Transcript
Page 1: Biotechnology Research at FRIM

A Quarterly of the Forest research InstItute MalaysIaMS ISO 9001:2008DECEMBER 2011Issn 1394-5467

1. UP-SCALING THE TONGKAT ALI HAIRY ROOT CULTURE2. TONGKAT ALI HAIRY ROOT GENE DISCOVERY3. SYNTHETIC SEEDS: A NEW FORM OF PLANTING MATERIAL4. IDENTIFICATION OF MALAYSIAN TIMBER USING DNA BARCODES

HIGHLIGHTS OF THE ISSUE

FRIM in Focus

Biotechnology Research at FRIM

Page 2: Biotechnology Research at FRIM

December 2011

FRIM in FOCUS2

A Q

uart

erly

of t

he F

ores

t Res

earc

h In

stitu

te M

alay

sia

Focus article

AdvisorsDato’ Dr Abdul Latif MohmodDr Mohamed Nor Mohd Yusoff

FRIM in Focus (FIF) is distributed free of charge upon request. We welcome feedback on any of the FIF articles. Address comments and enquiries to:

Synthetic seeds (background), steps involved in preparation of synthetic seeds (inset)

The Editor & Writer of FRIM In FocusForest Research Institute Malaysia (FRIM)52109 Kepong, Selangor DE, Malaysia

EditorialBoard Telephone : 603-6279 7501 | Facsimile : 603-6273 1076

E-mail : [email protected] | Website : www.frim.gov.myDesign & Printing : DeezStudio

Technical EditorNorhara Hussein

Editor & WriterIda Suraini Abd Shukor

UP-SCALING THE TONGKAT ALI HAIRY ROOT CULTUREDr Nor Hasnida [email protected]

1

2

Eurycoma longifolia or locally known as tongkat ali is probably the most popular medicinal plant in Malaysia. Its roots are widely used in the manufacturing of herbal and food products. Most of the plant roots required for making health food products are collected from the forest. As such, uncontrolled harvesting of tongkat ali from the forest may decrease the tree population leading to depletion of the species. Thus, there is a need to ensure sufficient

supply of tongkat ali to sustain the herbal industries as well as to conserve the species.

The over-dependance of tongkat ali roots from the forest can be addressed indirectly by using biotechnology tools. In this case, plant cell and organ cultures can also be sources of valuable secondary metabolites.

Cell and organ cultures have a higher rate of metabolism compared to field grown plants because the initiation of cell and organ growth invariably leads to their fast proliferation. In addition, the growth of plant cells or organ cultures is not limited by external factors such as environmental, ecological and climatic conditions.

For tongkat ali, hairy roots were found to be an attractive source of secondary metabolites. These roots were the results of a genetic transformation using the bacteria Agrobacterium rhizogenes. Hairy roots are advantageous because they can grow faster than plant cell cultures. They are also plagiotropic, or having the tendency to grow horizontally and do not require the external supply of growth hormones as in other types of cell cultures. In

addition, plagiotropic also increases the aeration in liquid medium and boosts the accumulation of roots biomass.

Hairy root culture of tongkat ali is presently the best alternative to ensure a sustainable supply of the plant’s active secondary metabolites. This in turn will sustain the herbal industry as well as safeguard the plant population.

At Forest Research Institute Malaysia (FRIM), the up-scaling of tongkat ali hairy root culture is being carried out using the bioreactor technology whereby two types of bioreactors; the air lift and the modified stirred tank are used. Using these systems it is now possible to achieve a large scale production of hairy root culture and the bioactive compounds.

ABOUT THE AUTHORDr Nor Hasnida Hassan is the Head of Tissue Culture Laboratory, Forest Biotechnology Division, Forest Research Institute Malaysia (FRIM). She joined FRIM in August 1996. Her research interest is on plant biotechnology, particularly in tissue culture and plant genetic transformation. Currently, her research focuses on the up-scaling of tongkat ali and kacip fatimah root cultures using the bioreactor technology, in addition to their respective production of bioactive compunds.

1. Air lift: bubble column bioreactor (5 liter)2. Modified stirred tank bioreactor (7.5 liter)

Page 3: Biotechnology Research at FRIM

December 2011

FRIM in FOCUS 3

A Q

uart

erly

of t

he F

ores

t Res

earc

h In

stitu

te M

alay

sia

Focus article

compounds in addition to current studies which are investigating the similarities of bioactive compounds in both types of roots. In both cases, transcriptome sequence data serves to further support the assumption.

Molecular and genomic study is also required to support the research on the isolated transcripts from the cultured hairy roots of tongkat ali in the bioreactor. In future, information produced from the study will be used to investigate genes involved in the production of bioactive compound in tongkat ali roots.

Preliminary results have shown that the bioinformatics analysis on transcriptome data of tongkat ali hairy root have assembled 72,275 DNA sequences. Analysis of the biological processes has categorised the sequences into 26 groups and most of the DNA sequences are in the cellular and metabolite process categories.

ABOUT THE MAIN AUTHORDr Norlia Basherudin joined FRIM in October 1996. Her research interest is on plant biotechnology, particularly in gene isolation and genetic engineering. Currently, her reseaches are on isolation of potential genes involved in biosynthesis of active compounds in tongkat ali, and floral gene isolation from teak.

ulcer, cytotoxic and aphrodisiac properties and that the active ingredients are concentrated at the taproots. Because of its multiple curing abilities, the demand on tongkat ali for healthcare products has increased, thus exerting pressure on its natural resources from the forest.

Plant transformation has been used to increase the supply of tongkat ali, thus easing the pressure on its natural sources. The technique used for plant transformation is based on the natural ability of Agrobacterium (a naturally root-infecting bacterial species) to insert specific parts of the DNA into the genome of many host plants. There are two species of Agrobacterium normally used for this purpose. A. tumefaciens is the causal agent in crown gall disease while A. rhizogenes is related to the hairy root disease.

At Forest Research Institute Malaysia (FRIM), the genetic transformation of tongkat ali hairy root culture was successfully conducted using the A. rhizogenes. Due to its fast growing ability, the hairy root is able to produce a much higher amount of valuable secondary metabolites in a relatively shorter time.

