Transcript
Page 1: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO

Data Sheet ADRF6614

Rev. 0 Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

FEATURES RF frequency: 700 MHz to 3000 MHz, continuous LO input frequency: 200 MHz to 2700 MHz, high-side or low-

side injection IF range: 40 MHz to 500 MHz Power conversion gain of 9.0 dB Phase noise performance of −144 dBc/Hz at 800 kHz offset

supporting stringent GSM standards in both 800 MHz to 900 MHz and 1800 MHz to 1900 MHz bands

Single-sideband (SSB) noise figure of 11.3 dB Input IP3 of 30 dBm Input P1dB of 10.6 dBm Typical LO input drive of 0 dBm Single-ended, 50 Ω RF port Single-ended or balanced LO input port Serial port interface (SPI) control on all functions Exposed pad, 7 mm × 7 mm, 48-lead LFCSP

APPLICATIONS Multiband/multistandard cellular base station diversity receivers Wideband radio link diversity downconverters Multimode cellular extenders and picocells

FUNCTIONAL BLOCK DIAGRAM

GND

LOO

UT+

VCO

VTU

NE

SPICONTROL

÷1 TO32

PLL REF BUFFERPFD/CP

FRACTIONAL DIVIDER

PLL3.3VLDO

VCOLDO

SPI2.5VLDO

DIV3.3VLDO

VCO

VCO

VCO

VCC10GND

GND

VCC1

EXTVCOIN+

EXTVCOIN–

DECL1DECL2DECL3DECL4DECL5

VCC9VCC8

RFBCT1RFIN1VCC7LDO2

RFIN2RFBCT2

VCC6VCC5VCC4

LOO

UT–

LDO

1

VCC

2

SDIO

SCLK C

S

IFO

UT2

+IF

OU

T2–

VCC

3D

NC

GN

D

VCC

12

LDO

4LD

O3

GN

D

CPO

UT

REF

IN

MU

XOU

T

IFO

UT+

IFO

UT–

VCC

11D

NC

GN

D

424347 37403839 414844454621

3

6

34

33

36

35

31

30

26

25

29

28

27

32

7

9

8

5

4

10

11

1214 15 16 17 18 19 22 23 20 21 2413

MU

X

ADRF6614

1411

5-00

1

Figure 1.

GENERAL DESCRIPTION The ADRF6614 is a dual radio frequency (RF) mixer and intermediate frequency (IF) amplifier with an integrated phase-locked loop (PLL) and voltage controlled oscillators (VCOs). The ADRF6614 uses revolutionary broadband square wave limiting local oscillator (LO) amplifiers to achieve a wideband RF bandwidth of 700 MHz to 3000 MHz. Unlike narrow-band sine wave LO amplifier solutions, the LO can be applied above or below the RF input over a wide bandwidth. Energy storage elements are not utilized in the LO amplifier, thus dc current consumption also decreases with decreasing LO frequency.

The ADRF6614 utilizes highly linear, doubly balanced passive mixer cores with integrated RF and LO balancing circuits to allow single-ended operation. Integrated RF baluns allow optimal performance over the 700 MHz to 3000 MHz RF input frequency. The balanced passive mixer arrangement provides outstanding LO to RF and LO to IF leakages, excellent RF to IF isolation, and excellent intermodulation performance over the full RF bandwidth.

The balanced mixer cores provide extremely high input linearity, allowing the device to be used in demanding wideband applications where in-band blocking signals may otherwise result in the degra-dation of dynamic range. Noise performance under blocking is comparable to narrow-band passive mixer designs. High linearity

IF buffer amplifiers follow the passive mixer cores, yielding typical power conversion gains of 9.0 dB, and can be matched to a wide range of output impedances.

The PLL architecture supports both integer-N and fractional-N operation and can generate the entire LO frequency range of 200 MHz to 2700 MHz using an external reference input frequency anywhere in the range of 12 MHz to 320 MHz. An external loop filter provides flexibility in trading off phase noise vs. acquisition time. To reduce fractional spurs in fractional-N mode, a Σ-Δ modulator controls the post VCO-programmable divider. The device integrates six VCO cores, four of which provide complete frequency coverage between 200 MHz and 2700 MHz, and meet the GSM phase noise requirements in the 800 MHz and 900 MHz bands. Two additional GSM only cores enable the ADRF6614 to meet the GSM phase noise requirements in the digital cellular system 1800 MHz (DCS1800) and personal communications service 1900 MHz (PCS1900) bands.

All features of the ADRF6614 are controlled via a 3-wire SPI, resulting in optimum performance and minimum external components.

The ADRF6614 is fabricated using a BiCMOS, high performance IC process. The device is available in a 7 mm × 7 mm, 48-lead LFCSP package and operates over a −40°C to +85°C temperature range. An evaluation board is available.

Page 2: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 2 of 61

TABLE OF CONTENTS Features .............................................................................................. 1 Applications ....................................................................................... 1 Functional Block Diagram .............................................................. 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 Specifications ..................................................................................... 3

RF Specifications .......................................................................... 3 Synthesizer/PLL Specifications ................................................... 4 VCO Specifications, Open-Loop ................................................ 7 Logic Input and Power Specifications ....................................... 8 Digital Logic Specifications ......................................................... 9

Absolute Maximum Ratings .......................................................... 10 Thermal Resistance .................................................................... 10 ESD Caution ................................................................................ 10

Pin Configuration and Function Descriptions ........................... 11 Typical Performance Characteristics ........................................... 13

Mixer, High Performance Mode ............................................... 13 Mixer, High Efficiency Mode .................................................... 22 Synthesizer ................................................................................... 23

Spurious Performance ............................................................... 32 Theory of Operation ...................................................................... 34

RF Subsystem .............................................................................. 34 External LO Generation ............................................................ 34 Internal LO Generation ............................................................. 34

Applications Information .............................................................. 38 Basic Connections by Pin Description ........................................ 39 Mixer Optimization ....................................................................... 40

RF Input Balun Insertion Loss Optimization ......................... 40 IIP3 Optimization ...................................................................... 40 VGS Programming ..................................................................... 41 Low-Pass Filter Programming .................................................. 41 GSM Mode of Operation........................................................... 43

Register Summary .......................................................................... 44 Register Details ............................................................................... 45 Evaluation Board ............................................................................ 55 Outline Dimensions ....................................................................... 61

Ordering Guide .......................................................................... 61

REVISION HISTORY 3/16—Revision 0: Initial Version

Page 3: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 3 of 61

SPECIFICATIONS RF SPECIFICATIONS TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, ZO = 50 Ω, frequency of the reference (fREF) = 122.88 MHz, fREF power = 4 dBm, fPFD = 1.536 MHz, low-side LO injection, optimum RF balun (RFB) and low-pass filter (LPF) settings, unless otherwise noted.

