSO/EMD Fatigue Load Cases

5.2.1 1.0g Ve + (±) 0.35 loadcase

5.2.2 1.0g Ve + (±) .25g Ve + (±) .5g Lateral

5.2.3 1.0g Ve + (±) .25g Ve + (±) .5g Longitudinal

5.3 RDSO/EMD Torque Loads

5.3.1 Underframe twist analysis for engine torque load of 33896 N-m.

6.0 Modal Analysis 12

6.1 Underframe Natural Frequencies

7.0 Results and discussions 13

8.0 Conclusions 15

List of Tables:-

Table1: Material properties used in the Underframe structure 8

Table2: Underframe Plate Thickness 9

Table3: Locomtive weight Distribution Between Components 10

Table4: Underframe Modal Analysis, Natural Frequencies 12

Table5: Max. Stress , Max. Displacement 13

List of Figures

Fig 1: Locomotive layout 16

Fig 2: The Underframe Structure unigraphics 3D image Top View 16

Page 3: Finite Element Analysis Of Underframe For 5500 Hp WDGS

2

Fig 3: The Underframe Structure unigraphics 3D image Bottom View 17

Fig 4: The Underframe Cross-section Details(Dimensions are in mm) 17

Fig 5: Finite Element Model of locomotive underframe 18

Fig. 6 Vertical Displacement, Draft Load 19

Fig. 7 Von Mises Stress of UF Top Plate, Draft Load 19

Fig. 8 Von Mises Stress of UF Top Plate #2 End Side, Draft Load 20

Fig. 9 Von Mises Stress of UF Bottom Plate, Draft Load 20

Fig. 10 Von Mises Stress of UF Bottom Plate #2 End Side, Draft Load 21

Fig. 11 Von Mises Stress of Center Sill #2 End Side, Draft Load 21

Fig. 12 Draft Gear Pocket, Mesh, Loading and Boundary Conditions 22

Fig. 13 Draft Gear Pocket, von Mises stress in the Bottom Plate 23

Fig. 14 Draft Gear Pocket von Mises stress Distribution, Draft Load 23

Fig. 15 Underframe Load Distribution Buff Load 24

Fig. 16 Vertical Displacement Buff Load 24

Fig. 17 Von Mises Stress in the top Plate Buff Load 25

Fig. 18 Von Mises Stress in the Top Plate #1 End Side Buff Load 25

Fig. 19 Von Mises Stress in the Top Plate #2 End Side Buff Load 26

Fig. 20 Von Mises Stress in the Bottom Plate Buff Load 26

Fig. 21 Von Mises Stress in the Bottom Plate #1 End Side Buff Load 27

Fig. 22 Von Mises Stress in the Center Sill #1 End Side Buff Load 27

Fig. 23 Von Mises Stress in the Side Sill #1 End Side Buff Load 28

Fig.24 Von Mises Stress in the Top Plate #2 End Side Buff Load 28

Fig. 25 Draft Gear Pocket Von Mises Stress Bottom Plate Buff Load 29

Fig. 26 Draft Gear Pocket Von Mises Stress Buff Load 29

Fig. 27 Underframe Load Distribution 5.1.4 2.0g Vertical loadcase 30

Fig. 28 Vertical Displacement 5.1.4 2.0g Vertical loadcase 30

Fig. 29 Von Mises Stress in the top Plate 5.1.4 2.0g Vertical loadcase 31

Fig. 30 Von Mises Stress in the Top Plate #1 End Side 5.1.4, 2.0g Vertical loadcase 31

Fig. 31 Von Mises Stress in the Top Plate #2 End Side 5.1.4, 2.0g Vertical loadcase 32

Fig. 32 Von Mises Stress in the Bottom Plate 5.1.4, 2.0g Vertical loadcase 32

Fig. 33 Underframe Load Distribution 5.1.5 1.0g Ve + (+) 3g longitudinal loadcase 33

Fig. 34 Vertical Displacement 5.1.5 1.0g Ve + (+) 3g longitudinal loadcase 33

Fig. 35 Von Mises Stress in the top Plate 5.1.5, 1.0g Ve + (+) 3g longitudinal loadcase

34

Fig. 36 Von Mises Stress in the Top Plate #1 End Side 5.1.5, 1.0g Ve + (+) 3g

longitudinal loadcase. 34

Fig. 37 Von Mises Stress in the Top Plate #2 End Side 5.1.5, 1.0g Ve + (+) 3g

longitudinal loadcase 35

Fig. 38 Von Mises Stress in the Bottom Plate 5.1.5 1.0g Ve + (+) 3g longitudinal

loadcase 35

Fig. 39 Underframe Load Distribution 5.1.5 1.0g Ve + (-) 3g longitudinal loadcase 36

Fig. 40 Vertical Displacement 5.1.5 1.0g Ve + (-) 3g longitudinal loadcase 36

Fig. 41 Von Mises Stress in the top Plate 5.1.5, 1.0g Ve + (-) 3g longitudinal loadcase

37

Fig. 42 Von Mises Stress in the Top Plate #1 End Side 5.1.5, 1.0g Ve + (-) 3g

longitudinal loadcase 37

Page 4: Finite Element Analysis Of Underframe For 5500 Hp WDGS

3

Fig. 43 Von Mises Stress in the Top Plate #2 End Side 5.1.5, 1.0g Ve + (-) 3g

longitudinal loadcase 38

Fig. 44 Von Mises Stress in the Bottom Plate 5.1.5 1.0g Ve + (-) 3g longitudinal

loadcase 38

Fig. 45 Underframe Load Distribution 5.1.7 1.0g Ve + (+) 3g lateral loadcase 39

Fig. 46 Vertical Displacement 5.1.7 1.0g Ve + (+) 1.5g lateral loadcase 39

Fig. 47 Von Mises Stress in the top Plate 5.1.7, 1.0g Ve + (+) 1.5g lateral loadcase 40

Fig. 48 Von Mises Stress in the Top Plate #1 End Side 5.1.7, 1.0g Ve + (+) 1.5g lateral

loadcase 40

Fig. 49 Von Mises Stress in the Top Plate #2 End Side 5.1.7, 1.0g Ve + (+) 1.5g lateral

loadcase 41

Fig. 50 Von Mises Stress in the Bottom Plate 5.1.7, 1.0g Ve + (+) 1.5g lateral loadcase

41

Fig. 51 Underframe Load Distribution 5.1.8, 1.0g Ve + (-) 1.5g lateral loadcase 42