Previous studies using chemical marker compound have indicated that both wild type and cultured hairy roots produce similar marker

Transcriptome is a study of RNA pool which is derived from DNA that controls all cells in the organism. The study identifies the genes that are responsible for a specific character in a particular cell type at any given time. The use of the next generation gene sequencing technology such as Solexa now offers a novel and rapid way of profiling the transcriptome that would significantly accelerate the gene discovery study.

Identification of genes involved in the synthesis of bioactive compounds in tongkat ali has been conducted through transcriptome using the next generation sequencing and bioinformatics analysis.

Tongkat ali or scientifically known as Eurycoma longifolia from the family of Simaroubaceae, is a slow growing tree with a wide distribution in the Malaysian forest. Tongkat ali has a long history as a traditional medicine and its uses vary between different localities within the country. In the past decade, numerous studies on the chemical composition of tongkat ali have ascertained the presence of compounds such as 10-hydroxycanthin-6one, 9-methoxycanthin-6-one, eurycomalactone and eurycomanol.

Biological studies which were conducted on tongkat ali root has confirmed its anti-malarial, anti-

locomotion (36)cell proliferation (85)carbon utilisation (2)

cell wall organisation or biogenesis (428)cellular component organisation (1824)

development process (2988)pigmentation (19)

viral reproduction (24)death (202)

sulfur utilisation (2)growth (640)

immune system process (323)biological regulation (3491)response to stimulus (4650)

cellular process (11,020)

cell killing (3)multicellular organismal process (2889)cellular component biogenesis (623)rhythmic process (74)biological adhesion (37)nitrogen utilisation (14)multi-organism process (1067)localisation (2523)metabolic process (10,305)signaling (1168)reproduction (1587)

Biological process categories of cDNA from tongkat ali hairy root culture. Number of genes involved in each category is indicated in brackets

TONGKAT ALI HAIRY ROOT GENE DISCOVERY Dr Norlia Basherudin | [email protected] Norwati Adnan & Dr Mohd Rosli Haron

Page 4: Biotechnology Research at FRIM

December 2011

FRIM in FOCUS4

A Q

uart

erly

of t

he F

ores

t Res

earc

h In

stitu

te M

alay

sia

3

4

Focus article

SYNTHETIC SEEDS A New Form of Planting MaterialNor Asmah Hassan | [email protected] Zaimah Noor Azman

procedure for Acacia hybrid (FRIM ID 5/11) and Eurycoma longifolia (tongkat ali). The Acacia hybrid plants have been re-introduced to the natural environment by culturing them onto soil and vermiculite before the direct sowing method could be established. FRIM is also in the process of developing procedures for other species including Aquilaria malaccensis (karas), Endospermum diadenum (sesenduk) and Koompassia excelsa (tualang).

ABOUT THE MAIN AUTHORNor Asmah Hassan is a research officer at the Seed Technology Laboratory, Forest Biotechnology Division, FRIM. The author obtained her first and second degrees from the Universiti Kebangsaan Malaysia (UKM). She has served FRIM since 2003 and her research area is mainly on the synthetic seeds technology.

produced in a reliable stock quantity and cost-effective too.

To obtain synthetic seeds, propagules are isolated from in vitro cultures and mixed with an encapsulation solution consisting of sodium alginate or water soluble hydro gel such as gel rite, locust bean gum and carboxy methyl cellulose. The propagules are then dropped into a calcium chloride or complexing solution and incubated for up to 40 minutes to form the calcium alginate beads. The beads are then washed and for plantlet conversion, they are cultured on a nutrient medium or other suitable substrates like wet filter paper, cotton or soil rites.

The hardening of calcium alginate bead is affected by the concentration of sodium alginate and calcium chloride and may vary when different propagules and plant species are used. Nicely rounded beads with appropriate hardness are essential to coat the propagule completely. In turn, the coat protects the propagule from mechanical damages during handling and promotes uniformity in the germination and development processes. Other materials can also be added into the encapsulation mixture such as nutrients, bio-fertilisers, pesticides, nitrogen-fixing bacteria, antibiotics, organic and inorganic salts, carbon source and plant hormones.

At Forest Research Institute Malaysia (FRIM), scientists have since developed a synthetic seed

Normally, young plants are grown from seeds of its mother plant. However, with the advancement of modern biotechnology, it is now possible to grow plants from artificial or synthetic seeds. Unbelievable as it may sound, this technique is widely used in some species such as carrot, yam, orchid, sandal wood, alfalfa, cotton, apple and many others.

Synthetic seeds are tissue cultured plant material or clones which are encapsulated using a simple and inexpensive technology for direct sowing at the field. Synthetic seeds are produced by encapsulating propagules such as somatic embryos, shoot buds, nodal segments, hairy roots and other vegetative parts of a plant. These synthetic seeds are able to germinate and grow into seedlings just like the natural seeds under suitable conditions.

This technique offers solution to the non-seed producing plants, transgenic plants, plants with elite traits and plant lines with problems in seed propagation. Utilising clones in this technique also cuts short the selection process in the conventional recombination breeding and reduces the cost of producing micro-propagated plantlets. Unlike tissue-cultured plants, encapsulated material does not need to be sub-cultured and acclimatised. Therefore the synthetic seed requires less space, and cheaper labour and maintenance costs. As such, planting materials can now be

1. Sesenduk plantlet2. Culture of synthetic seeds3. Acacia hybrid seedling from synthetic seed4. Germinating tongkat ali somatic embryos

from synthetic seed

1 2

Page 5: Biotechnology Research at FRIM

December 2011

FRIM in FOCUS 5

A Q

uart

erly

of t

he F

ores

t Res

earc

h In

stitu

te M

alay

sia

Focus article

that matK provided clear resolution at the genus level, and was able to separate about 45% of the species.

To improve the species concepts, trnH-psbA appeared promisingly as a second tier locus, which was able to increase the resolution of species identification to about 62%. As a whole, the analyses indicate the potential of using matK and trnH-psbA in a multigene tiered approach for DNA barcoding of Dipterocarpaceae. In terms of application, the DNA barcode database of dipterocarps can be used for rapid and precise species authentication of wood for heavy construction and furniture manufacturing.