Table 1. High Performance Mode Parameter Test Conditions/Comments Min Typ Max Unit

RF INTERFACE Return Loss Tunable to >20 dB broadband via serial port 17.9 dB Input Impedance 50 Ω RF Frequency Range (fRF) 700 3000 MHz

IF OUTPUT INTERFACE Output Impedance Differential impedance, f = 200 MHz 300||1.5 Ω||pF IF Frequency Range (fIF) 40 500 MHz DC Bias Voltage1 Externally generated IFOUTx± V

EXTERNAL LO INPUT External LO Power Input −5 0 +5 dBm Return Loss −11 dB Input Impedance 50 Ω External VCO Input Frequency External VCO input supports divide by 1, 2, 4, 8, 16, and 32 250 5700 MHz LO Frequency Range Low-side or high-side LO, internally or externally

generated 250 2850 MHz

DYNAMIC PERFORMANCE Power Conversion Gain 4:1 IF port transformer and printed circuit board (PCB) loss

removed 9.0 dB

Voltage Conversion Gain ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω 15.0 dB SSB Noise Figure 11.3 dB IF Output Phase Noise Under Blocking 10 dBm blocker present 10 MHz above desired the RF input,

fRF = 1900 MHz, fBLOCK = 1910 MHz, fLO = 1697 MHz, fIF = 203 MHz, IFBLOCKER = 213 MHz

−153 dBc/Hz

Input Third-Order Intercept (IIP3) fRF1 = 1900 MHz, fRF2 = 1901 MHz, fLO = 1697 MHz, each RF tone at −10 dBm

30 dBm

Input Second-Order Intercept (IIP2) fRF1 = 1900 MHz, fRF2 = 1950 MHz, fLO = 1697 MHz, each RF tone at −10 dBm

60 dBm

Input 1 dB Compression Point (P1dB) 10.6 dBm LO to IF Output Leakage Unfiltered IF output −35 dBm LO to RF Input Leakage −45 dBm RF to IF Output Isolation −22 dB IF/2 Spurious −10 dBm input power −72 dBc IF/3 Spurious −10 dBm input power −69 dBc

POWER INTERFACE VCC1, VCC2, VCC7, VCC12

Supply Voltage 3.55 3.7 3.85 V Quiescent Current 260 mA

VCC3, VCC4, VCC5, VCC6, VCC8, VCC9, VCC10, VCC11, IFOUT1+, IFOUT1−, IFOUT2+, IFOUT2−

Supply Voltage 3.55 5 5.25 V Quiescent Current 214 mA

LO OUTPUT (LOOUT+, LOOUT−) Frequency Range (fLO) 200 2700 MHz Output Level Adjustable via SPI in four steps, in 50 Ω balanced load −5 +7 dBm Output Impedance Balanced 50 Ω

1 Supply voltage must be applied from the external circuit through choke inductors.

Page 4: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 4 of 61

TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, ZO = 50 Ω, fREF = 122.88 MHz, fREF power = 4 dBm, fPFD = 1.536 MHz, low-side LO injection, optimum RFB and LPF settings, unless otherwise noted.

Table 2. High Efficiency Mode Parameter Test Conditions/Comments Min Typ Max Unit DYNAMIC PERFORMANCE

Power Conversion Gain 4:1 IF port transformer and PCB loss removed 8.7 dB Voltage Conversion Gain ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω 14.7 dB SSB Noise Figure 10.7 dB IIP3 fRF1 = 1900 MHz, fRF2 = 1901 MHz, fLO = 1697 MHz,

each RF tone at −10 dBm 20.5 dBm

IIP2 fRF1 = 1900 MHz, fRF2 = 1950 MHz, fLO = 1697 MHz, each RF tone at −10 dBm

53 dBm

Input P1dB 8.2 dBm LO to IF Output Leakage Unfiltered IF output −45.0 dBm LO to RF Input Leakage −52.0 dBm RF to IF Output Isolation −22.8 dB IF/2 Spurious −10 dBm input power −58 dBc IF/3 Spurious −10 dBm input power −58 dBc

POWER INTERFACE VCC1, VCC2, VCC7, VCC12

Supply Voltage 3.55 3.7 3.85 V Quiescent Current 260 mA

VCC3, VCC4, VCC5, VCC6, VCC8, VCC9, VCC10, VCC11, IFOUT1+, IFOUT1−, IFOUT2+, IFOUT2−

Supply Voltage 3.55 3.7 5.25 V Quiescent Current 210 mA

SYNTHESIZER/PLL SPECIFICATIONS High performance mode, TA = 25°C, measured on LO output, fLO = 1700 MHz, ZO = 50 Ω, fREF = 122.88 MHz, fPFD = 1.536 MHz, fREF power (PREFIN) = 4 dBm, CSCALE = 8 mA, bleed = 0 µA, ABLDLY = 0.9 ns, integer mode loop filter, unless otherwise noted.