Fig. 52 Vertical Displacement 5.1.8, 1.0g Ve + (-) 1.5g lateral loadcase 43

Fig. 53 Von Mises Stress in the top Plate 5.1.8, 1.0g Ve + (-) 1.5g lateral loadcase 43

Fig. 54 Von Mises Stress in the Top Plate #1 End Side 5.1.8, 1.0g Ve + (-) 1.5g lateral

loadcase 44

Fig. 55 Von Mises Stress in the Top Plate #2 End Side 5.1.8, 1.0g Ve + (-) 1.5g lateral

loadcase 44

Fig. 56 Von Mises Stress in the Bottom Plate 5.1.8, 1.0g Ve + (-) 1.5g lateral loadcase

45

Fig. 57 Underframe Load Distribution 5.1.9 1.0g Ve + 2000KN buffload at buffer

loadcase 46

Fig. 58 Displacement 5.1.9 1.0g Ve + 2000KN buffload at buffer loadcase 46

Fig. 59 Von Mises Stress in the top Plate 5.1.9, 1.0g Ve + 2000KN buffload at buffer

loadcase 47

Fig. 60 Von Mises Stress in the Bottom Plate 5.1.9, 1.0g Ve + 2000KN buffload at

buffer loadcase 47

Fig. 61 Underframe Load Distribution 5.1.10, 1.0g Ve + 1500KN buffload at 50 mm

below buffer loadcase 48

Fig. 62 Displacement 5.1.10 1.0g Ve + 1500KN buffload at 50 mm below buffer

loadcase 48

Fig. 63 Von Mises Stress in the top Plate 5.1.10, 1.0g Ve + 1500KN buffload at 50 mm

below buffer loadcase 49

Fig. 64 Von Mises Stress in the Bottom Plate 5.1.10 1.0g Ve + 1500KN buffload

at 50 mm below buffer loadcase 50

Fig. 65 Displacement 5.1.11 1.0g Ve + lifting at cabend jack and cabend bogie attach

to underframe other bogie on rail 51

Fig. 66 Von Mises Stress in the top Plate 5.1.11, 1.0g Ve + lifting at cabend jack and

cabend bogie attach to underframe other bogie on rail 52

Fig. 67 Von Mises Stress in the Bottom Plate 5.1.11, 1.0g Ve + lifting at cabend jack

and cabend bogie attach to underframe other bogie on rail 52

Fig. 68 Displacement 5.1.12 1.0g Ve + lifting at radend jack and radend bogie attach

to underframe other bogie on rail 53

Fig. 69 Von Mises Stress in the top Plate 5.1.12, 1.0g Ve + lifting at radend jack and

Page 5: Finite Element Analysis Of Underframe For 5500 Hp WDGS

4

radend bogie attach to underframe other bogie on rail 53

Fig. 70 Von Mises Stress in the Bottom Plate 5.1.12, 1.0g Ve + lifting at radend jack

and radend bogie attach to underframe other bogie on rail 54

Fig. 71 Displacement 5.1.13 1.0g Ve + lifting at cabend and cabend bogie attach to

underframe other bogie on rail 54

Fig. 72 Von Mises Stress in the top Plate 5.1.13, 1.0g Ve + lifting at cabend and

cabend bogie attach to underframe other bogie on rail 55

Fig. 73 Von Mises Stress in the Bottom Plate 5.1.13 1.0g Ve + lifting at cabend and

cabend bogie attach to underframe other bogie on rail 55

Fig. 74 Displacement 5.1.14, 1.0g Ve + lifting at radend and radend bogie attach to

underframe other bogie on rail 56

Fig. 75 Von Mises Stress in the top Plate 5.1.14, 1.0g Ve + lifting at radend and radend

bogie attach to underframe other bogie on rail 56

Fig. 76 Von Mises Stress in the Bottom Plate 5.1.14, 1.0g Ve + lifting at radend and

radend bogie attach to underframe other bogie on rail 57

Fig. 77 Displacement 5.1.15 Both end lifting at jack with lifting load of 1.5x

(locomotive weight). 57

Fig. 78 Von Mises Stress in the top Plate 5.1.15, Both end lifting at jack with lifting

load of 1.5x (locomotive weight). 58

Fig. 79 Von Mises Stress in the Bottom Plate 5.1.15, Both end lifting at jack with

lifting load of 1.5x (locomotive weight). 58

Fig. 80 Displacement 5.1.16 1g Ve + 3 TE tractive drag loadcase 59

Fig. 81 Von Mises Stress in the top Plate 5.1.16, 1g Ve + 3 TE tractive drag loadcase

59

Fig. 82 Von Mises Stress in the Bottom Plate 5.1.16, 1g Ve + 3 TE tractive drag

loadcase 60

Fig. 83 Displacement 5.1.17 Pivot pin load (+) 300 kN/(-)270 kN loadcase 61

Fig. 84 Von Mises Stress in the top Plate 5.1.17, Pivot pin load (+) 300 kN/(-)270 kN

loadcase 62

Fig. 85Von Mises Stress in the Bottom Plate 5.1.17 , Pivot pin load (+) 300 kN/(-)270

kN loadcase 63

Fig. 86 Displacement 5.1.18, Pivot pin load 3.0g long of bogie weight 64

Fig. 87 Von Mises Stress in the top Plate 5.1.18, Pivot pin load 3.0g long of bogie

weight 64

Fig. 88Von Mises Stress in the Bottom Plate 5.1.18, Pivot pin load 3.0g long of bogie

weight 65

Fig. 89 Displacement 5.1.19, Anti-climber load of 45300kg verticle loadcase 66

Fig. 90 Von Mises Stress in the top Plate 5.1.19, Anti-climber load of 45300kg verticle

loadcase 66

Fig. 91Von Mises Stress in the Bottom Plate 5.1.19, Anti-climber load of 45300kg

verticle loadcase 67

Fig. 92 Displacement 5.2.1, 1.0g Ve + (±) 0.35 loadcase 68

Fig. 93 Von Mises Stress in the top Plate 5.2.1, 1.0g Ve + (±) 0.35 loadcase 69

Fig. 94Von Mises Stress in the Bottom Plate 5.2.1, 1.0g Ve + (±) 0.35 loadcase 70

Fig. 95 Displacement 5.2.2, 1.0g Ve + (±) .25g Ve + (±) .5g Lateral 71

Fig. 96 Von Mises Stress in the top Plate 5.2.2, 1.0g Ve + (±) .25g Ve + (±) .5g Lateral