ABOUT THE MAIN AUTHORDr Lee Soon Leong is the Head of the Genetic Laboratory, Forest Biotechnology Division, Forest Research Institute Malaysia (FRIM).

is generally based on wood anatomy. But this is insufficient as majority could only be identified to the group of trees (under a trade name) and not to the species level.

DNA barcoding is a diagnostic technique for species identification or recognition using a short, standardised DNA region. It relies on the use of a DNA region as a tag for rapid and accurate identification of unknown specimens to known species. By using two chloroplast DNA regions (matK and trnH-psbA), which can be consistently sequenced across the dipterocarp species with high DNA sequence quality, DNA barcodes were generated for 155 species from 10 genera (Shorea, Parashorea, Hopea, Anisoptera, Dipterocarpus, Dryobalanops, Cotylelobium, Neobalanocarpus, Vatica and Upuna) of the family Dipterocarpaceae. The matK region which is more conserved among dipterocarps was chosen as a core coding region and served as a baseline for comparison. The analyses show

In Malaysia, there are over 3000 timber-sized species, which belong to approximately 90 families. Out of these, 408 species are known in the international market. Since there are many timber species in the market, timbers of closely allied species are grouped and marketed under a single trade name, for example, all Dipterocarpus species are sold as keruing. Similarly, Calophyllum species are marketed as bintangor and Syzygium/Eugenia species as kelat.

A trade name such as kempas (Koompassia malaccensis) and chengal (Neobalanocarpus heimii) may consist of only one species. However, a group of species such as merawan (the lighter Hopea species), a group of genera such as nyatoh (Madhuca, Palaquium and Payena) or a whole family such as kedondong (the family Burseraceae) is recognised by a single trade name.

At the moment, species identification of Malaysian timbers

IDENTIFICATION OF MALAYSIAN TIMBER USING DNA BARCODEDr Lee Soon Leong | [email protected] Ng Chin Hong & Dr Tnah Lee Hong

1 2

31 & 2. Meranti tembaga

and chengal are two of the Malaysian commercial timber species

3. A snapshot of the DNA barcode database of 155 Malaysian dipterocarps based on matK gene. Table showing variation points that can be used for species identification (left) and a portion of DNA sequence of matK gene (right)

Page 6: Biotechnology Research at FRIM

December 2011

FRIM in FOCUS6

A Q

uart

erly

of t

he F

ores

t Res

earc

h In

stitu

te M

alay

sia

PENGHIJAUAN SEMULA KAWASAN BEKAS LOMBONG MENGGUNAKAN EKTOMIKORIZA Patahayah Mansor | [email protected] Lee Su See, Dr Ang Lai Hoe & Dr Aminah Hamzah

Kawasan bekas lombong seringkali terbiar disebabkan tanahnya yang tidak sesuai untuk menampung kehidupan. Tanah sebegini sangat berpasir dan mempunyai kandungan tanah liat, nutrien, bahan organik dan air yang rendah, serta suhu permukaan tanah yang tinggi.

Bagaimanapun, kawasan bekas lombong ini mempunyai potensi untuk ditebus guna dengan menanam pokok-pokok hutan. Bagi tujuan tersebut, kaedah penanaman perlu diubah suai manakala spesies pokok serta mikrob yang sesuai perlu dipilih untuk meningkatkan lagi kemandirian pokok.

Ektomikoriza ialah sejenis kulat yang hidup secara simbiosis dengan akar pokok lalu membentuk gumpalan hifa yang menyeliputi akar pokok tersebut. Hubungan simbiosis pula dicirikan oleh manfaat yang diperoleh oleh kedua-dua belah pihak.

Di negara-negara temperat (beriklim sejuk) serta negara-negara Asia Tenggara seperti Indonesia dan Filipina, kulat ektomikoriza dan beberapa jenis mikrob yang lain telahpun digunakan dalam aktiviti penanaman. Mikrob turut digunakan untuk menebus guna dan memulihara kawasan bekas lombong nikel, bijih timah, bijih besi dan emas, serta kawasan yang ditumbuhi lalang.

Kulat ektomikoriza membantu pokok meningkatkan penyerapan nutrien (terutamanya fosforus) dan air dalam tanah, serta bertindak sebagai agen pengawalan penyakit. Sebaliknya, kulat pula mendapat makanan hasil daripada proses fotosintesis pokok tersebut. Di kawasan tropika, ektomikoriza didapati menjalani simbiosis dengan pokok yang tergolong dalam famili Dipterocarpaceae, Fabaceae (Leguminosae) dan Fagaceae.

Pada tahun 2000, satu projek kerjasama antara Institut Penyelidikan Perhutanan Malaysia (FRIM) dan EU bertajuk “Harnessing mycorrhizal symbiosis in mixed Dipterocarpaceae—Acacia mangium forest plantation in Malaysia and the Philippines” telah dijalankan di Stesen Penyelidikan Luar FRIM Bidor, Perak atau lebih dikenali sebagai Tin Tailing Afforestation Center (TTAC). Projek tersebut telah mengkaji keberkesanan kulat ektomikoriza terhadap penanaman pokok Acacia mangium dan spesies daripada

famili Dipterocarpaceae di kawasan bekas lombong di Bidor, Perak.

Kajian tersebut telah menggunakan anak benih Acacia mangium yang diinokulasi dengan kulat ektomikoriza Pisolithus tinctorius manakala anak pokok dari keratan Hopea odorata dan Shorea leprosula, kedua-duanya daripada famili Dipterocarpaceae, pula diinokulasi dengan kulat ektomikoriza Tomentella sp. Penanaman ini melibatkan dua fasa, di mana fasa pertama dan kedua masing-masing

1

2 3

Page 7: Biotechnology Research at FRIM

December 2011

FRIM in FOCUS 7

A Q

uart

erly

of t

he F

ores

t Res

earc

h In

stitu

te M

alay

sia

kulat dan serangga juga dapat hidup dan boleh didapati dengan banyaknya. Hakikat ini menunjukkan kawasan tanah tandus dan berpasir seperti bekas lombong ini boleh dijalankan penghutanan semula menggunakan ektomikoriza.