Table 3. Integer Mode Parameter Test Conditions/Comments Min Typ Max Unit SYNTHESIZER SPECIFICATIONS Synthesizer specifications referenced to 1 × LO

Frequency Range (fLO) Internally generated LO 200 2700 MHz Figure of Merit (FOM)1 PREFIN = 6.5 dBm −223 dBc/Hz/Hz Phase and Frequency Detector (PFD)

Frequency (fPFD) 0.8 70 MHz

Reference Spurs fPFD = 1.536 MHz 1 × fPFD −105 dBc 4 × fPFD −105 dBc >4 × fPFD −90 dBc

CHARGE PUMP Pump Current Programmable to 250 µA, 500 µA, …, 8 mA 8 8.75 mA Output Compliance Range 0.7 2.5 V

REFERENCE CHARACTERISTICS REFIN, MUXOUT pins REFIN Input Frequency 12 320 MHz REFIN Input Capacitance 4 pF Reference Divider Value Programmable to 0.5, 1, 2, 3, …, 2047 0.5 2047 MUXOUT Output Level VOL (lock detect output selected) 0.25 V VOH (lock detect output selected) 2.7 V MUXOUT Duty Cycle Reference output selected 50 %

Page 5: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 5 of 61

Parameter Test Conditions/Comments Min Typ Max Unit VCO_0

Phase Noise, Locked fLO = 2.55 GHz 1 kHz offset −87 dBc/Hz 50 kHz offset −94.9 dBc/Hz 100 kHz offset −103.3 dBc/Hz 1 MHz offset −132.9 dBc/Hz 10 MHz offset −154.1 dBc/Hz 40 MHz offset −155.2 dBc/Hz Integrated Phase Noise 1 kHz to 40 MHz integration bandwidth 0.87 °rms

VCO_1 Phase Noise, Locked fLO = 2.22 GHz 1 kHz offset −90 dBc/Hz 50 kHz offset −98.4 dBc/Hz 100 kHz offset −106.5 dBc/Hz 1 MHz offset −136.1 dBc/Hz 10 MHz offset −154.8 dBc/Hz 40 MHz offset −155.5 dBc/Hz Integrated Phase Noise 1 kHz to 40 MHz integration bandwidth 0.63 °rms

VCO_2 Phase Noise, Locked fLO = 1.9 GHz 1 kHz offset −90 dBc/Hz 50 kHz offset −98.1 dBc/Hz 100 kHz offset −109.8 dBc/Hz 1 MHz offset −137.1 dBc/Hz 10 MHz offset −155.7 dBc/Hz 40 MHz offset −156.2 dBc/Hz Integrated Phase Noise 1 kHz to 40 MHz integration bandwidth 0.61 °rms

VCO_3 Phase Noise, Locked fLO = 1.6 GHz 1 kHz offset −89 dBc/Hz 50 kHz offset −97.2 dBc/Hz 100 kHz offset −107 dBc/Hz 1 MHz offset −136.2 dBc/Hz 10 MHz offset −155.7 dBc/Hz 40 MHz offset −157.3 dBc/Hz Integrated Phase Noise 1 kHz to 40 MHz integration bandwidth 0.64 °rms

VCO_4 Phase Noise, Locked fLO = 1.57 GHz 1 kHz offset −90 dBc/Hz 50 kHz offset −109 dBc/Hz 100 kHz offset −119 dBc/Hz 800 kHz offset −144 dBc/Hz 1 MHz offset −145 dBc/Hz 10 MHz offset −156 dBc/Hz 40 MHz offset −156 dBc/Hz Integrated Phase Noise 1 kHz to 40 MHz integration bandwidth 0.26 °rms

VCO_5 Phase Noise, Locked fLO = 1.68 GHz

1 kHz offset −93 dBc/Hz 50 kHz offset −107 dBc/Hz 100 kHz offset −118 dBc/Hz 800 kHz offset −144 dBc/Hz 1 MHz offset −145 dBc/Hz

Page 6: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 6 of 61

Parameter Test Conditions/Comments Min Typ Max Unit 10 MHz offset −157 dBc/Hz 40 MHz offset −157.5 dBc/Hz

Integrated Phase Noise 1 kHz to 40 MHz integration bandwidth 0.27 °rms 1 The FOM is computed as phase noise (dBc/Hz) –10log10(fPFD) – 20log10(fLO/fPFD). The FOM was measured across the full LO range, with fREF = 122.88 MHz and fREF power =

6.5 dBm with a 1.536 MHz fPFD. The FOM was computed at 50 kHz offset.

High performance mode, TA = 25°C, measured on LO output, fLO = 1700 MHz, ZO = 50 Ω, fREF = 122.88 MHz, fPFD = 30.72 MHz, fREF power = 4 dBm, CSCALE = 250 µA, bleed = 93.75 µA, ABLDLY = 0 ns, fractional mode loop filter, unless otherwise noted.

Table 4. Fractional Mode Parameter Test Conditions/Comments Min Typ Max Unit SYNTHESIZER SPECIFICATIONS Synthesizer specifications referenced to 1 × LO

FOM1 PREFIN = 6.5 dBm 219 dBc/Hz/Hz REFERENCE CHARACTERISTICS REFIN, MUXOUT pins

VCO_0 Phase Noise, Locked fLO = 2.55 GHz 1 kHz offset −92.5 dBc/Hz 50 kHz offset −97.4 dBc/Hz 100 kHz offset −109.7 dBc/Hz 1 MHz offset −137.6 dBc/Hz 10 MHz offset −153.6 dBc/Hz 40 MHz offset −155.5 dBc/Hz Integrated Phase Noise 1 kHz to 40 MHz integration bandwidth 0.36 °rms

VCO_1 Phase Noise, Locked fLO = 2.22 GHz 1 kHz offset −93.6 dBc/Hz 50 kHz offset −101.8 dBc/Hz 100 kHz offset −112.5 dBc/Hz 1 MHz offset −140.5 dBc/Hz 10 MHz offset −154.3 dBc/Hz 40 MHz offset −155.3 dBc/Hz Integrated Phase Noise 1 kHz to 40 MHz integration bandwidth 0.32 °rms

