Transcript
Page 1: F. Mila- Introduction to magnetism in condensed matter physics

Introduction to Introduction to magnetismmagnetism in in condensedcondensed

mattermatter physicsphysics

F. MilaF. MilaInstitute of Institute of TheoreticalTheoretical PhysicsPhysics

Ecole Polytechnique FEcole Polytechnique Fééddééralerale de de LausanneLausanneSwitzerlandSwitzerland

Page 2: F. Mila- Introduction to magnetism in condensed matter physics

First part: atoms and metalsFirst part: atoms and metals

‘‘AtomicAtomic’’ magnetism in condensed mattermagnetism in condensed matterOrbital moment, spin, crystal field, spinOrbital moment, spin, crystal field, spin--orbit orbit

coupling coupling Magnetism of itinerant electronsMagnetism of itinerant electrons

Orbital effects: De HaasOrbital effects: De Haas--Van Alphen Van Alphen oscillations, Quantum Hall effectsoscillations, Quantum Hall effects

Spin effects: Pauli susceptibility, Stoner Spin effects: Pauli susceptibility, Stoner ferromagnetism, spinferromagnetism, spin--density wavesdensity waves

Page 3: F. Mila- Introduction to magnetism in condensed matter physics

Second part: localized momentsSecond part: localized moments

Localized moments in metals: Kondo, RKKY,Localized moments in metals: Kondo, RKKY,……Mott insulatorsMott insulatorsMagnetic interactions: Heisenberg, dipolar,Magnetic interactions: Heisenberg, dipolar,……Low temperature phases of Heisenberg modelLow temperature phases of Heisenberg model

LongLong--range orderrange orderAlgebraic order (1D)Algebraic order (1D)Spin liquidsSpin liquids

Page 4: F. Mila- Introduction to magnetism in condensed matter physics

Electron in a Electron in a magneticmagnetic fieldfield

‘‘Orbital Orbital effectseffects’’Electron=Electron=chargedcharged particleparticle

Zeeman Zeeman couplingcouplingElectron=spinElectron=spin--1/2 1/2 particleparticle

RelativisticRelativisticspinspin--orbitorbit couplingcoupling

ElectrostaticElectrostatic potentialpotentialVectorVector potentialpotentialH=H=rr ££ AA

Page 5: F. Mila- Introduction to magnetism in condensed matter physics

‘‘AtomicAtomic’’ magnetismmagnetism in a in a crystalcrystalUniform Uniform magneticmagnetic fieldfield: A=: A=½½ (r (r ££ H)H)

Larmor Larmor diamagnetismdiamagnetism

SphericalSpherical potentialpotential of ionof ion+ + distortiondistortion by by surroundingsurrounding ionsions

‘‘crystalcrystal fieldfield’’

Total Total magneticmagnetic momentmomentcoupledcoupled to the to the fieldfield

Page 6: F. Mila- Introduction to magnetism in condensed matter physics

Transition Transition metalsmetals: Cu, Ni, V,: Cu, Ni, V,……

AnisotropiesAnisotropies(single ion, g(single ion, g--tensortensor,..),..)

Crystal Crystal fieldfield ÀÀ spinspin--orbitorbit

Effective spinEffective spin+ + sometimessometimes

orbital orbital degeneracydegeneracy

Page 7: F. Mila- Introduction to magnetism in condensed matter physics

Crystal Crystal fieldfield effectseffects of of dd--electronselectrons

Page 8: F. Mila- Introduction to magnetism in condensed matter physics

Ex: CoEx: Co4+4+ 3d3d55 withwith crystalcrystal fieldfield ÀÀ HundHund’’s s rulerule

S=5/2S=5/2

S=1/2S=1/2+ orbital + orbital degeneracydegeneracy

S=1/2S=1/2No orbital No orbital degeneracydegeneracy

LowLow--spin statesspin states

Page 9: F. Mila- Introduction to magnetism in condensed matter physics

Rare Rare earthsearths: Ce, Pr, Gd,: Ce, Pr, Gd,……

Crystal Crystal fieldfield ¿¿ spinspin--orbitorbit

Lifts the Lifts the degeneracydegeneracyeffective multipleteffective multiplet

Effective momentEffective moment+ Lande + Lande ggLL factorfactor

Page 10: F. Mila- Introduction to magnetism in condensed matter physics

Orbital Orbital effectseffects in in metalsmetals and and semiconductorssemiconductors: Landau : Landau levelslevels