TENTANG PENULIS UTAMAPatahayah Mansor ialah pegawai penyelidik dari Cawangan Mikologi dan Patologi, Bahagian Biodiversiti Hutan, FRIM. Beliau ialah graduan Ijazah Sains Perhutanan (Pengurusan Hutan) dan telah melanjutkan pelajaran ke tahap Sarjana Sains dalam bidang Pemuliharaan Hutan di Universiti Putra Malaysia. Telah berkhidmat di FRIM sejak tahun 2000 dan menjalankan penyelidikan berkaitan patologi pokok hutan dan mikoriza.

1, 2 & 3. Cendawan yang ditemui di lantai hutan di kawasan penanaman (Mei 2011)

4. Pemandangan dalam salah satu plot kajian. Selepas 10 tahun, pokok yang ditanam membentuk dirian campuran

A. mangium—H. odorata5. Tapak kajian pada awal penubuhan tahun

20006. Bergambar bersebelahan pokok H. odorata

(Mei 2011)7. Memasuki kawasan tapak kajian (Mei 2011)

melibatkan penanaman A. mangium yang diikuti oleh pokok dipterokarpa pada tahun kedua. Selang masa penanaman selama dua tahun bertujuan menjadikan A. mangium sebagai pokok teduhan kepada pokok dipterokarpa.

Pokok-pokok A. mangium dan H. odorata yang ditanam menunjukkan peratus kemandirian yang tinggi iaitu melebihi 90% berbanding S. leprosula yang agak rendah. Keputusan tersebut juga menunjukkan yang kaedah yang digunakan berpotensi dijadikan sebagai kaedah dalam penanaman pokok dipterokarpa di kawasan yang bermasalah seperti bekas lombong.

Pemerhatian ke atas akar pokok juga mendapati kulat Tomentella sp yang diinokulasi ke atas H. odorata telah tersebar ke pokok-pokok A. mangium yang bersebelahan.

Setelah hampir 10 tahun penanaman dijalankan, pokok-pokok tersebut telah tumbuh dengan baik di mana H. odorata telah mencapai saiz pertumbuhan yang menyamai A. mangium. Kawasan ini yang dahulunya panas dan berpasir putih sekarang mempunyai dirian pokok yang tinggi dan sihat. Pokok-pokok ini memberi teduhan serta menyokong pembentukan lapisan organik di lantai hutan. Organisma lain seperti

4

6

5

7

Page 8: Biotechnology Research at FRIM

December 2011

FRIM in FOCUS8

A Q

uart

erly

of t

he F

ores

t Res

earc

h In

stitu

te M

alay

sia

KULAT SEBAGAI AGEN KAWALAN BIOLOGI ANAI-ANAI Dr Mohd Farid [email protected] Lee Su See, Patahayah Mansor, Dr Mohd Rosli Haron, Nada Badaruddin & Prof Dr Ahmad Said Sajap (UPM)

Putra Malaysia (UPM) terhadap kulat-kulat entomopatogen yang diperolehi dari hutan-hutan di Semenanjung Malaysia. Kawasan hutan dipilih kerana kepelbagaian biologinya yang tinggi dan tanahnya juga terhindar daripada pencemaran yang diakibatkan oleh penggunaan baja, racun-racun serangga, kulat dan rumpai. Faktor ini penting kerana pencemaran akan menyebabkan kurangnya populasi kulat entomopatogen serta serangga perumahnya di dalam tanah.

Daripada 23 lokasi hutan yang dikunjungi, didapati bahawa M. anisopliae ialah kulat entomopatogen yang seringkali dijumpai di dalam sampel tanah. Kulat ini diperhatikan sangat berkesan dalam membunuh kesemua larva-larva kumbang Tenebrio molitor dalam tempoh enam hari selepas jangkitan. Jangkitan kulat diperhatikan sebagai bebenang halus miselia berwarna putih dan juga konidia kehijauan

Tanah-tanih di hutan dan kawasan-kawasan pertanian di Malaysia mengandungi sebilangan kulat yang berupaya untuk membunuh serangga. Dikenali sebagai entomopatogen, kulat seperti Metarhizium anisopliae seringkali digunakan sebagai agen kawalan biologi serangga perosak. Kulat patogenik ini pernah dilaporkan menjangkiti lebih daripada 100 jenis serangga dalam tanah seperti anai-anai daripada dua spesies Reticulitermes spp dan Coptotermes spp, dan beberapa jenis kumbang seperti kumbang akar jagung (Diabrotica spp), kumbang belalai hitam (Otiorhynchus sulcatus), kumbang belalai akar (Diaprepes abbreviates), kumbang jepun (Popollia japonica) dan Rhizotrogus majalis. Disebabkan keupayaannya menjangkiti serangga, kulat ini telah digunakan dalam penghasilan pelbagai formulasi kawalan biologi bagi serangga perosak seperti pelet miselia, kapsul kulat dan bahan-bahan penghasil spora atau konidia kulat.

Jangkitan kulat berlaku apabila konidia bersentuhan, melekat dan bercambah di atas kulit atau kutikel serangga. Bilangan serta taburan konidia di dalam tanah perlu mencapai dos membunuh di mana berlakunya banyak sentuhan antara kulat dan serangga. Kebiasaannya, serangga akan mati dalam tempoh empat hingga lima hari selepas dijangkiti.

Berdasarkan pengetahuan ini, satu kajian telah dijalankan oleh Institut Penyelidikan Perhutanan Malaysia (FRIM) dan Universiti

32

1

Page 9: Biotechnology Research at FRIM

December 2011

FRIM in FOCUS 9

A Q

uart

erly

of t

he F

ores

t Res

earc

h In

stitu

te M

alay

sia

telah dilakukan terhadap kulat ini mendapati bahawa keberkesanannya dalam membunuh anai-anai adalah berbeza bergantung kepada jenis perumah dan isolat. Kajian yang pernah dijalankan di Thailand mendapati kematian anai-anai spesies Coptotermes dan Microcerotermes berlaku seminggu selepas jangkitan kulat M. anisopliae. Manakala, ujian-ujian di Amerika ke atas anai-anai R. flavipes mendapati sehingga seratus peratus kematian berlaku dalam tempoh tujuh hingga 21 hari selepas jangkitan. Di Pakistan pula, kulat ini berjaya membunuh anai-anai C. heimi seawal dua hari selepas jangkitan. Melalui perbandingan tempoh kematian anai-anai, didapati kulat M. anisopliae di hutan-hutan Malaysia bersifat agresif dan berpotensi terutamanya sebagai agen kawalan biologi anai-anai C. carvignathus.