VCO_2 Phase Noise, Locked fLO = 1.9 GHz 1 kHz offset −94.2 dBc/Hz 50 kHz offset −101.7 dBc/Hz 100 kHz offset −112.4 dBc/Hz 1 MHz offset −141.3 dBc/Hz 10 MHz offset −155.8 dBc/Hz 40 MHz offset −156.8 dBc/Hz Integrated Phase Noise 1 kHz to 40 MHz integration bandwidth 0.32 °rms

VCO_3 Phase Noise, Locked fLO = 1.6 GHz 1 kHz offset −93.1 dBc/Hz 50 kHz offset −99.8 dBc/Hz 100 kHz offset −110.9 dBc/Hz 1 MHz offset −140.2 dBc/Hz 10 MHz offset −155.7 dBc/Hz 40 MHz offset −157.2 dBc/Hz Integrated Phase Noise 1 kHz to 40 MHz integration bandwidth 0.33 °rms

1 The FOM is computed as phase noise (dBc/Hz) − 10log10(fPFD) – 20log10(fLO/fPFD). The FOM was measured across the full LO range, with fREF = 122.88 MHz and fREF power =

6.5 dBm with a 30.72 MHz fPFD. The FOM was computed at 45 kHz offset.

Page 7: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 7 of 61

VCO SPECIFICATIONS, OPEN-LOOP High performance mode, TA = 25°C, measured on LO output, unless otherwise noted.

Table 5. Parameter Test Conditions/Comments Min Typ Max Unit VCO_0 PHASE NOISE fLO = 2.55 GHz 1 kHz offset −50 dBc/Hz 50 kHz offset −104.4 dBc/Hz 100 kHz offset −112.6 dBc/Hz 1 MHz offset −137.7 dBc/Hz 10 MHz offset −154 dBc/Hz 40 MHz offset −155.1 dBc/Hz VCO_1 PHASE NOISE fLO = 2.15 GHz 1 kHz offset −54 dBc/Hz 50 kHz offset −106.1 dBc/Hz 100 kHz offset −115 dBc/Hz 1 MHz offset −138.9 dBc/Hz 10 MHz offset −155.8 dBc/Hz 40 MHz offset −155.2 dBc/Hz VCO_2 PHASE NOISE fLO = 1.9 GHz 1 kHz offset −53.6 dBc/Hz 50 kHz offset −106.6 dBc/Hz 100 kHz offset −114.6 dBc/Hz 1 MHz offset −140.8 dBc/Hz 10 MHz offset −155.4 dBc/Hz 40 MHz offset −156.3 dBc/Hz VCO_3 PHASE NOISE fLO = 1.6 GHz 1 kHz offset −48.5 dBc/Hz 50 kHz offset −106 dBc/Hz 100 kHz offset −115.3 dBc/Hz 800 kHz offset −139.2 dBc/Hz 1 MHz offset −140.2 dBc/Hz 10 MHz offset −157.7 dBc/Hz 40 MHz offset −156.3 dBc/Hz VCO_4 PHASE NOISE fVCO = 3.14 GHz 1 kHz offset −53.8 dBc/Hz 50 kHz offset −110.3 dBc/Hz 100 kHz offset −118 dBc/Hz 800 kHz offset −139.5 dBc/Hz 1 MHz offset −140.6 dBc/Hz 10 MHz offset −155.4 dBc/Hz 40 MHz offset −157.4 dBc/Hz VCO_5 PHASE NOISE fVCO = 3.36 GHz 1 kHz offset −54 dBc/Hz 50 kHz offset −108.3 dBc/Hz 100 kHz offset −116.3 dBc/Hz 800 kHz offset −138.5 dBc/Hz 1 MHz offset −140 dBc/Hz 10 MHz offset −156.3 dBc/Hz 40 MHz offset −157.8 dBc/Hz

Page 8: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 8 of 61

LOGIC INPUT/OUTPUT AND POWER SPECIFICATIONS TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, ZO = 50 Ω, fREF = 122.88 MHz, fREF power = 4 dBm, fPFD = 1.536 MHz, low-side LO injection, optimum RFB and LPF settings, unless otherwise noted.

Table 6. Parameter Test Conditions/Comments Min Typ Max Unit LOGIC INPUT/OUTPUTS SCLK, SDIO, CS

Input Voltage High, VIH 1.4 3.3 V Low, VIL 0 0.7 V

Output Voltage High, VOH IOH = −100 µA 2.3 V Low, VOL IOL = 100 µA 0.2 V

Input Current, IINH/IINL 0.1 µA POWER SUPPLIES

High Performance Mode Voltage Range

VCC1, VCC2, VCC7, VCC12 3.55 3.7 5.25 V VCC3, VCC4, VCC5, VCC6, VCC8, VCC9, VCC10,

VCC11, IFOUT1+, IFOUT1−, IFOUT2+, IFOUT2− 4.75 5 5.25 V

Power Dissipation Internal LO mode (internal PLL) External LO output enabled 2.7 W External LO output disabled 2.5 W

High Efficiency Mode Voltage Range

VCC1, VCC2, VCC3, VCC4, VCC5, VCC6, VCC7, VCC8, VCC9, VCC10, VCC11, VCC12, IFOUT1+, IFOUT1−, IFOUT2+, IFOUT2−

3.55 3.7 3.85 V

Power Dissipation Internal LO mode (internal PLL) External LO output enabled 2.0 W External LO output disabled 1.8 W