Free Free electronelectron in a in a uniformuniform magneticmagnetic fieldfield

Landau Landau levelslevels

Page 11: F. Mila- Introduction to magnetism in condensed matter physics

ConsequencesConsequences

3D 3D metalsmetals: : De Haas De Haas –– Van Van AlphenAlphenoscillations of m as a oscillations of m as a functionfunction of 1/Hof 1/H

extremalextremal sections of Fermi surface sections of Fermi surface ?? HH

2D 2D electronelectron gasgas: Quantum Hall : Quantum Hall effecteffectplateaux of Hall conductanceplateaux of Hall conductance((seesee lecture by J. Smet)lecture by J. Smet)

Page 12: F. Mila- Introduction to magnetism in condensed matter physics

Spin Spin effectseffects in in metalmetal

Pauli Pauli susceptibilitysusceptibility

Zeeman Zeeman termtermshift of shift of up and down Fermi up and down Fermi seasseas

m m // HH

Page 13: F. Mila- Introduction to magnetism in condensed matter physics

MagneticMagnetic instabilitiesinstabilities

Hubbard modelHubbard model

ElectronElectron--electronelectroninteractionsinteractions

KineticKinetic energyenergy

instabilityinstability

q=0: q=0: ferromagnetismferromagnetism ((StonerStoner))qq≠≠0: spin0: spin--densitydensity wavewave

Page 14: F. Mila- Introduction to magnetism in condensed matter physics

LocalizedLocalized moments in moments in metalsmetals

Kondo Kondo effecteffect: screening of : screening of impuritiesimpurities by by electronelectron gasgas resistivityresistivity minimumminimumRKKY interactions: effective interaction RKKY interactions: effective interaction betweenbetween moments moments mediatedmediated by by electronelectrongasgas J J // cos(2kcos(2kFFr)/rr)/r33

HeavyHeavy fermions: fermions: periodicperiodic arrangement of arrangement of localizedlocalized moments moments flat bandflat band atat Fermi Fermi levellevel due to due to hybridizationhybridization to to electronelectron gasgas

Page 15: F. Mila- Introduction to magnetism in condensed matter physics

Mott insulatorsMott insulatorsBand theoryBand theory Odd number of eOdd number of e--/unit cell/unit cell MetalMetal

Strong onStrong on--site repulsion Usite repulsion UInsulatorInsulator

E =UE =U--W>0W>0

Small bandwidth WSmall bandwidth W

Spin fluctuationsSpin fluctuationsJ=4tJ=4t22/U/U

W=4tW=4t

Heisenberg modelHeisenberg model

Page 16: F. Mila- Introduction to magnetism in condensed matter physics

Exchange Exchange mechanismsmechanisms

KineticKinetic exchange: exchange: virtualvirtual hopshops fromfrom one one WannierWannierfunctionfunction to to neighborsneighbors

J = 4 tJ = 4 t22/U > 0 /U > 0 antiferromagneticantiferromagneticSuperexchangeSuperexchange: : kinetickinetic exchange exchange throughthroughligands ligands antiferromagneticantiferromagneticHundHund’’s s rulerule betweenbetween orthogonal ligand orthogonal ligand orbitalsorbitals

ferromagneticferromagnetic

AndersonAnderson--GoodenoughGoodenough--KanamoriKanamori rulesrules

Page 17: F. Mila- Introduction to magnetism in condensed matter physics

High High temperaturetemperature susceptibilitysusceptibility

antiferromagnetantiferromagnet

paramagnetparamagnet (Curie)(Curie)

ferromagnetferromagnet

1/1/χχ

TT

χχ // 1/(T+1/(T+θθ))

θθ // ∑∑jj JJijij

θθ:: CurieCurie--Weiss constantWeiss constant

θθ>>0: AF 0: AF θθ<0: Ferro<0: Ferro

θθ θθ

Page 18: F. Mila- Introduction to magnetism in condensed matter physics

OtherOther interactionsinteractions

DipolarDipolar interactionsinteractions

MagneticMagnetic domainsdomains, , hysteresishysteresis in in ferromagnetsferromagnetsDzyaloshinskiiDzyaloshinskii--MoriyaMoriya interactionsinteractions

CantingCanting, torque, ESR , torque, ESR linewidthlinewidth,,……FourFour--spin interactions (spin interactions (higherhigher orderorder in t/U)in t/U)

nematicnematic orderorder, spin , spin liquidsliquids……

Page 19: F. Mila- Introduction to magnetism in condensed matter physics

Heisenberg modelHeisenberg model

Page 20: F. Mila- Introduction to magnetism in condensed matter physics

Important parametersImportant parameters

Sign of exchange integrals Sign of exchange integrals

Dimensionality of spaceDimensionality of space

FerromagneticFerromagnetic

AntiferromagneticAntiferromagnetic

1D ≠ 2D ≠ 3D !