Kajian yang lanjut diperlukan terutamanya untuk menghasilkan formulasi kulat yang tepat bagi mengawal serangan anai-anai di lapangan. Kajian lain yang sedang dijalankan termasuk menguji keberkesanan kulat entomopatogen sebagai agen pembunuh serangga

perosak seperti spesies anai-anai yang lain, cengkerik dan ulat harimau (tiger worm).

TENTANG PENULIS UTAMADr Mohd Farid Ahmad ialah pegawai penyelidik di Cawangan Mikologi dan Patologi, Bahagian Biodiversiti Hutan.

1. Batang pokok damar minyak diselaputi lapisan tanah dan kerosakan yang serius akibat dimakan aleh anai-anai

C. carvignathus2. Anai-anai pekerja di bawah lapisan kulit

pokok3. Pokok damar minyak mati akibat serangan

anai-anai C. carvignathus4. Pemencilan dan pengecaman kulat

entomopatogen A. Larva Tenebrio molitor sebagai umpan

untuk kulat entomopatogen dalam sampel tanah

B. Larva T. molitor dijangkiti kulat M. anisopliae C. Kultur kulat M. anisopliae D. Konidia kulat M. anisopliae5. Ujian makmal yang menunjukkan kulat M. anisopliae berjaya membunuh anai-anai

(C. carvignathus) A. Anai-anai tidak dijangkiti dalam sampel

kawalan. B. Anai-anai mati akibat jangkitan kulat M. anisopliae C. Anai-anai pekerja mati dan diselaputi

konidia M. anisopliae D. Anai-anai pekerja mati dan diselaputi

miselia dan konidia M. anisopliae

yang menyelaputi permukaan badan larva-larva tersebut.

Selain daripada larva kumbang Tenebrio, kulat ini juga didapati berkesan dalam membunuh anai-anai perosak tanaman, Coptotermes curvignathus. Walau bagaimanapun, anai-anai yang dijangkiti kulat M. anisopliae memperlihatkan perbezaan dari segi tahap kerentanan di mana ada yang mati seawal tempoh tiga hari sehinggalah selewat-lewatnya enam hari selepas jangkitan. Lokasi asal kulat ini dan persekitaran yang kurang sesuai didapati menyumbang kepada perbezaan tempoh kematian anai-anai tersebut.

Anai-anai yang telah dijangkiti kulat menjadi kurang aktif jika dibandingkan dengan yang sihat. Seperti keadaan jangkitan ke atas larva kumbang Tenebrio, miselia putih juga diperhatikan meliputi badan anai-anai yang telah mati. Seterusnya, ia menjadi semakin menebal dan akhirnya mengeluarkan konidia kehijauan. Anai-anai yang telah dijangkiti juga boleh menjadi punca penyebar jangkitan kulat dengan anai-anai lain yang sihat melalui sentuhan. Kajian-kajian terdahulu yang

4

5

a

a

c

c

B

B

D

D

Page 10: Biotechnology Research at FRIM

December 2011

FRIM in FOCUS10

A Q

uart

erly

of t

he F

ores

t Res

earc

h In

stitu

te M

alay

sia

Si anak kecil berulang kali bertanyakan bapanya tentang burung apakah yang dilihatnya itu. “Burung apa?”, tanya si anak. “Burung mu…rai…”, jawab si ayah, berulang kali tanpa berasa jemu. Burung yang menjadi perhatian anaknya itu ialah murai kampung atau nama Inggerisnya oriental magpie robin (Copsychus saularis). Seperti namanya, murai kampung mudah ditemui di kawasan-kawasan perkampungan. Namun, adakalanya ia juga diperhatikan di pinggir-pinggir bandar, hutan dan juga berhampiran dengan sungai. Murai kampung mudah dikenali dengan warnanya yang hitam dan putih,

berkaki agak panjang dan ekor yang menunjuk ke atas. Burung ini sering bertenggek di dahan-dahan rendah dan ada ketikanya ia merayau-rayau mencari makanan di atas tanah.

Pernahkah pula anda mendengar perumpamaan mulut murai? Masyarakat Melayu gemar membuat perumpamaan dan dalam hal ini, orang yang gemar bercakap diibaratkan seperti mulut murai. Ini mungkin kerana burung murai seringkali kedengaran berkicau tanpa henti. Suara burung murai kampung tidak semerdu burung murai batu atau dikenali juga sebagai white rumped shama

(Copsychus malabaricus). Kedua-dua spesies burung murai ini tergolong dalam famili Muscicapidae.

Suara burung murai batu adalah sangat merdu, rupanya cantik dan ia pandai meniru-niru suara burung lain. Murai batu ini sangat popular di kalangan pengemar-pengemar burung. Mereka sanggup berbelanja ratusan serta ribuan ringgit untuk memperoleh burung murai batu yang cantik dan bersuara merdu. Kecantikan murai batu ini terletak pada ekornya yang berwarna hitam dan panjang (bagi yang jantan), bulunya yang hitam berkilat dan bahagian dadanya yang berwarna

1

MURAINor Azlin Mohd [email protected]

Page 11: Biotechnology Research at FRIM

December 2011

FRIM in FOCUS 11

A Q

uart

erly

of t

he F

ores

t Res

earc

h In

stitu

te M

alay

sia

coklat terang. Burung yang berekor panjang lebih digemari kerana ia dianggap cantik dan mempunyai suara merdu. Burung ini acapkali ditangkap, diseludup dan dijual dengan harga yang tinggi.

Murai batu hanya dijumpai di kawasan-kawasan pinggiran hutan terutamanya di kawasan hutan yang telah diteroka yang terdapat banyak serangga di pokok-pokok renek yang memudahkannya untuk mendapatkan sumber makanan. Burung ini juga menggemari cacing sebagai makanannya.

Murai batu sering mendiami hutan-hutan yang telah diteroka, justeru

kehadiran burung ini disifatkan sebagai indikator bagi hutan-hutan yang telah terganggu atau diteroka.