Page 9: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 9 of 61

DIGITAL LOGIC SPECIFICATIONS

Table 7. Symbol Description Min Typ Max Unit tCLK Serial clock period 38 ns tDS Setup time between data and rising edge of SCLK 8 ns tDH Hold time between data and rising edge of SCLK 8 ns tS Setup time between falling edge of CS and SCLK 10 ns

tH Hold time between rising edge of CS and SCLK 10 ns

tHIGH Minimum period for SCLK to be in a logic high state 10 ns tLOW Minimum period for SCLK to be in a logic low state 10 ns tACCESS Maximum delay between falling edge of SCLK and output data Valid for a read operation 231 ns tZ Maximum delay between CS deactivation and SDIO bus return to high impedance 5 ns

tS

tDS

tDH

tHIGH

tLOW

tCLK tH

DON'T CARE

DON'T CARE

A5 A4 A3 A2 A1 A0 D15 D14 D13 D3 D2 D1 D0 DON'T CARE

DON'T CARESCLK

SDIO R/W

tZ

tACCESS

A6

CS

1411

5-00

2

Figure 2. Setup and Hold Timing Measurements

Page 10: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 10 of 61

ABSOLUTE MAXIMUM RATINGS Table 8. Parameter Rating Supply Voltage (VCC1, VCC2, VCC3,

VCC4, VCC5, VCC6, VCC7, VCC8, VCC9, VCC10, VCC11, VCC12, IFOUT1+, IFOUT1−, IFOUT2+, IFOUT2−)

−0.5 V to +5.5 V

Digital Input/Output (SCLK, SDIO, CS) −0.3 V to +3.6 V

RFINx 20 dBm EXTVCOIN+, EXTVCOIN− 13 dBm Maximum Junction Temperature 150°C Operating Temperature Range −40°C to +85°C Storage Temperature Range −65°C to +150°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE θJC is specified for the worst case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 9. Thermal Resistance Package Type θJC Unit 48-Lead LFCSP 1.62 °C/W

ESD CAUTION

Page 11: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 11 of 61

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

13 14 15 16 17 18 19 20 21 22 23 24

48 47 46 45 44 43 42 41 40 39 38 37

1

2

3

4

5

6

7

8

9

10

11

12

35

36

34

33

32

31

30

29

28

27

26

25

ADRF6614TOP VIEW

(Not to Scale)

LO

OU

T+

LO

OU

T–

LD

O1

VC

C2

SD

IO

SC

LK

CS

VC

C3

DN

C

IFO

UT

2+

IFO

UT

2–

GN

D

GN

D

CP

OU

T

VC

C12

LD

O4

LD

O3

RE

FIN

MU

XO

UT

VC

C11

DN

C

IFO

UT

1+

IFO

UT

1–

GN

D

GND

VCOVTUNE

GND

EXTVCOIN+

EXTVCOIN–

GND

VCC1

DECL1

DECL2

DECL3

DECL4

DECL5

RFIN1

VCC10

VCC9

VCC8

VCC7

LDO2

VCC6

VCC5

VCC4

RFIN2

RFBCT2

RFBCT1

NOTES1. DNC = DO NOT CONNECT.2. THE EXPOSED PAD MUST BE CONNECTED TO A GROUND PLANE WITH LOW THERMAL IMPEDANCE. 14

115-

003

Figure 3. Pin Configuration

Table 10. Pin Function Descriptions Pin No. Mnemonic Description 1 GND Common Ground Connection for External Loop Filter. 2 VCOVTUNE Control Voltage for Internal VCO. 3, 6 GND Common Ground for External VCO. 4, 5 EXTVCOIN+, EXTVCOIN− Inputs from External VCO to Internal Divider. 7 VCC1 3.7 V VCO Supply. 8, 9 DECL1, DECL2 LDO Output Decouplers for VCO. 10, 11 DECL3, DECL4 External Decouplers for VCO Buffer. 12 DECL5 External Decoupler for VCO Circuitry. 13, 14 LOOUT+, LOOUT− Differential Outputs of Internally Generated LO. 15 LDO1 External Decoupling for Internal 2.5 V SPI Port LDO. 16 VCC2 3.7 V Supply for Programmable SPI Port. 17 SDIO Serial Data Input/Output for Programmable SPI Port. 18 SCLK Clock for Programmable SPI Port. 19 CS SPI Chip Select, Active Low.

20, 41 VCC3, VCC11 5 V Biases for Channel 1 and Channel 2 IF. 21, 40 DNC Do Not Connect. Do not connect these pins externally. 22, 23 IFOUT2+, IFOUT2− Channel 2 Differential IF Outputs. 24, 37 GND Ground Connections for Channel 1 and Channel 2 IF Stage. 25 RFBCT2 Balun Center Tap Connection for Channel 2 RF Input. 26 RFIN2 Channel 2 RF Input. 27, 28, 29 VCC4, VCC5, VCC6 5 V Supplies for Mixer LO Amplifiers. 30 LDO2 External Decoupling for Internal 3.3 V PLL/Divider LDO. 31 VCC7 3.7 V Supply for Mixer LO Divider Chain. 32, 33, 34 VCC8, VCC9, VCC10 5 V Supplies for Mixer LO Amplifiers. 35 RFIN1 Channel 1 RF Input. 36 RFBCT1 Balun Center Tap Connection for Channel 1 RF Input. 38, 39 IFOUT1−, IFOUT1+ Channel 1 Differential IF Outputs. 42 MUXOUT Internal Multiplexer Output.

Page 12: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 12 of 61

Pin No. Mnemonic Description 43 REFIN Reference Input for Internal PLL (Single-Ended, CMOS). 44 LDO3 External Decoupling for Internal 2.5 V PLL LDO. 45 LDO4 External Decoupling for Internal 3.3 V PLL LDO. 46 VCC12 3.7 V Supply for Internal PLL. 47 CPOUT Charge Pump Output. 48 GND Common Ground for External Charge Pump. EPAD Exposed Pad. The exposed pad must be connected to a ground plane with low thermal impedance.