Page 21: F. Mila- Introduction to magnetism in condensed matter physics

Magnitude of spinsMagnitude of spins

Topology of exchange integralsTopology of exchange integrals

Simple topology:Simple topology:NearestNearest--neigbourneigbour on bipartite latticeon bipartite lattice

≠≠Complex topologies:Complex topologies:

-- NextNext--nearest couplings,nearest couplings,……-- NonNon--bipartite lattices: triangular, bipartite lattices: triangular, kagomekagome,,……

S=1/2 S=1/2 ≠≠ S=1 S=1 ≠≠ S=3/2 S=3/2 ……

Page 22: F. Mila- Introduction to magnetism in condensed matter physics

Classical spins on bipartite latticeClassical spins on bipartite lattice

GroundGround--state: state: NNééelel orderorder

((AntiferromagnetismAntiferromagnetism))

Finite temperature: Finite temperature: molecularmolecular--field theoryfield theory

Ordering at TOrdering at TN N // J, flat susceptibility below TJ, flat susceptibility below TNN

J>0J>0

Page 23: F. Mila- Introduction to magnetism in condensed matter physics

Quantum spinsQuantum spinsUsual situationUsual situation

Some kind of helical longSome kind of helical long--range orderrange order

up to Tup to TNN>0 in 3D, at T=0 in 2D>0 in 3D, at T=0 in 2D

Page 24: F. Mila- Introduction to magnetism in condensed matter physics

Quantum fluctuations: Large SQuantum fluctuations: Large S

Fluctuations around classical GS = bosonsFluctuations around classical GS = bosons

HolsteinHolstein--PrimakoffPrimakoff

Page 25: F. Mila- Introduction to magnetism in condensed matter physics

Linear spinLinear spin--wave theory I wave theory I 1) Only keep terms of order S1) Only keep terms of order S22 and Sand S

Opposite quantization axisOpposite quantization axison on sublatticessublattices A and BA and B

3) 3) BogolioubovBogolioubov transformationtransformation

2) Fourier transformation2) Fourier transformation

Page 26: F. Mila- Introduction to magnetism in condensed matter physics

Linear spinLinear spin--wave theory II wave theory II

BosonsBosons

Anderson, Anderson, ‘‘52 52 Kubo, Kubo, ‘‘5252

Quantum FluctuationsQuantum Fluctuations

Page 27: F. Mila- Introduction to magnetism in condensed matter physics

Physical consequencesPhysical consequences

LaLa22CuOCuO44

Inelastic Neutron Scattering SpinSpin--wavewave dispersion

((ColdeaColdea et al,et al,PRL 2001)PRL 2001)

Specific heat:Specific heat: CCvv // T T DD

((seesee lecture by H. lecture by H. RonnowRonnow))

Page 28: F. Mila- Introduction to magnetism in condensed matter physics

Domain of validityDomain of validityFluctuations aroundFluctuations around

Thermal Fluctuations (T>0)Thermal Fluctuations (T>0)

diverges in 1D and 2Ddiverges in 1D and 2D

No LRO at T>0 in 1D and 2DNo LRO at T>0 in 1D and 2D ((MerminMermin--Wagner theorem)Wagner theorem)

Page 29: F. Mila- Introduction to magnetism in condensed matter physics

Quantum Fluctuations (T=0)Quantum Fluctuations (T=0)

diverges in 1Ddiverges in 1D

No magnetic longNo magnetic long--range orderrange orderin 1D in 1D antiferromagnetsantiferromagnets

GroundGround--state and excitations in 1D?state and excitations in 1D?