Burung ini juga sangat pemalu dan tidak akan keluar jauh dari kawasan hutan tempat kediamannya. Namun begitu, lingkungan habitat spesies ini agak luas dan meliputi kawasan-kawasan hutan dipterokarpa, dipterokarpa campuran serta kawasan-kawasan buluh, hutan sekunder, kawasan perladangan serta kawasan pesisir sungai.

Burung murai batu kebiasaannya akan menandakan kawasannya dengan cara menguatkan nyanyiannya. Bunyi nyanyian burung jantan adalah lebih kompleks, berpanjangan dan lebih berirama berbanding dengan burung betina yang biasanya agak pendek.

Dari segi perbezaan seksual pula, burung murai batu betina bersaiz agak kecil berbanding dengan burung jantan. Pada kebiasaannya, burung betina akan menghasilkan dua hingga lima butir telur pada musim bertelur, yang mengambil masa 12 hingga 14 hari untuk menetas.

Di Taiwan, burung murai batu ini dianggap sebagai spesies asing yang invasif namun ia mempunyai ciri yang berbeza daripada spesies burung invasif yang lain. Spesies burung invasif biasanya lebih menyukai habitat yang telah berubah jika dibandingkan burung murai batu yang lebih menggemari kawasan hutan.

Di kawasan Institut Penyelidikan Perhutanan Malaysia (FRIM), burung murai batu ini agak mudah ditemui di mana ianya agak jinak dan seringkali ditemui di tempat yang sama setiap hari. Mungkin ramai di antara pengunjung-pengunjung atau pekerja-pekerja di FRIM yang biasa melihat

burung yang cantik ini. Kepada yang belum, jangan lepaskan peluang untuk melihat burung ini, kerana ianya bukan mudah untuk diperhatikan terutamanya di kawasan persekitaran bandaraya.

Namun, harus juga diingat bahawa burung ini tertakluk di bawah Akta Pemuliharaan Hidupan Liar 2010 sebagai spesies yang terlindung sepenuhnya. Oleh itu, burung ini boleh dilihat tetapi tidak boleh ditangkap. Sekiranya anda berkebolehan bersiul seperti burung ini, peluang untuk anda melihatnya adalah cerah kerana burung ini mungkin akan datang untuk berbalas siulan dengan anda. Murai batu jantan juga diketahui akan memberi respon kepada bunyian yang dikeluarkan oleh pita rekod. Namun, burung ini amat cerdik dan lambat laun ia akan dapat membezakan antara bunyi burung yang sebenar atau tidak. Di FRIM, tempat-tempat yang mudah untuk memerhatikan burung ini merangkumi kawasan seperti arboretum buah-buahan, kawasan air terjun, Taman Botani Kepong, dan kesemua denai yang terdapat di kawasan FRIM. TENTANG PENULISNor Azlin Mohd Fauzi ialah seorang pegawai penyelidik di Program Biodiversiti Fauna, Bahagian Biodiversiti Hutan FRIM yang menjalankan kajian ke atas burung serta ekologinya.

1. Burung murai kampung (Copsychus saularis) mempunyai ciri-ciri yang amat mudah untuk dikenal pasti serta mempunyai suara yang agak merdu.

2. Murai kampung mudah untuk ditemui di kawasan-kawasan perkampungan atau pinggir-pinggir bandar

3. Anak burung murai batu agak berbeza dengan dewasa kerana ia mempunyai warna yang agak pudar serta mempunyai corak yang bertompok-tompok di bahagian sayap

4. Kombinasi kecantikan bulunya yang berkilat, ekor yang panjang serta suara yang merdu menjadikan burung murai batu ini popular di kalangan penggemar burung. Burung ini juga pandai meniru-niru suara burung lain

2

3

4

Page 12: Biotechnology Research at FRIM

December 2011

FRIM in FOCUS12

A Q

uart

erly

of t

he F

ores

t Res

earc

h In

stitu

te M

alay

sia

Digital Elevation Models (DEM) constitutes fundamental information for regional height. There are several sources of DEM data, but the most widely used and freely accessible is the Shuttle Radar Topography Mission (SRTM). The SRTM provides elevation data on almost 80% of the earth’s surface. The wide scale DEM image covered by SRTM is an advantage for national scale applications. The scale and the availability of SRTM data enable it to substitute the traditionally used topographic maps in different studies.

PENGGUNAAN MORPHO UNTUK PENGURUSAN DATA SAINTIFIK Authors: SA Tan, K Abd Rahman, I Shamsudin, O Hafendy, AR Omarali, AS Muhammad Firdaus & G Fatin LailyOrder Code: FTIHB40Price: RM6/USD6ISBN: 978-967-5221-57-671 ppIn Malay language

This book guides readers on how to compile research information and store the data systematically.

For enquiries, please contact [email protected]

This book describes the health status of tongkat ali trees planted in an environment different from their natural habitat. It is hoped that this book will provide invaluable information on the establishment of plantations and care of the trees. Diseases and pests including environmental factors can affect the growth of trees. This book contains many photographs to illustrate the symptoms of attack.

MASALAH SOSIO-EKONOMI PENANAMAN BAKAU DAN RU DI SEMENANJUNG MALAYSIAAuthors: HF Lim, MM Huda Farhana, B Intan Nurulhani, M Mohd Parid, H Tariq Mubarak, Y Norshakila, H Mohd Nasir & P Ahmad FauziOrder Code: FR94Price: RM9/USD9ISSN: 0128-9640 59 ppIn Malay language

Planting of mangrove/Casuarina trees along the coast of Peninsular Malaysia is faced with many socio-economic problems such as vandalism, disturbance by animals, damage of trees and encroachment. Planting activities in future should focus on educating the local people and visitors to the beach besides involving them either directly or indirectly.

PERUBAHAN HUTAN PAYA LAUT DI NEGERI PERAK, JOHOR DAN PAHANG Authors: M Khairul Azwan, A Audi Hani, O Hamdan, H Khali Aziz & I ShamsudinOrder Code: FR95Price: RM6/USD6ISSN: 0128 964022 ppIn Malay language

This book documents the initiatives to determine the amount of mangrove forest in Perak, Johore and Pahang which is still pristine in Peninsular Malaysia. The information can be used to protect and conserve the mangrove ecosystem.