Page 13: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 13 of 61

TYPICAL PERFORMANCE CHARACTERISTICS MIXER, HIGH PERFORMANCE MODE TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, ZO = 50 Ω, fREF = 122.88 MHz, fREF power = 4 dBm, low-side LO injection, optimum RFB and LPF settings, unless otherwise noted. For integer mode: fPFD = 1.536 MHz, CSCALE = 8 mA, bleed = 0 µA, ABLDLY = 0.9 ns. For fractional mode: fPFD = 30.72 MHz, CSCALE = 250 µA, bleed = 93.75 µA, ABLDLY = 0.0 ns.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

POW

ER D

ISSI

PATI

ON

(W)

RF FREQUENCY (MHz)

TA = –40°C, HIGH-SIDE LOTA = +25°C, HIGH-SIDE LOTA = +85°C, HIGH-SIDE LOTA = –40°C, LOW-SIDE LOTA = +25°C, LOW-SIDE LOTA = +85°C, LOW-SIDE LO

141 1

5-00

4

Figure 4. Power Dissipation vs. RF Frequency over Three Temperatures

4.04.55.05.56.06.57.07.58.08.59.09.5

10.010.511.0

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (MHz)

TA = –40°C, HIGH-SIDE LOTA = +25°C, HIGH-SIDE LOTA = +85°C, HIGH-SIDE LOTA = –40°C, LOW-SIDE LOTA = +25°C, LOW-SIDE LOTA = +85°C, LOW-SIDE LO

1411

5-30

5

Figure 5. Power Conversion Gain vs. RF Frequency over Three Temperatures,

IF Balun and Board Loss Removed

10121416182022242628303234363840

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

INPU

T IP

3 (d

Bm

)

RF FREQUENCY (MHz)

TA = –40°C, HIGH-SIDE LOTA = +25°C, HIGH-SIDE LOTA = +85°C, HIGH-SIDE LOTA = –40°C, LOW-SIDE LOTA = +25°C, LOW-SIDE LOTA = +85°C, LOW-SIDE LO

1411

5-00

6

Figure 6. Input IP3 vs. RF Frequency over Three Temperatures

30

35

40

45

50

55

60

65

70

75

80

85

90

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

INPU

T IP

2 (d

Bm

)

RF FREQUENCY (MHz)

TA = –40°C, HIGH-SIDE LOTA = +25°C, HIGH-SIDE LOTA = +85°C, HIGH-SIDE LOTA = –40°C, LOW-SIDE LOTA = +25°C, LOW-SIDE LOTA = +85°C, LOW-SIDE LO

1411

5-00

7

Figure 7. Input IP2 vs. RF Frequency over Three Temperatures

5

7

9

11

13

15

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

INPU

T P1

dB (d

Bm

)

RF FREQUENCY (MHz)

TA = –40°C, HIGH-SIDE LOTA = +25°C, HIGH-SIDE LOTA = +85°C, HIGH-SIDE LOTA = –40°C, LOW-SIDE LOTA = +25°C, LOW-SIDE LOTA = +85°C, LOW-SIDE LO

1411

5-00

8

Figure 8. Input P1dB vs. RF Frequency over Three Temperatures

8

9

10

11

12

13

14

15

16

17

18

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

SSB

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (MHz)

–40°C LOCKED–40°C EXTERNAL LO+25°C LOCKED+25°C EXTERNAL LO+85°C LOCKED+85°C EXTERNAL LO

141 1

5-10

9

Figure 9. SSB Noise Figure vs. RF Frequency over Three Temperatures

Page 14: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 14 of 61

1.5

1.7

1.9

2.1

2.3

2.5

2.7

–40 –30 –20 –10 0 10 20 30 40 50 60 70 80

POW

ER D

ISSI

PATI

ON

(W)

TEMPERATURE (°C)

RF = 900MHz, LOW-SIDE LORF = 1900MHz, LOW-SIDE LORF = 2500MHz, LOW-SIDE LORF = 900MHz, HIGH-SIDE LORF = 1900MHz, HIGH-SIDE LORF = 2500MHz, HIGH-SIDE LO

1411

5-01

0

Figure 10. Power Dissipation vs. Temperature for Three RF Frequencies

3.03.54.04.55.05.56.06.57.07.58.08.59.09.5

10.0

–40 –30 –20 –10 0 10 20 30 40 50 60 70 80

CO

NVE

RSI

ON

GA

IN (d

B)

TEMPERATURE (°C)

RF = 900MHz, LOW-SIDE LORF = 1900MHz, LOW-SIDE LORF = 2500MHz, LOW-SIDE LORF = 900MHz, HIGH-SIDE LORF = 1900MHz, HIGH-SIDE LORF = 2500MHz, HIGH-SIDE LO

1411

5-01

1

Figure 11. Power Conversion Gain vs. Temperature for Three RF Frequencies

20212223242526272829303132333435

–40 –30 –20 –10 0 10 20 30 40 50 60 70 80

INPU

T IP

3 (d

Bm

)

TEMPERATURE (°C)

RF = 900MHz, LOW-SIDE LORF = 1900MHz, LOW-SIDE LORF = 2500MHz, LOW-SIDE LORF = 900MHz, HIGH-SIDE LORF = 1900MHz, HIGH-SIDE LORF = 2500MHz, HIGH-SIDE LO

141 1

5-01

2

Figure 12. Input IP3 vs. Temperature for Three RF Frequencies

40424446485052545658606264666870

–40 –30 –20 –10 0 10 20 30 40 50 60 70 80

INPU

T IP

2 (d

Bm

)

TEMPERATURE (°C)

RF = 900MHz, LOW-SIDE LORF = 1900MHz, LOW-SIDE LORF = 2500MHz, LOW-SIDE LORF = 900MHz, HIGH-SIDE LORF = 1900MHz, HIGH-SIDE LORF = 2500MHz, HIGH-SIDE LO

1411

5-01

3

Figure 13. Input IP2 vs. Temperature for Three RF Frequencies

TEMPERATURE (°C)

5

6

7

8

9

10

11

12

13

14

15

–40 –30 –20 –10 0 10 20 30 40 50 60 70 80

INPU

T P1

dB (d

Bm

)

RF = 900MHz, LOW-SIDE LORF = 1900MHz, LOW-SIDE LORF = 2700MHz, LOW-SIDE LORF = 900MHz, HIGH-SIDE LORF = 1900MHz, HIGH-SIDE LORF = 2700MHz, HIGH-SIDE LO