Page 6: Finite Element Analysis Of Underframe For 5500 Hp WDGS

5

72

Fig. 97Von Mises Stress in the Bottom Plate 5.2.2, 1.0g Ve + (±) .25g Ve + (±) .5g

Lateral 73

Fig. 98 Displacement 5.2.3, 1.0g Ve + (±) .25g Ve + (±) .5g Longitudinal 74

Fig. 99 Von Mises Stress in the top Plate 5.2.3, 1.0g Ve + (±) .25g Ve + (±) .5g

Longitudinal 75

Fig. 100Von Mises Stress in the Bottom Plate 5.2.3, 1.0g Ve + (±) .25g Ve + (±) .5g

Longitudinal 76

Fig. 101 Displacement 5.3.1, Underframe twist analysis for engine torque load of

33896 N-m. 77

Fig. 102 Von Mises Stress in the top Plate 5.3.1, Underframe twist analysis for engine

torque load of 33896 N-m. 78

Fig. 103 Von Mises Stress in the Bottom Plate 5.3.1 Underframe twist analysis for

engine torque load of 33896 N-m. 79

Fig. 104 Vertical Displacement 5.1.20 1.0g Ve + 400 kN force on diagonal buffer

Loadcase 79

Fig. 105 Vertical stress 5.1.20 1.0g Ve + 400 kN 400 kN force on diagonal buffer

Loadcase 80

Fig. 106 Vertical Displacement 5.1.20 1.0g Ve + 400 kN force on alternate diagonal

buffer loadcase 80

Fig. 107 Vertical stress 5.1.20 1.0g Ve + 400 kN force on alternate diagonal buffer

loadcase 81

Fig. 108 Underframe Natural Frequenci 81

1.0 EXECUTIVE SUMMARY

Research Designs & Standards Organisation (RDSO) has designed and developed 5500 HP WDG5

locomotive in consultation with EMD. This locomotive has a platform type of locomotive design. All the

equipment loads are transferred through the underframe structure to the bogies and rails. The carbody

structure supports cab equipment, dynamic brake, radiators, cooling fans, electrical components, sand,

etc. The carbody structure has two slip joints. Draft and buff loads are reacted by the underframe

structure. Since WDG5 locomotive development work is conducted in metric units system, all the

displacements and stress distributions are presented in Metric units system.

The underframe was analyzed by using the design criteria provided by RDSO and Electro-Motive Diesel

Inc. internal design criteria. The locomotive has been analyzed for RDSO/EMD linear, fatigue load cases

and one load case for engine torque. The underframe structure was designed for a locomotive running

with three units. All the locomotive components were modeled in Hypermesh and solved in Radioss.

The von Mises equivalent stress on the underframe structure for both

RDSO/EMD yield load cases were lower than the material yield stress. The underframe structure

satisfied the design criteria for the RDSO/EMD fatigue load cases. The natural frequencies of the

underframe structure fulfilled EMD Vehicle Technical Specification requirements. The underframe

structure meets all the

Page 7: Finite Element Analysis Of Underframe For 5500 Hp WDGS

6

design requirements.

2.0 OBJECTIVE-

The underframe structure should be designed to withstand the operating loads condition for the

RDSO operation as specified in the RDSO/EMD Technical Specifications. Manufacturing method

is to comply with all relevant codes of practice for the fabrication of structures subjected to high

levels of fatigue loadings. The underframe structure must be designed using finite element method.

The finite element model must include primary structural members like draft gear pocket, pivot pin,

fuel tank, cross bearers (stiffeners) etc. The underframe structure must also be designed to withstand

without damage, forces exerted by the dynamic loadings of the locomotive operation.

The design of the underframe structure must be validated for all the RDSO/ EMD design load

cases. This report captures the analytical results using Finite Element Method and full-scale

locomotive vibration test modal results of a similar locomotive.

3.0 BACKGROUND

The WDG5 locomotive is a diesel-electric locomotive with 5500 Horsepower and six AC

traction motors. The approximate weight of the locomotive is 134 tonnes .

This locomotive is equipped with (a) Cab, (b) Electrical Control Locker, (c) alternator, (d)

Engine with electronic unit injection, (e) Equipment Rack, (f) Air Compressor, (g) Cooling Hood

with two cooling fans, and two radiators, (h) Dynamic Brake, (i) Draft Gear and Couplers,(j) Two

HTSC three motor, three axle bogies, (k) Anti-Climber, (1) Cow Catcher, (m) Two Main

Reservoirs, and (n) Blower Motors etc... The locomotive and the equipment layout are shown in

the Figure 1.

The RDSO-WDG5 locomotive is a platform type locomotive. All the hoods are designed to transfer

the equipment load to the underframe. The underframe structure carries all the equipment loads and

transfers loads to bogies. The carbody has two slip joints at both ends of the engine hood.

4.0 MODELING DETAILS

The underframe structure have been analyzed using HYPERWORKS V 10.0 Finite Element

Software. A three dimensional solid geometry of the underframe structure is shown in Figures 2 and 3.

The full underframe FEA model contains 224021 elements and 210619 nodes. The FEA model of

underframe has been modeled with shell element, solid element, spring element, mass element and

rigid element. Centre pivot pin and jacking pad have been modeled with solid element. The weight of

all equipments are included as mass elements.

4.1 MODELING ASSUMPTION

The following assumptions are used for the design of the underframe structure :-

1) The Locomotive underframe structure is modeled with shell element. The primary and

secondary springs are modeled as spring element and pivot pin, jacking pad as solid element.

Page 8: Finite Element Analysis Of Underframe For 5500 Hp WDGS

7

2) Mass element for components like cab, e-locker ,inertial hood, engine,

equipment Rack, cooling hood, dynamic brake, are included in the model at CG location.

3) The fuel weight is applied as a load on fuel tank sheets for the inertia load cases.

4) The Alternator weight is included as mass element at the center of gravity of the alternator

and this mass element is connected to the underframe structure at the alternator attachment

bolts.

5) Engine weight is represented with a mass element at centre of gravity of engine

6) The bogies of the locomotive are modeled with mass elements. The bogie side bearer as spring

elements.

7) Cab structure and all equipment in the cab is modeled as mass elements.

8) Cooling fans in the cooling hood structure are modeled as mass element.

9) In the equipment rack structure all the components weights are modeled as

mass element at center of gravity of equipment weight.

10) Dynamic brake equipment is modeled as a mass element at CG location.