SHUTTLE RADAR TOPOGRAPHIC MISSION DATA AS ALTERNATIVE HEIGHT INFORMATION FOR MALAYSIA Authors: A Norliyana, A Ismariah & Z NuratifahOrder Code: FR96Price: RM5/USD5ISSN: 0128-9640 9 pp

FRIM PUBLICATIONS 2011

TAPPING THE WEALTH FROM KARAS (AQUILARIA MALACCENSIS) TREE Editors: AM Abdul Rashid & Y Ahmad ZuhaidiOrder Code: MFR50Price: RM60/USD45ISBN: 978-967-5221-51-489 pp

This book includes comprehensive information such as the historical background of gaharu utilisation and the conservation status, botanical and ecological characteristics of the species, procurement, seed handling, planting materials production and nursery practices.

PENYAKIT, PEROSAK DAN GANGGUAN TANAMAN TONGKAT ALI Authors: M Patahayah, SS Lee & A Mohd FaridOrder Code: FTIHB41Price: RM20/USD15ISBN: 978-967-5221-70-531 ppIn Malay language

Page 13: Biotechnology Research at FRIM

December 2011

FRIM in FOCUS 13

A Q

uart

erly

of t

he F

ores

t Res

earc

h In

stitu

te M

alay

sia

CERTIFICATION AND AWARDS

Photos: Yusni Idris

10th Continuing Professional Development (CPD) Series: “Diabetes Asia 2011” Conference and Workshop, Dr Nik Musa’adah Mustapha, Best Oral Presentation Award (Second Place), 9 October 2011

The National Standard and Accreditation Award 2011 on Standardisation Activities (Individual Category): Arshad Saru, FRIM Furniture Testing Laboratory, 13 October 2011

Certificate for Laboratory Accreditation Scheme, Malaysia (SAMM), 13 October 2011

Celebrity Brand Award for Excellence in Research and Development in Forestry, 25 November 2011

Prize); Best Human Resource Management Award (Second Place); NRE 5S Mini Convention, 5S Good Practices (Third Prize); Innovation Choir Competition (Third Prize); Dakwah Songs Competition (Third Prize); and Assessment on Malaysian Government Portal and Website, Excellent Award (5 Star); 14 November 2011

SIRIM Eco-Label Product Certification for Ciera Eco-Friendly Multi-Purpose Disinfectant, 21 November 2011

Star Rating (First Prize)NRE Innovation Day 2011

14 November 2011

NRE Innovation Day 2011: NRE Goes Green Campaign (Second

Page 14: Biotechnology Research at FRIM

December 2011

FRIM in FOCUS14

A Quarterly of the Forest Research Institute Malaysia

PROBLEM/OPPORTUNITYAs shown in Figure 2, the revenue from wood products exported from Malaysia is rising after mid 1980s. But in the last 10 years, the main factor of this increase, is the development of furniture export. As per 2009, these wood products exports, between US$7–8 billion, where based on a competitive production structure of 3776 mills. That is to say that on average, 1 Malaysian mill helps to create US$1.8–2 million of wood products exports.

To reach the objective of RM53 billion exports by 2020, this means that 5700 to 6700 companies should be created within the period if the factors of competitiveness remain similar, or that the competitiveness factors of Malaysia would evolve fast enough to allow one firm to generate US$4.5 million of wood exports in average. Probably none of

these extreme paths is realistic, but a combination of the two would be probable.

Nevertheless, when expressed this way, the numbers seem to represent a herculean task. Is this achievable? By comparison, Italy, one of the best world exporters of wood products, succeeded in generating around US$400 billions of exports, based on a structure or around 90,000 manufactures. That is to say that the average Italian company generates around US$4.4 million of exports. So, it is theoretically achievable. It also means that the Malaysian wood sector would have to reach the same productivity as the Italians by 2020. But how? Such an evolution would have massive consequences, and these can be envisioned through several lenses.

ISSUEThe Malaysia’s wood-based industry is expected to contribute substantially to national income earning through value-added products such as furniture, mouldings, panel products as well as builders’ joinery and carpentry. During the Second Industrial Master Plan (IMP2, 1996–2005), it was recorded that the total export value of wood-based products increased by an average annual rate of 5.7% from RM12.8 billion (1996) to RM 21 billion (2006) with the significant increase evidenced in panel products. Based on that remarkable growth, Third Industrial Master Plan (2006–2020) outlined that exports of wood-based industry are targeted to rise at an annual rate of 6.4% to reach RM53 billion by 2020 (Figure 1).

What does it take for Malaysia to achieve RM53 billion?

10,000

1979 1984 1989 1994 1999 2004 2009 2014 20190

20,000

30,000

40,000

50,000

60,000

5000

0

10,000

15,000

20,000

25,000

30,000

1989 1992 1995 1998 2001 2004 2007

Figure 1: Total export of wood products from Malaysia, 1979–2020 (million RM)

WHAT DOES IT TAKE TO ACHIEVE RM53 BILLION OF TIMBER PRODUCT EXPORT BY 2020?

EAS STRATEGIC OPTIONS2011/December No: 11

Source: Maskayu Bulletin (MTIB, 1979, 1980…2008)

Year 2020 : RM53 billion

FOB

expo

rt v

alue

(mill

ion/

RM)

Page 15: Biotechnology Research at FRIM

December 2011

FRIM in FOCUS 15

A Quarterly of the Forest Research Institute Malaysia

factor of competitiveness will not be ready by 2020.

Third, the flexibility of the companies is becoming the main competitiveness factors, this flexibility relies on speed of action, and necessitate industrial clusters and pools of small but flexible companies. The Italian model is characterised by the small size of its companies (four workers per company in average), and a strong reliance on its domestic sector. The exports represent only 30% of the wood sector economics. Malaysia also is characterised by the existence of clusters of small companies, with an average size similar to what is observed in Italy. In this regard, the potential is available for a quick adaptation of the industry by shifting more attention to the domestic trade sector.