1411

5-31

4

Figure 14. Input P1dB vs. Temperature for Three RF Frequencies

8

9

10

11

12

13

14

15

16

17

18

–40 –20 0 20 40 60 80

SSB

NO

ISE

FIG

UR

E (d

B)

TEMPERATURE (°C)

RF = 900MHzRF = 1900MHzRF = 2500MHz

1411

5-11

5

Figure 15. SSB Noise Figure vs. Temperature for Three RF Frequencies

Page 15: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 15 of 61

2.10

2.15

2.20

2.25

2.30

2.35

2.40

2.45

2.50

2.55

40 80 120 160 200 240 280 320 360 400 440 480

POW

ER D

ISSI

PATI

ON

(W)

IF FREQUENCY (MHz)

RF = 2500MHz, LOW-SIDE LORF = 2500MHz, HIGH-SIDE LO

RF = 1900MHz, LOW-SIDE LORF = 1900MHz, HIGH-SIDE LO

RF = 900MHz, LOW-SIDE LORF = 900MHz, HIGH-SIDE LO

1411

5-01

6

Figure 16. Power Dissipation vs. IF Frequency for Three RF Frequencies

3.03.54.04.55.05.56.06.57.07.58.08.59.09.5

10.0

40 80 120 160 200 240 280 320 360 400 440 480

CO

NVE

RSI

ON

GA

IN (d

B)

IF FREQUENCY (MHz)

RF = 900MHz, LOW-SIDE LORF = 1900MHz, LOW-SIDE LORF = 2500MHz, LOW-SIDE LORF = 900MHz, HIGH-SIDE LORF = 1900MHz, HIGH-SIDE LORF = 2500MHz, HIGH-SIDE LO

1411

5-01

7

Figure 17. Power Conversion Gain vs. IF Frequency for Three RF Frequencies

10

12

14

16

18

20

22

24

26

28

30

32

34

36

40 80 120 160 200 240 280 320 360 400 440 480

INPU

T IP

3 (d

Bm

)

IF FREQUENCY (MHz)

RF = 900MHz, LOW-SIDE LORF = 1900MHz, LOW-SIDE LORF = 2500MHz, LOW-SIDE LORF = 900MHz, HIGH-SIDE LORF = 1900MHz, HIGH-SIDE LORF = 2500MHz, HIGH-SIDE LO

1411

5-01

8

Figure 18. Input IP3 vs. IF Frequency for Three RF Frequencies

30

35

40

45

50

55

60

65

70

75

80

85

40 80 120 160 200 240 280 320 360 400 440 480

INPU

T IP

2 (d

Bm

)

IF FREQUENCY (MHz)

RF = 900MHz, LOW-SIDE LORF = 1900MHz, LOW-SIDE LORF = 2500MHz, LOW-SIDE LORF = 900MHz, HIGH-SIDE LORF = 1900MHz, HIGH-SIDE LORF = 2500MHz, HIGH-SIDE LO

1411

5-01

9

Figure 19. Input IP2 vs. IF Frequency for Three RF Frequencies

5

6

7

8

9

10

11

12

13

14

15

40 80 120 160 200 240 280 320 360 400 440 480

INPU

T P1

dB (d

Bm

)

IF FREQUENCY (MHz)

RF = 900MHz, LOW-SIDE LORF = 1900MHz, LOW-SIDE LORF = 2500MHz, LOW-SIDE LORF = 900MHz, HIGH-SIDE LORF = 1900MHz, HIGH-SIDE LORF = 2500MHz, HIGH-SIDE LO

1411

5-02

0

Figure 20. Input P1dB vs. IF Frequency for Three RF Frequencies

8

9

10

11

12

13

14

15

16

17

18

50 100 150 200 250 300 350 400 450

SSB

NO

ISE

FIG

UR

E (d

B)

IF FREQUENCY (MHz)

–40°C, LOW-SIDE LO

–40°C, HIGH-SIDE LO

+25°C, LOW-SIDE LO

+25°C, HIGH-SIDE LO

+85°C, LOW-SIDE LO

+85°C, HIGH-SIDE LO

1411

5-12

1

Figure 21. SSB Noise Figure vs. IF Frequency for Three Temperatures

Page 16: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 16 of 61

–90–88–86–84–82–80–78–76–74–72–70–68–66–64–62–60–58–56–54–52–50

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

IF/2

SP

UR

IOU

S (

dB

)

RF FREQUENCY (MHz)

TA = –40°C, HIGH-SIDE LOTA = +25°C, HIGH-SIDE LOTA = +85°C, HIGH-SIDE LOTA = –40°C, LOW-SIDE LOTA = +25°C, LOW-SIDE LOTA = +85°C, LOW-SIDE LO

1411

5-02

2Figure 22. IF/2 Spurious vs. RF Frequency over Three Temperatures

–90–88–86–84–82–80–78–76–74–72–70–68–66–64–62–60–58–56–54–52–50

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

IF/3

SP

UR

IOU

S (

dB

)

RF FREQUENCY (MHz)

TA = –40°C, HIGH-SIDE LOTA = +25°C, HIGH-SIDE LOTA = +85°C, HIGH-SIDE LOTA = –40°C, LOW-SIDE LOTA = +25°C, LOW-SIDE LOTA = +85°C, LOW-SIDE LO

1411

5-12

3

Figure 23. IF/3 Spurious vs. RF Frequency over Three Temperatures

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

RF

TO

IF

IS

OLA

TIO

N (

dB

c)

RF FREQUENCY (MHz)

–46–44–42–40–38–36–34–32–30–28–26–24–22–20–18–16–14–12–10–8–6–4–2

0TA = –40°C, HIGH-SIDE LOTA = +25°C, HIGH-SIDE LOTA = +85°C, HIGH-SIDE LOTA = –40°C, LOW-SIDE LOTA = +25°C, LOW-SIDE LOTA = +85°C, LOW-SIDE LO