11) Air compressor, Sand weight, Coupler weight, number 2-end Traction Motor blower

weight, ballast weight, pipes and cables are modeled as mass elements.

12) The dynamic brake hood and electrical locker structure is modeled with mass elements.

13) Grid, fan and motor is modeled as mass element.

14) Bolted joint of fuel tank are modeled with rigid elements.

4.2 MATERIAL PROPERTIES AND SECTION PROPERTIES

The underframe is constructed with SAILMA 350, IS-2062, IS:5986. Properties are given in the

Table 1. The plate thicknesses are presented in Table 2.

Table 1: Material Properties used in the Underframe Structure

Description SAILMA350 IS-2062

Young's Modulus 200 Gpa 210 GPa Poisson's Ratio 0.27 0.3 Density 7800 kg/m"3 7.85E-09 Ton/cubic mm. Yield Stress 350 MPa 250MPa Ultimate Stress 490-610 MPa 490 MPa Elongation 20% 22mm

Page 9: Finite Element Analysis Of Underframe For 5500 Hp WDGS

8

Table 2: Underframe plate thickness

4.3 LOCOMOTIVE UNDERFRAME DESCRIPTION

The underframe structure supports the following components: Cab, E-Locker, Inertial Hood,

Engine Hood, Cooling Hood, and Dynamic Brake Hood, Air Compressor, Equipment Rack, Air

Reservoirs, Blowers, Sand, Batteries, Cables, Pipes and all other equipments etc.

The underframe structure has been built with two depth of underframe 475mm at end and

620mm in the middle of underframe. Underframe section that serves as the main load carrying

member for locomotive. The underframe structure should meet all the design requirements of

internal design criteria.

4.4 MODEL VERIFICATION (1g Vertical)

The finite element mesh of the locomotive, shown in the Figure 5, is used in the analysis. The

underframe structure is connected to the bogies with secondary springs (spring elements). Cab

structure, E-Locker structure, and the entire hood structures are included in the analysis. The

locomotive is analyzed using gravity loading (1g Vertical) to represent the whole locomotive

weight. Radioss is considered for solving the static analysis.The finite element model is verified for

mesh connectivity and for proper component weight distribution. The weights of each individual

components and the entire locomotive are presented in the Table 3. The estimated total locomotive

weight is 134 tonnes.

Description Thickness

Bottom Plate 40 mm

Top Plate 18 mm

Centre sill 12 mm

Side sill

10 mm

Floor Plate 5 mm

Bottom Plate 6 mm Top Plate 3mm

Bottom Plate 20mm

Bottom Plate 25mm

Gusset 32mm

Bottom Plate 40mm

Side plate 30mm

Page 10: Finite Element Analysis Of Underframe For 5500 Hp WDGS

9

Table 3: Locomotive Equipment weight

Locomotive Weight Distribution

S/No Component Description Weight

(kg)

1 Draft Gear & Coupler #1 End and pilot 1130

2 Cab 2760

3 HVC Cabinet (Control Cabinet) 408

4 Bogie (#1 End) 21328

5 Dynamic Brake Hood 1336

6 Inverter Cabinet (E Locker) 3100

7 TM Blower #1 263

8 Dust Bin / E Locker Blower 312

9 Toilet APL 460

10 Alternator Blower 347

11 Battery Box 824

12 Alternator 8528

13 Air Brake Reservoir (1/2) 107

14 Fuel Tank with Fuel 7725

15 Underframe ASM, UDL and other Eq. 29568

16 Engine 23797

17 Air Brake Reservoir (2/2) 107

18 Air Start Reservoir 742

19 Equipment Rack 2114

20 Air Compressor & Shaft 805

21 Cooling Fan (1/2) 590

22 TM Blower #2 263

23 Bogie (#2 End) 21328

24 Cooling System (Radiators, Piping, Water) 4048

25 Cooling Fan (2/2) 590

26 Air Brake Controller 318

27 Draft Gear & Coupler #2 End and pilot 1130

134028

5.0 STATIC ANALYSIS – RDSO / EMD LOAD CASES

The locomotive underframe has been analyzed for both RDSO and EMD design load cases.

RDSO/EMD load cases only include yield, ultimate load cases and fatigue load cases. The locomotive

underframe has been analyzed for the following design load cases and results are presented in table-5-

Page 11: Finite Element Analysis Of Underframe For 5500 Hp WDGS

10

5.1 RDSO/EMD Yield Load Cases

5.1.1 1.0g vertical load case

5.1.2 1.0gVe+ Drag load case- Drag load 1800 kN

5.1.3 1.0g Ve + Buff loadcase- Buff load 4000 kN

5.1.4 2.0g Vertical loadcase

5.1.5 1.0g Ve + (+) 3g longitudinal loadcase

5.1.6 1.0g Ve + (-) 3g longitudinal loadcase

5.1.7 1.0g Ve + (+) 1.5g lateral loadcase

5.1.8 1.0g Ve + (-) 1.5g lateral loadcase

5.1.9 1.0g Ve + 2000KN buffload at buffer loadcase

5.1.10 1.0g Ve + 1500KN buffload at 50 mm below buffer loadcase

5.1.11 1.0g Ve + lifting at cabend jack and cabend bogie attach to underframe

other bogie on rail

5.1.12 1.0g Ve + lifting at radend jack and radend bogie attach to underframe

other bogie on rail

5.1.13 1.0g Ve + lifting at cabend and cabend bogie attach to underframe

other bogie on rail

5.1.14 1.0g Ve + lifting at radend and radend bogie attach to underframe

other bogie on rail

5.1.15 Both end lifting at jack with lifting load of 1.5x (locomotive weight).

5.1.16 1g Ve + 3 TE tractive drag loadcase

5.1.17 Pivot pin load (+) 300 kN/(-)270 kN loadcase

5.1.18 Pivot pin load 3.0g long of bogie weight

5.1.19 Anti-climber load of 45300kg verticle loadcase

5.1.20 400 kN force at diagonal buffer

5.2 RDSO/EMD Fatigue Load Cases

5.2.1 1.0g Ve + (±) 0.35 loadcase

5.2.2 1.0g Ve + (±) .25g Ve + (±) .5g Lateral

5.2.3 1.0g Ve + (±) .25g Ve + (±) .5g Longitudinal

5.3 RDSO/EMD Torque Loads

5.3.1 Underframe twist analysis for engine torque load of 33896 N-m.

6.0 MODAL ANALYSIS

6.1 Underframe Natural Frequencies

The underframe natural frequencies are extracted between 0 to 10 Hz. The four important

underframe frequencies are first bending, second bending, first twist and first lateral bending. The natural

frequencies obtained from Radioss for the underframe are presented in the Table 4.