OPTIONSTwo critical paths should be taken in consideration in order to achieve the targeted timber products export value of RM53 billion by 2020 with appropriate policy changes. First, there is a need to quickly improve the Malaysian training complex for the wood sector:

forestry faculties, furniture and housing professional centers, colleges and furniture design faculties. With proper planning, this training complex through incorporating knowledge in mechanisation and information technology will favour a pool of skilled workers to run competitive SMEs.

Second, there is a need to favour the growth of domestic trade as support of the exports, in particular the wider utilisation of the wood products in construction industry and public procurements.

* Data from Federlegno Aredo (Italian Wood Industry Federation)

First, Italy is the main European wood consumer and importer of raw wood, and exporter of finish products, being the “wood mill” of Europe. Malaysia, to achieve similar productivity, and facing already raw wood shortages, would have to increase its imports by magnitudes of importance. Malaysia would have to become a major importer of raw wood. Although involving a lot of changes in the import policies, this should be quite possible to reach.

Second, a pool of skilled and efficient workers specialised in the wood sector will be needed to elevate the Malaysian firms to a high standard. By comparison, in Italy, the existing mills can use the resources of 12 forestry faculties, 12 furniture and housing professional learning centers and 40 colleges and faculties, and 10 design colleges and faculties. If using the same ratio per total population, this would mean that Malaysia would need five forestry faculties, five professional centers, 18 colleges and faculties, four furniture design faculties*. Given the time of creation of such learning centers, and the even longer time to train sufficient quantities of skilled workers, it is foreseeable that such a

10,000

1979 1984 1989 1994 1999 2004 2009 2014 20190

20,000

30,000

40,000

50,000

60,000

5000

0

10,000

15,000

20,000

25,000

30,000

1989 1992 1995 1998 2001 2004 2007

Figure 2: Wood exports from Malaysia to the world, 1979–2007 (in million RM)

FURTHER INFORMATION PLEASE CONTACT:Jean-Marc Roda, PhD | Noor Aini Zakaria, PhDLim Hin Fui, PhD | Ismariah Ahmad, PhDRohana Abd Rahman

ECONOMIC AND STRATEGIC ANALYSIS PROGRAMME (EAS)Innovation & Commercialization Division,Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Darul Ehsan, MalaysiaTél. : +603 6279 7544 / 7541 / 7714 / 7549Fax : +603 6275 0925email : [email protected] : http://www.frim.gov.my

Source: MTIB and MTC (1979, 1980…2008)

Sawntimber Veener Plywood Other products Furniture

Expo

rt v

alue

(mill

ion/

RM)

Page 16: Biotechnology Research at FRIM

December 2011

FRIM in FOCUS16

A Q

uart

erly

of t

he F

ores

t Res

earc

h In

stitu

te M

alay

sia

WILD ORCHIDS OF PENINSULAR MALAYSIAAuthors: PT Ong, P O'Byrne, WSY Yong & LG Saw Order Code: Wild OrchidsPrice: RM150/USD113ISBN: 978-967-5221-66-8196 pp

This is a comprehensive, richly illustrated book showcasing the diversity of the orchid flora in the peninsula. It includes the biology, ecology, taxonomy, botanical research and conservation of orchids. More than 450 accurately named indigenous species are featured. Conservation issues, particularly critical for the orchid family, are discussed and realistic solutions proposed to combat their depletion.

FLORA OF PENINSULAR MALAYSIA SERIES II: SEED PLANTS, VOLUME 2Editors: R Kiew, RCK Chung, LG Saw, E Soepadmo & PC BoyceOrder Code: MFR49(2)Price: RM100/USD75ISBN: 978-967-5221-53-8235 pp

FOREST RESEARCH INSTITUTE MALAYSIA: A Sanctuary for Threatened Trees Authors: WSY Yong, LSL Chua, M Suhaida & B AslinaOrder code: RP130Price: RM50/USD38ISBN: 978-967-5221-56-991 pp

This book presents a pictorial reference to the 73 threatened tree species established at FRIM. A brief description of the geographical distribution and the gerplasm record are provided for each species.

A GUIDEBOOK TO THE MACROFUNGI OF FRASER'S HILL Authors: BK Thi, SS Lee, N Zainuddin & HT Chan Order Code: SAR14Price: RM30/USD23ISBN: 978-967-5221-63-793 pp

This guidebook provides a brief description of the general categories of macrofungi that can be

found at Fraser’s Hill. A brief introduction to Fraser’s Hill is provided including information on the vegetation, forest types and trails. A total of 72 macrofungi are illustrated and information on their classification and characters are presented.

TREE FLORA OF SABAH AND SARAWAK VOLUME SEVENEditors: E Soepadmo, LG Saw, RCK Chung & R KiewOrder Code: TFSS7Price: RM150/USD90ISBN: 978-967-5221-44-6450 pp

This volume contains accounts of three families, namely, the Lamiaceae, the Myrtaceae and the Sterculiaceae. It comprises the treatment of 313 species in 31 genera of native tree species occurring in Sabah and Sarawak. Of the total 313 revised species, 167 or 53% are endemic to Borneo of which 30 are confined to Sabah and Sarawak and 39 are rare.

FRIM THROUGH THE LENSESAuthors: Y Noor Azlin, MA Norain & N NorhayatiOrder Code: LensesPrice: RM100/USD60ISBN: 978-967-5221-58-3112 pp

This book features photographs of sceneries and events taken at FRIM. It portrays some of the best collections from the photography competitions held at FRIM from 2004 till 2009.

For enquiries, please contact [email protected]

This book is devoted to two subfamilies of the Apocynaceae, namely, Apocynoideae with 21 genera and 55 species and Rauvolfioideae with 14 genera and 57 species. Both subfamilies include indigenous species that are important ornamental plants. Keys for the genera and species are provided. For species, conservation and distribution maps are given.

REVISION OF MALAYSIAN OF BOLETALES S. L. (BASIDIOMYCOTA) DESCRIBED BY EJH CORNER (1972, 1974)Author: E HorakOrder Code: MFR51Price: RM70/USD53ISBN: 978-967-5221-55-2283 pp

After EJH Corner passed away in 1996, all extant collections of Malayan boletoid fungi were re-examined by the author. The morphotaxonomic results of the re-evaluation are described, supported by illustrations of the microscopic characters, and discussed in the present revision.

FRIM PUBLICATIONS 2011


Recommended