Page 30: F. Mila- Introduction to magnetism in condensed matter physics

Spin gapSpin gapIfIf excitations are excitations are spin wavesspin waves,,

there there mustmust be a be a spin gapspin gap to produce to produce an infrared cutan infrared cut--off in the integraloff in the integral

First example:First example: spin 1 chain (Haldane, 1981)spin 1 chain (Haldane, 1981)

Recent example:Recent example: spin 1/2 laddersspin 1/2 ladders

Page 31: F. Mila- Introduction to magnetism in condensed matter physics

Spin laddersSpin ladders

SrCuSrCu22OO33

(Azuma, PRL (Azuma, PRL ’’94)94)

ΔΔ:: spin gapspin gap

Page 32: F. Mila- Introduction to magnetism in condensed matter physics

Magnetization of spin laddersMagnetization of spin ladders

CuHpCl Chaboussant et al, EPJB ‘98

Recent developments: TlCuCl3 (Rüegg et al, 2002-2006)

Page 33: F. Mila- Introduction to magnetism in condensed matter physics

OriginOrigin of spin gap in of spin gap in laddersladders

StrongStrong couplingcoupling

J’J

JJ’’««J J weakly coupled chainsweakly coupled chains

Review: Review: DagottoDagotto and Rice , Science and Rice , Science ‘‘9696

J=0 J=0 ΔΔ=J=J’’

WeakWeak couplingcoupling

JJ««JJ’’ ΔΔ=J=J’’+O(J)+O(J)

Page 34: F. Mila- Introduction to magnetism in condensed matter physics

Algebraic order Algebraic order

IfIf the spectrum is the spectrum is gaplessgapless, , lowlow--lying excitations lying excitations cannotcannot be spinbe spin--waveswaves

Can the spectrum be gapless in 1D?Can the spectrum be gapless in 1D? YES!YES!

Example: S=1/2 chain (Bethe, 1931)Example: S=1/2 chain (Bethe, 1931)

Correlation function: decays algebraicallyCorrelation function: decays algebraically

Page 35: F. Mila- Introduction to magnetism in condensed matter physics

Nature of excitations? Nature of excitations? SpinonsSpinons!!

S=1S=1

SpinonsSpinons

Page 36: F. Mila- Introduction to magnetism in condensed matter physics

Excitation spectrumExcitation spectrum

Stone et al, PRL Stone et al, PRL ‘‘0303

Early theoryEarly theoryDes Des CloiseauxCloiseaux –– PearsonPearson

PRB PRB ‘‘6262

A spin 1 excitationA spin 1 excitation= 2 = 2 spinonsspinons

continuumcontinuum

Page 37: F. Mila- Introduction to magnetism in condensed matter physics

Unified frameworkUnified framework

Haldane, 1981Haldane, 1981

When to expect When to expect spinspin--waveswaves, , and when to expect and when to expect spinonsspinons??

Integer spins: gapped spinInteger spins: gapped spin--waveswaves

HalfHalf--integer spins: integer spins: spinonsspinons

Page 38: F. Mila- Introduction to magnetism in condensed matter physics

Field theory approachField theory approach

Solid angle of path (mod 4Solid angle of path (mod 4ππ))

Berry phaseBerry phaseEvolution operatorSpin coherent stateSpin coherent state

Haldane, PRL Haldane, PRL ‘‘8888

Path integral formulationPath integral formulation

Page 39: F. Mila- Introduction to magnetism in condensed matter physics

Field theory approachField theory approach

PontryaginPontryagin index (integer)index (integer)

1 (S integer)1 (S integer)

±± 11(S (S ½½--integer)integer)

In 1D In 1D antiferromagnetsantiferromagnets

Destructive interferences for Destructive interferences for ½½--integer spinsinteger spins

Page 40: F. Mila- Introduction to magnetism in condensed matter physics

Spin liquidsSpin liquidsShastryShastry--Sutherland, 1981Sutherland, 1981

even at T=0 !

No magnetic long-range order

ExampleExample: spin: spin--1/2 1/2 laddersladders

Page 41: F. Mila- Introduction to magnetism in condensed matter physics

Spin liquids in 2D?Spin liquids in 2D?Basic ideaBasic idea

diverges in 2D as soon asdiverges in 2D as soon as

oror

sincesince

Page 42: F. Mila- Introduction to magnetism in condensed matter physics

Competing interactionsCompeting interactions

Classical GS: helix with pitch vector QClassical GS: helix with pitch vector Q

DispersionDispersion

Page 43: F. Mila- Introduction to magnetism in condensed matter physics

Frustrated magnetsFrustrated magnetsFrustration = infinite degeneracy of classical ground stateFrustration = infinite degeneracy of classical ground state

J1-J2 model (J2>J1/2)

Exotic ground states?Exotic ground states?