Page 12: Finite Element Analysis Of Underframe For 5500 Hp WDGS

11

Table 4: Underframe Modal Analysis, Natural Frequencies

Natural Frequencies

(Hz)

Description

FEA

First Bending 4.7

First Twist 6.9

Second Bending 7.0

First Lateral Bending 8.54

7.0 RESULTS AND DISCUSSIONS

Table 5: Underframe Stress and Deflection

S.No

.

Load case VonMises

Stress

(MPa)

(*Local

stress near

loading or

reaction

point Which

can be

ignored)

VonMises

Average

Max.

Stress

ignoring

local

stress

(MPa)

Deflection

(mm)

(Including

Spring

Defelction)

Location of Higher

stress

1. 1.0g vertical load case 140.5 140.5 40.16 Middle of underframe

2. 1.0gVe+ Drag load case 152.1 150.1 41.23 Middle of underframe

3. 1.0g Ve + Buff loadcase 278.4 278.4 54.34 Transition of

underframe

4. 2.0g Vertical loadcase 281 281 80.32 Fuel Tank mounting

hole in underframe

5. 1.0g Ve + (+) 3g longitudinal

loadcase

456* 310 34.58 Coupler pocket side

wall

6. 1.0g Ve + (-) 3g longitudinal

loadcase

501* 310 38.9 Coupler pocket side

wall

Page 13: Finite Element Analysis Of Underframe For 5500 Hp WDGS

12

7. 1.0g Ve + (+) 1.5g lateral

loadcase

765* 310 78.46 Lateral stopper

8. 1.0g Ve + (-) 1.5g lateral

loadcase

781.5* 315 60.56 Lateral stopper

9. 1.0g Ve + 2000KN buffload at

buffer loadcase

437* 310 1.64 Buffer location

10. 1.0g Ve + 1500KN buffload at

50 mm below buffer loadcase

302 280 1.50 Buffer location

11. 1.0g Ve + lifting at cabend

jack and cabend bogie attach to

underframe other bogie on rail

557* 280 35.39 Jacking pad plate

12. 1.0g Ve + lifting at radend jack

and radend bogie attach to

underframe other bogie on rail

557* 280 35.09 Jacking pad plate

13. 1.0g Ve + lifting at cabend and

cabend bogie attach to

underframe other bogie on rail

589* 345 150.9 Middle of underframe

14. 1.0g Ve + lifting at radend and

radend bogie attach to

underframe other bogie on rail

676* 340 150 Middle of underframe

15. Both end lifting at jack with

lifting load of 1.5x (locomotive

weight).

766* 300 42.68 Jacking pad plate

16. 1g Ve + 3 TE tractive drag

loadcase

327.5 237.5 Middle of underframe

17. Pivot pin load (+) 300 kN/(-

)270 kN loadcase

158.6/145.8 158.6/145.

8

37.6/37.9 Middle of underframe

18. Pivot pin load 3.0g long of

bogie weight

128.6 128.6 37.2 Middle of underframe

19. Anti-climber load of 45300kg

verticle loadcase

427* 320 85 Anticlimber

20. 1.0g vertical load case 400 kN

at buffer diagonal

308 308 84.56 Buffer

21. 1.0g vertical load case 400 kN

at buffer diagonal

325 325 90.6 Buffer

RDSO/EMD Fatigue Load Cases

22. 1.0g Ve + (+) 0.35 loadcase 189.7 189.7 54.2 Fuel Tank mounting

hole in underframe

23. 1.0g Ve + (+) .25g Ve + (+)

.5g Lateral

261.7 261.7 62.51 Lateral stopper

24. 1.0g Ve + (+) .25g Ve + (-) .5g

Lateral

255.9 255.9 61.79 Lateral stopper and

Fuel Tank mounting

hole

25. 1.0g Ve + (-) .25g Ve + (+) .5g

Lateral

258.2 258.2 42.59 Lateral stopper

Page 14: Finite Element Analysis Of Underframe For 5500 Hp WDGS

13

26. 1.0g Ve + (-) .25g Ve + (-) .5g

Lateral

261.7 261.7 42.12 Lateral stopper

27. 1.0g Ve + (+) .25g Ve + (+)

.5g Longitudinal

190 190 45.08 Couple pocket side

wall and Fuel Tank

mounting hole

28. 1.0g Ve + (+) .25g Ve + (-) .5g

Longitudinal

194.4 194.4 46.6 Couple pocket side

wall

29. 1.0g Ve + (-) .25g Ve + (+) .5g

Longitudinal

60.69 60.69 2.5 Couple pocket side

wall

30. 1.0g Ve + (-) .25g Ve + (-) .5g

Longitudinal

143 143 28.08 Couple pocket side

wall

31. 1.0g Ve + (-) 0.35 loadcase 91.35 91.35 26.1 Fuel Tank mounting

hole

RDSO/EMD Torque Loads

32. Underframe twist analysis for

engine torque load of 33896

N-m

32.75 32.75 .48 Engine mounting

The Locomotive underframe is analyzed for both RDSO and EMD design criteria.

For all the load cases, von mises stress plot are presented for underframe structural components.

In some cases, vertical deflection of the underframe structure is presented. * These are local

VonMises stress near loading or reaction point which can be ignored.

Modal analysis

The first four natural frequencies obtained from Radioss and the results are presented in Table 4.

Figures 101 shows the mode shapes of the underframe calculated by using Finite Element Analysis

software Radioss. The four important underframe frequencies are first bending, second bending, first

twist and first lateral bending. The natural frequencies obtained from Finite Element Analysis of the

underframe are presented in the Table 4.

8.0 CONCLUSION

The underframe structure has been analyzed using Radioss .The finite element representation of

the entire locomotive with all of the equipment is included in the analysis. The underframe was

analyzed by using the design criteria provided by RDSO/EMD. The locomotive has been analyzed for

RDSO/EMD yield load cases, RDSO/EMD fatigue load cases and one load case for engine torque.

The von mises stress in the underframe structure for both RDSO/EMD yield load cases

were lower than the material yield stress. The underframe structure satisfied the design criteria

for the RDSO/EMD fatigue load cases. The natural frequencies of the underframe structure

satisfied RDSO/EMD Vehicle Technical Specification requirements. In conclusion,

the underframe structure meets all the design requirements.

Page 15: Finite Element Analysis Of Underframe For 5500 Hp WDGS

14

FIGURE

9310

354

850

1800

C/L

OF

LO

CO

AIR CONDITIONER

( AIR START)ENG. START MOTORS

TANKFRESH WATER

COMPARTMENTTOILET

EXPANSION TANK

RESERVOIR AIR START

ECC

TCC

GEN. BLOWERDUST BIN/TCC BLOWER

C/L OF CRANK SHAFT

280

9382884

237017135

8655

4559

2208 (

CA

B)

45

14610 BETWEEN PIVOT CENTRES3185

189020051534

1723 T

OP

OF

U/F

1092

Fig. 1 Locomotive Layout

Page 16: Finite Element Analysis Of Underframe For 5500 Hp WDGS

15

Fig. 2 The Underframe Structure Unigraphics 3D Image Top View

Fig. 3 The Underframe Structure U n i g r a p h i c s 3D Image Bottom View

Page 17: Finite Element Analysis Of Underframe For 5500 Hp WDGS

16

Fig. 4 Underframe Cross-Section

Page 18: Finite Element Analysis Of Underframe For 5500 Hp WDGS

17

Fig. 5 Finite Element Model of Locomotive Underframe

Fig. 6 Vertical Displacement, Draft Load

Page 19: Finite Element Analysis Of Underframe For 5500 Hp WDGS

18

Fig.7 Von Mises Stress of UF Top Plate Draft Load

Fig. 8 Von Mises Stress on Top Plate #2 End side, Draft Load

Page 20: Finite Element Analysis Of Underframe For 5500 Hp WDGS

19

Fig. 9 Von Mises Stress on Bottom Plate, Draft Load

Fig. 10 Von Mises Stress of UF Bottom Plate #2 End Side, Draft Load

Page 21: Finite Element Analysis Of Underframe For 5500 Hp WDGS

20

Fig. 11 Von Mises Stress of UF Center Sill #2 End Side, Draft Load

Fig. 12 Draft Gear Pocket, Mesh, Loading and Boundry Conditions

Page 22: Finite Element Analysis Of Underframe For 5500 Hp WDGS

21

Fig. 13 Draft Gear Pocket, von Mises Stress in the Bottom Plate

Fig. 14 Draft Gear Pocket von Mises Stress Distribution, Draft Load

Page 23: Finite Element Analysis Of Underframe For 5500 Hp WDGS

22

Fig. 15 Underframe Load Distribution Buff Load

Fig. 16 Vertical Displacement Buff load

Page 24: Finite Element Analysis Of Underframe For 5500 Hp WDGS

23

Fig.17 Von Mises Stress in the Top Plate Buff Load

Fig.18 Von Mises in the Top Plate #1 End Side Buff Load

Page 25: Finite Element Analysis Of Underframe For 5500 Hp WDGS

24

Fig.19 Von Mises Stress in the Top Plate #2 End Side Buff Load

Fig.20 Von Mises Stress in the Bottom Plate Buff Load

Page 26: Finite Element Analysis Of Underframe For 5500 Hp WDGS

25

Fig.21 Von Mises Stress in the Bottom Plate #1 End Side Buff Load

Fig.22 Von Mises Stress in the Center Sill #1 End Side Buff Load

Page 27: Finite Element Analysis Of Underframe For 5500 Hp WDGS

26

Fig.23 Von Mises Stress in the Side Sill #1 End Side Buff Load

Fig.24 Von Mises Stress in the Top Plate #2 End Side Buff Load

Page 28: Finite Element Analysis Of Underframe For 5500 Hp WDGS

27

Fig. 25 Draft Gear Pocket Von Mises Stress Bottom Plate Buff Load

Fig. 26 Draft Gear Pocket Von Mises Stress Buff Load

Page 29: Finite Element Analysis Of Underframe For 5500 Hp WDGS

28

Fig. 27 Underframe Load Distribution 5.1.4 2.0g Vertical loadcase

Fig. 28 Vertical Displacement 5.1.4 2.0g Vertical loadcase

Page 30: Finite Element Analysis Of Underframe For 5500 Hp WDGS

29

Fig. 29 Von Mises Stress in the top Plate 5.1.4 2.0g Vertical loadcase

Fig. 30 Von Mises Stress in the Top Plate #1 End Side 5.1.4, 2.0g Vertical loadcase

Page 31: Finite Element Analysis Of Underframe For 5500 Hp WDGS

30

Fig. 31 Von Mises Stress in the Top Plate #2 End Side 5.1.4, 2.0g Vertical loadcase

Fig. 32 Von Mises Stress in the Bottom Plate 5.1.4, 2.0g Vertical loadcase

Page 32: Finite Element Analysis Of Underframe For 5500 Hp WDGS

31

Fig. 33 Underframe Load Distribution 5.1.5 1.0g Ve + (+) 3g longitudinal loadcase

Fig. 34 Vertical Displacement 5.1.5 1.0g Ve + (+) 3g longitudinal loadcase

Page 33: Finite Element Analysis Of Underframe For 5500 Hp WDGS

32

Fig. 35 Von Mises Stress in the top Plate 5.1.5, 1.0g Ve + (+) 3g longitudinal

loadcase

Fig. 36 Von Mises Stress in the Top Plate #1 End Side 5.1.5, 1.0g Ve + (+) 3g

longitudinal loadcase

Page 34: Finite Element Analysis Of Underframe For 5500 Hp WDGS

33

Fig. 37 Von Mises Stress in the Top Plate #2 End Side 5.1.5, 1.0g Ve + (+) 3g

longitudinal loadcase

Fig. 38 Von Mises Stress in the Bottom Plate 5.1.5 1.0g Ve + (+) 3g longitudinal

loadcase

Page 35: Finite Element Analysis Of Underframe For 5500 Hp WDGS

34

Fig. 39 Underframe Load Distribution 5.1.5 1.0g Ve + (-) 3g longitudinal loadcase

Fig. 40 Vertical Displacement 5.1.5 1.0g Ve + (-) 3g longitudinal loadcase

Page 36: Finite Element Analysis Of Underframe For 5500 Hp WDGS

35

Fig. 41 Von Mises Stress in the top Plate 5.1.5, 1.0g Ve + (-) 3g longitudinal loadcase