Kagome latticeKagome lattice

J1

J2

Page 44: F. Mila- Introduction to magnetism in condensed matter physics

SymmetriesSymmetries

SU(2)SU(2)

U(1)U(1) spin rotation around z

++ spatial spatial symmetriessymmetries(translations and point group)

Page 45: F. Mila- Introduction to magnetism in condensed matter physics

Standard casesStandard cases

MagneticMagnetic longlong--range range orderorder: : brokenbroken SU(2)SU(2)SpontaneousSpontaneous dimerizationdimerization: : brokenbrokentranslationtranslationIntegerInteger spin/unit spin/unit cellcell: no : no brokenbroken symmetrysymmetry(e.g. spin 1 (e.g. spin 1 chainchain, spin, spin--1/2 1/2 laddersladders))

Alternatives?Alternatives?

Page 46: F. Mila- Introduction to magnetism in condensed matter physics

More More ‘‘exoticexotic’’ alternativesalternatives

BrokenBroken SU(2) SU(2) symmetrysymmetry withoutwithout magneticmagneticLRO: LRO: quadrupolarquadrupolar orderorderRVB spin RVB spin liquidsliquids withwith halfhalf--integerinteger spin per spin per unit unit cellcell: : topologicaltopological orderorder

Page 47: F. Mila- Introduction to magnetism in condensed matter physics

More More ‘‘exoticexotic’’ alternativesalternatives

BrokenBroken SU(2) SU(2) symmetrysymmetry withoutwithoutmagneticmagnetic LRO: LRO: quadrupolarquadrupolar orderorderRVB spin RVB spin liquidsliquids withwith halfhalf--integerinteger spin per unit spin per unit cellcell: : topologicaltopological orderorder

Page 48: F. Mila- Introduction to magnetism in condensed matter physics

BrokenBroken SU(2) =>SU(2) => magneticmagnetic LRO?LRO?

AnyAny linearlinear combinationcombination of l of l ½½ > and l > and l -- ½½ > > cancan bebe obtainedobtained by a certain rotation of l by a certain rotation of l ½½ > >

aroundaround somesome axis axis

<Sα>=1/2 for a certain direction α

Any local state is magnetic

S=1/2: YES S=1/2: YES (if (if purelypurely local local orderorder parameterparameter))

Page 49: F. Mila- Introduction to magnetism in condensed matter physics

Spin 1: NO!Spin 1: NO!

Consider

True for any α

Not magnetic

Broken SU(2) symmetry

Page 50: F. Mila- Introduction to magnetism in condensed matter physics

QuadrupoleQuadrupole states and states and directorsdirectors

«« directordirector »»

Rotation of l Sz=0>

Page 51: F. Mila- Introduction to magnetism in condensed matter physics

S=1 S=1 withwith biquadraticbiquadratic interactioninteraction

Page 52: F. Mila- Introduction to magnetism in condensed matter physics

QuadrupolarQuadrupolar HamiltonianHamiltonian

Pure quadrupolar Hamiltonian for J1=J2/2

Quadrupolarorder

Order parameter: rank 2 tensor

Page 53: F. Mila- Introduction to magnetism in condensed matter physics

S=1 on S=1 on triangulartriangular latticelattice

Antiferroquadrupolar

Directors mutuallyperpendicular on 3

sublattices(see also Tsunetsugu-Arikawa, ’06)

Ferroquadrupolar

Parallel directorsA. Läuchli, FM, K. Penc, PRL (2006)

Page 54: F. Mila- Introduction to magnetism in condensed matter physics

NiGaNiGa22SS44

S. Nakatsuji et al, Science 2005

Cv/ T2

No Bragg peaks

Quadrupolarorder?

Page 55: F. Mila- Introduction to magnetism in condensed matter physics

More More ‘‘exoticexotic’’ alternativesalternatives

BrokenBroken SU(2) SU(2) symmetrysymmetry withoutwithout magneticmagnetic LRO: LRO: quadrupolarquadrupolar orderorder

RVB spin RVB spin liquidsliquids withwith halfhalf--integerinteger spin spin per unit per unit cellcell: : topologicaltopological orderorder

Page 56: F. Mila- Introduction to magnetism in condensed matter physics

RVB spin RVB spin liquidsliquids

Anderson, 1973

GS = + + …

Restore translationaltranslational invarianceinvariance with resonancesresonancesbetween valencevalence--bondbond configurations

Question:Question: with one spin ½ per unit cell, canwe preserve SU(2) without breaking translation?

Page 57: F. Mila- Introduction to magnetism in condensed matter physics

Quantum Quantum DimerDimer ModelsModelsRokhsar-Kivelson, 1988

Assume dimer configurations are orthogonal

Rokhsar-Kivelson 1988; Leung et al, 1996

Broken translation

DegenerateDegenerate GSGS

Page 58: F. Mila- Introduction to magnetism in condensed matter physics

QDM on triangular latticeQDM on triangular latticeMoessner and Sondhi, ‘01

RVB spin liquidNo broken translational symmetry

LowLow--lyinglying excitation on a excitation on a cylindercylinder??

Page 59: F. Mila- Introduction to magnetism in condensed matter physics

Topological sectorsTopological sectorsNumber of Number of dimersdimers cutting a given linecutting a given line

Parity conserved 2 topological sectors (N even or N odd)Cylinder: two topological sectors

Torus: four topological sectors (two cuts)

N=1 N=3

Page 60: F. Mila- Introduction to magnetism in condensed matter physics

Topological degeneracyTopological degeneracyTopological sectors Topological sectors

Portions of Hilbert space not connected by local operators like the Hamiltonian

Topological degeneracy (Topological degeneracy (WenWen, 1988, 1988--90) 90) GS of ≠ topological sectors degenerate

Numerical proof in RVB phase of QDMNumerical proof in RVB phase of QDM

A. Ralko, M. Ferrero, F. Becca, D. Ivanov, FM, PRB 2005

Green’s function Quantum Monte Carlo

Page 61: F. Mila- Introduction to magnetism in condensed matter physics

Topological degeneracy Topological degeneracy ≠≠ broken symmetrybroken symmetry

Strongbond

Example: spin-Peierls 4 ground states

Non-degenerateground state

Page 62: F. Mila- Introduction to magnetism in condensed matter physics

TopologicalTopological orderorderNo local No local orderorder parameterparameter: no local : no local operatoroperator cancan have have differentdifferent expectation expectation values in the values in the twotwo GSGSNonNon--local string local string orderorder parameterparameter: :

nnll =1 if bond =1 if bond occupiedoccupied, 0 if bond , 0 if bond emptyempty

Page 63: F. Mila- Introduction to magnetism in condensed matter physics

ElementaryElementary excitations = `visonsexcitations = `visons´́

l l ii >> == ++ + + ……

((--1)1)# # dimersdimers = = --11 ((--1)1)# # dimersdimers = 1= 1Dual Dual latticelattice

PeriodicPeriodic boundaryboundary conditions: pairs of visonsconditions: pairs of visons

fractionalfractional excitationsexcitations

Read-Chakraborty ’89, Senthil-Fisher ’00,’01

Page 64: F. Mila- Introduction to magnetism in condensed matter physics

Applications of topological degeneracy?Applications of topological degeneracy?

h ψeven j Ô j ψodd i =0 for any local operator Ô

EGS(even) = EGS(odd)

Well protected qubits

Kitaev, ’97; Ioffe et al, ‘01

Topological degeneracy

Page 65: F. Mila- Introduction to magnetism in condensed matter physics

FurtherFurther topicaltopical problemsproblems

DopedDoped MottMott insulatorinsulatorInterplayInterplay of of magnetismmagnetism and and superconductivitysuperconductivity((seesee lectures by Keimer and lectures by Keimer and HinkovHinkov))

Spin Hall Spin Hall effecteffectMagnetizationMagnetization plateaux plateaux Orbital Orbital degeneracydegeneracyMultiferroicsMultiferroics……

Page 66: F. Mila- Introduction to magnetism in condensed matter physics

Conclusions/PerspectivesConclusions/Perspectives

SolidSolid state state magnetismmagnetism: : amazinglyamazingly richrich fieldfield!!FundamentalFundamental aspects:aspects:

FantasticFantastic playgroundplayground for for theoreticaltheoreticalphysicistsphysicists

New New systemssystems and and propertiesproperties regularlyregularlydiscovereddiscoveredApplications: lots of Applications: lots of ideasideas to to bebe furtherfurtherinvestigatedinvestigated and and developeddeveloped


Recommended