Fig. 42 Von Mises Stress in the Top Plate #1 End Side 5.1.5, 1.0g Ve + (-) 3g

longitudinal loadcase

Page 37: Finite Element Analysis Of Underframe For 5500 Hp WDGS

36

Fig. 43 Von Mises Stress in the Top Plate #2 End Side 5.1.5, 1.0g Ve + (-) 3g

longitudinal loadcase

Fig. 44 Von Mises Stress in the Bottom Plate 5.1.5 1.0g Ve + (-) 3g longitudinal

loadcase

Page 38: Finite Element Analysis Of Underframe For 5500 Hp WDGS

37

Fig. 45 Underframe Load Distribution 5.1.7 1.0g Ve + (+) 1.5g lateral loadcase

Fig. 46 Vertical Displacement 5.1.7 1.0g Ve + (+) 1.5g lateral loadcase

Page 39: Finite Element Analysis Of Underframe For 5500 Hp WDGS

38

Fig. 47 Von Mises Stress in the top Plate 5.1.7, 1.0g Ve + (+) 1.5g lateral loadcase

Fig. 48 Von Mises Stress in the Top Plate #1 End Side 5.1.7, 1.0g Ve + (+) 1.5g

lateral loadcase

Page 40: Finite Element Analysis Of Underframe For 5500 Hp WDGS

39

Fig. 49 Von Mises Stress in the Top Plate #2 End Side 5.1.7, 1.0g Ve + (+) 1.5g

lateral loadcase

Fig. 50 Von Mises Stress in the Bottom Plate 5.1.7, 1.0g Ve + (+) 1.5g lateral

loadcase

Page 41: Finite Element Analysis Of Underframe For 5500 Hp WDGS

40

Fig. 51 Underframe Load Distribution 5.1.8, 1.0g Ve + (-) 1.5g lateral loadcase

Page 42: Finite Element Analysis Of Underframe For 5500 Hp WDGS

41

Fig. 52 Vertical Displacement 5.1.8, 1.0g Ve + (-) 1.5g lateral loadcase

Fig. 53 Von Mises Stress in the top Plate 5.1.8, 1.0g Ve + (-) 1.5g lateral loadcase

Page 43: Finite Element Analysis Of Underframe For 5500 Hp WDGS

42

Fig. 54 Von Mises Stress in the Top Plate #1 End Side 5.1.8, 1.0g Ve + (-) 1.5g

lateral loadcase

Fig. 55 Von Mises Stress in the Top Plate #2 End Side 5.1.8, 1.0g Ve + (-) 1.5g

lateral loadcase

Page 44: Finite Element Analysis Of Underframe For 5500 Hp WDGS

43

Fig. 56 Von Mises Stress in the Bottom Plate 5.1.8, 1.0g Ve + (-) 1.5g lateral

loadcase

Page 45: Finite Element Analysis Of Underframe For 5500 Hp WDGS

44

Fig. 57 Underframe Load Distribution 5.1.9 1.0g Ve + 2000KN buffload at buffer

loadcase

Fig. 58 Displacement 5.1.9 1.0g Ve + 2000KN buffload at buffer loadcase

Page 46: Finite Element Analysis Of Underframe For 5500 Hp WDGS

45

Fig. 59 Von Mises Stress in the top Plate 5.1.9, 1.0g Ve + 2000KN buffload at buffer

loadcase

Fig. 60 Von Mises Stress in the Bottom Plate 5.1.9, 1.0g Ve + 2000KN buffload at

buffer loadcase

Page 47: Finite Element Analysis Of Underframe For 5500 Hp WDGS

46

Fig. 61 Underframe Load Distribution 5.1.10, 1.0g Ve + 1500KN buffload at 50 mm

below buffer loadcase

Fig. 62 Displacement 5.1.10 1.0g Ve + 1500KN buffload at 50 mm below buffer

loadcase

Page 48: Finite Element Analysis Of Underframe For 5500 Hp WDGS

47

Fig. 63 Von Mises Stress in the top Plate 5.1.10, 1.0g Ve + 1500KN buffload at 50

mm below buffer loadcase

Page 49: Finite Element Analysis Of Underframe For 5500 Hp WDGS

48

Fig. 64 Von Mises Stress in the Bottom Plate 5.1.10 1.0g Ve + 1500KN buffload at

50 mm below buffer loadcase

Fig. 65 Displacement 5.1.11 1.0g Ve + lifting at cabend jack and cabend bogie

attach to underframe other bogie on rail

Page 50: Finite Element Analysis Of Underframe For 5500 Hp WDGS

49

Fig. 65 Displacement 5.1.11 1.0g Ve + lifting at cabend jack and cabend bogie

attach to underframe other bogie on rail

Page 51: Finite Element Analysis Of Underframe For 5500 Hp WDGS

50

Fig. 66 Von Mises Stress in the top Plate 5.1.11, 1.0g Ve + lifting at cabend jack and

cabend bogie attach to underframe other bogie on rail

Fig. 67 Von Mises Stress in the Bottom Plate 5.1.11, 1.0g Ve + lifting at cabend jack

and cabend bogie attach to underframe other bogie on rail

Page 52: Finite Element Analysis Of Underframe For 5500 Hp WDGS

51

Fig. 68 Displacement 5.1.12 1.0g Ve + lifting at radend jack and radend bogie attach

to underframe other bogie on rail

Fig. 69 Von Mises Stress in the top Plate 5.1.12, 1.0g Ve + lifting at radend jack and

radend bogie attach to underframe other bogie on rail

Page 53: Finite Element Analysis Of Underframe For 5500 Hp WDGS

52

Fig. 70 Von Mises Stress in the Bottom Plate 5.1.12, 1.0g Ve + lifting at radend jack

and radend bogie attach to underframe other bogie on rail

Fig. 71 Displacement 5.1.13 1.0g Ve + lifting at cabend and cabend bogie attach to

underframe other bogie on rail

Page 54: Finite Element Analysis Of Underframe For 5500 Hp WDGS

53

Fig. 72 Von Mises Stress in the top Plate 5.1.13, 1.0g Ve + lifting at cabend and

cabend bogie attach to underframe other bogie on rail

Fig. 73 Von Mises Stress in the Bottom Plate 5.1.13 1.0g Ve + lifting at cabend and

cabend bogie attach to underframe other bogie on rail

Page 55: Finite Element Analysis Of Underframe For 5500 Hp WDGS

54

Fig. 74 Displacement 5.1.14, 1.0g Ve + lifting at radend and radend bogie attach to

underframe other bogie on rail

Fig. 75 Von Mises Stress in the top Plate 5.1.14, 1.0g Ve + lifting at radend and

radend bogie attach to underframe other bogie on rail

Page 56: Finite Element Analysis Of Underframe For 5500 Hp WDGS

55

Fig. 76 Von Mises Stress in the Bottom Plate 5.1.14, 1.0g Ve + lifting at radend and

radend bogie attach to underframe other bogie on rail

Fig. 77 Displacement 5.1.15 Both end lifting at jack with lifting load of 1.5x

(locomotive weight).

Page 57: Finite Element Analysis Of Underframe For 5500 Hp WDGS

56

Fig. 78 Von Mises Stress in the top Plate 5.1.15, Both end lifting at jack with lifting

load of 1.5x (locomotive weight).

Fig. 79 Von Mises Stress in the Bottom Plate 5.1.15, Both end lifting at jack with

lifting load of 1.5x (locomotive weight).

Page 58: Finite Element Analysis Of Underframe For 5500 Hp WDGS

57

Fig. 80 Displacement 5.1.16 1g Ve + 3 TE tractive drag loadcase

Fig. 81 Von Mises Stress in the top Plate 5.1.16, 1g Ve + 3 TE tractive drag loadcase

Page 59: Finite Element Analysis Of Underframe For 5500 Hp WDGS

58

Fig. 82 Von Mises Stress in the Bottom Plate 5.1.16, 1g Ve + 3 TE tractive drag

loadcase

Page 60: Finite Element Analysis Of Underframe For 5500 Hp WDGS

59

Fig. 83 Displacement 5.1.17 Pivot pin load (+) 300 kN/(-)270 kN loadcase

Page 61: Finite Element Analysis Of Underframe For 5500 Hp WDGS

60

Fig. 84 Von Mises Stress in the top Plate 5.1.17, Pivot pin load (+) 300 kN/(-)270 kN

loadcase

Page 62: Finite Element Analysis Of Underframe For 5500 Hp WDGS

61

Fig. 85Von Mises Stress in the Bottom Plate 5.1.17 , Pivot pin load (+) 300 kN/

(-)270 kN loadcase

Page 63: Finite Element Analysis Of Underframe For 5500 Hp WDGS

62

Fig. 86 Displacement 5.1.18, Pivot pin load 3.0g long of bogie weight

Fig. 87 Von Mises Stress in the top Plate 5.1.18, Pivot pin load 3.0g long of bogie

weight

Page 64: Finite Element Analysis Of Underframe For 5500 Hp WDGS

63

Fig. 88Von Mises Stress in the Bottom Plate 5.1.18, Pivot pin load 3.0g long of bogie

weight

Page 65: Finite Element Analysis Of Underframe For 5500 Hp WDGS

64

Fig. 89 Displacement 5.1.19, Anti-climber load of 45300kg verticle loadcase

Fig. 90 Von Mises Stress in the top Plate 5.1.19, Anti-climber load of 45300kg

verticle loadcase

Page 66: Finite Element Analysis Of Underframe For 5500 Hp WDGS

65

Fig. 91Von Mises Stress in the Bottom Plate 5.1.19, Anti-climber load of 45300kg

verticle loadcase

Page 67: Finite Element Analysis Of Underframe For 5500 Hp WDGS

66

Fig. 92 Displacement 5.2.1, 1.0g Ve + (±) 0.35 loadcase

Page 68: Finite Element Analysis Of Underframe For 5500 Hp WDGS

67

Fig. 93 Von Mises Stress in the top Plate 5.2.1, 1.0g Ve + (±) 0.35 loadcase

Page 69: Finite Element Analysis Of Underframe For 5500 Hp WDGS

68

Fig. 94Von Mises Stress in the Bottom Plate 5.2.1, 1.0g Ve + (±) 0.35 loadcase

Page 70: Finite Element Analysis Of Underframe For 5500 Hp WDGS

69

Fig. 95 Displacement 5.2.2, 1.0g Ve + (±) .25g Ve + (±) .5g Lateral

Page 71: Finite Element Analysis Of Underframe For 5500 Hp WDGS

70

Fig. 96 Von Mises Stress in the top Plate 5.2.2, 1.0g Ve + (±) .25g Ve + (±) .5g

Lateral

Page 72: Finite Element Analysis Of Underframe For 5500 Hp WDGS

71

Fig. 97Von Mises Stress in the Bottom Plate 5.2.2, 1.0g Ve + (±) .25g Ve + (±) .5g

Lateral

Page 73: Finite Element Analysis Of Underframe For 5500 Hp WDGS

72

Fig. 98 Displacement 5.2.3, 1.0g Ve + (±) .25g Ve + (±) .5g Longitudinal

Page 74: Finite Element Analysis Of Underframe For 5500 Hp WDGS

73

Fig. 99 Von Mises Stress in the top Plate 5.2.3, 1.0g Ve + (±) .25g Ve + (±) .5g

Longitudinal

Page 75: Finite Element Analysis Of Underframe For 5500 Hp WDGS

74

Fig. 100Von Mises Stress in the Bottom Plate 5.2.3, 1.0g Ve + (±) .25g Ve + (±) .5g

Longitudinal

Page 76: Finite Element Analysis Of Underframe For 5500 Hp WDGS

75

Fig. 101 Displacement 5.3.1, Underframe twist analysis for engine torque load of

33896 N-m.

Page 77: Finite Element Analysis Of Underframe For 5500 Hp WDGS

76

Fig. 102 Von Mises Stress in the top Plate 5.3.1, Underframe twist analysis for engine

torque load of 33896 N-m.

Page 78: Finite Element Analysis Of Underframe For 5500 Hp WDGS

77

Fig. 103 Von Mises Stress in the Bottom Plate 5.3.1 Underframe twist analysis for

engine torque load of 33896 N-m.

Fig. 104 Vertical Displacement 5.1.20 1.0g Ve + 400 kN force on diagonal buffer

loadcase

Page 79: Finite Element Analysis Of Underframe For 5500 Hp WDGS

78

Fig. 105 Vertical stress 5.1.20 1.0g Ve + 400 kN 400 kN force on diagonal buffer

loadcase

Fig. 106 Vertical Displacement 5.1.20 1.0g Ve + 400 kN force on alternate diagonal

buffer loadcase

Page 80: Finite Element Analysis Of Underframe For 5500 Hp WDGS

79

Fig. 107 Vertical stress 5.1.20 1.0g Ve + 400 kN force on alternate diagonal buffer

loadcase

Fig. 108 Underframe Natural Frequency

Page 81: Finite Element Analysis Of Underframe For 5500 Hp WDGS

80


Recommended