1411

5-02

4

Figure 24. RF to IF Isolation vs. RF Frequency over Three Temperatures

–52

–48

–44

–40

–36

–32

–28

–24

–20

–16

–12

–8

–4

0

300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700

LO

TO

IF

LE

AK

AG

E (

dB

m)

LO FREQUENCY (MHz)

TA = –40°CTA = +25°CTA = +85°C

1411

5-02

5

Figure 25. LO to IF Leakage vs. LO Frequency over Three Temperatures

–68–64–60–56–52–48–44–40–36–32–28–24–20–16–12

–8–40

300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700

LO

TO

RF

LE

AK

AG

E (

dB

m)

LO FREQUENCY (MHz)

TA = –40°CTA = +25°CTA = +85°C

1411

5-02

6

Figure 26. LO to RF Leakage vs. LO Frequency over Three Temperatures

–64

–60

–56

–52

–48

–44

–40

–36

–32

–28

–24

–20

–16

–12

–8

–4

0

300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700

2 ×

LO

L

EA

KA

GE

(d

Bm

)

LO FREQUENCY (MHz)

2 × LO TO IF

TA = –40°CTA = +25°CTA = +85°C

2 × LO TO RF

1411

5-02

7

Figure 27. 2 × LO Leakage vs. LO Frequency over Three Temperatures (2 × LO to RF and 2 × LO to IF)

Page 17: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 17 of 61

–64–60–56–52–48–44–40–36–32–28–24–20–16–12–8–40

300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700

3 ×

LO L

EAK

AG

E (d

Bm

)

LO FREQUENCY (MHz)

TA = –40°CTA = +25°CTA = +85°C

3 × LO TO IF

3 × LO TO RF

1411

5-02

8

Figure 28. 3 × LO Leakage vs. LO Frequency over Three Temperatures

(3 × LO to RF and 3 × LO to IF)

RET

UR

N L

OSS

(dB

m)

RF FREQUENCY (MHz)

–35

–30

–25

–20

–15

–10

–5

0

500 1000 1500 2000 2500 3000

HIGH-SIDE LOLOW-SIDE LO

1411

5-12

9

Figure 29. RF Port Return Loss, Fixed IF LO Return Loss

–30

–25

–20

–15

–10

–5

0

100 600 1100 1600 2100 2600

RET

UR

N L

OSS

(dB

)

LO FREQUENCY (MHz) 1411

5-13

0

Figure 30. LO Return Loss

100

7.70 7.75 7.80 7.85 7.90 7.95

CONVERSION GAIN (dB)

8.00 8.05 8.10

80

60

40

20

0

PER

CEN

T (%

)

MEAN: 7.94SD: 0.07%

1411

5-13

1

Figure 31. Conversion Gain Distribution

MEAN: 31.23SD: 0.34%

100

27 28 29 30

INPUT IP3 (dBm)

31 32 353433

80

60

40

20

0

PER

CEN

T (%

)

1411

5-13

2

Figure 32. Input IP3 Distribution

MEAN: 10.59SD: 0.39%

100

10.0 10.1 10.2 10.3 10.4 10.5

INPUT P1dB (dBm)

10.6 10.7 11.010.910.8

80

60

40

20

0

PER

CEN

T (%

)

1411

5-13

3

Figure 33. Input P1dB Distribution

Page 18: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 18 of 61

RES

ISTA

NC

E (Ω

)

1200

1100

1000

900

800

700

600

500

400

300

200

100

0

10

8

6

4

2

0

CA

PAC

ITA

NC

E (p

F)

0 50 100 150 200 250 300 350 400 450 500

FREQUENCY (MHz) 1411

5-33

4

Figure 34. IF Output Impedance (R Parallel C Equivalent)

0

1

2

3

4

5

6

7

8

9

10

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (MHz)

BAL_COUT = 0BAL_COUT = 2BAL_COUT = 4BAL_COUT = 6BAL_COUT = 8BAL_COUT = 10BAL_COUT = 12BAL_COUT = 14

1411

5-03

5

Figure 35. Conversion Gain vs. RF Frequency for All RFB Settings,

VGS Bit and LPF Use Optimum Settings

56789

1011121314151617181920

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

INPU

T P1

dB (d

Bm

)

RF FREQUENCY (MHz)

BAL_COUT = 0BAL_COUT = 2BAL_COUT = 4BAL_COUT = 6BAL_COUT = 8BAL_COUT = 10BAL_COUT = 12BAL_COUT = 14

1411

5-03

6

Figure 36. Input P1dB vs. RF Frequency for All RFB Settings,

VGS Bit and LPF Use Optimum Settings

20

25

30

35

40

45

50

55

60

65

70

75

80

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

IF C

HA

NN

EL-T

O-C

HA

NN

EL

ISO

LATI

ON

(dB

c)

RF FREQUENCY (MHz)

TA = –40°C, HIGH-SIDE LOTA = +25°C, HIGH-SIDE LOTA = +85°C, HIGH-SIDE LOTA = –40°C, LOW-SIDE LOTA = +25°C, LOW-SIDE LOTA = +85°C, LOW-SIDE LO

1411

5-13

7

Figure 37. IF Channel to Channel Isolation vs. RF Frequency

over Three Temperatures

202122232425262728293031323334353637383940

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

INPU

T IP

3 (d

Bm

)

RF FREQUENCY (MHz)

BAL_COUT = 0BAL_COUT = 2BAL_COUT = 4BAL_COUT = 6BAL_COUT = 8BAL_COUT = 10BAL_COUT = 12BAL_COUT = 14

1411

5-03

8

Figure 38. Input IP3 vs. RF Frequency for All RFB Settings,

VGS Bit and LPF Use Optimum Settings

8

9

10

11

12

13

14

15

16

17

18

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

SSB

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (MHz)

BAL_COUT = 0BAL_COUT = 2BAL_COUT = 4BAL_COUT = 6BAL_COUT = 8BAL_COUT = 10BAL_COUT = 12BAL_COUT = 14

1411

5-13

9

Figure 39. SSB Noise Figure vs. RF Frequency for All RFB Settings,

VGS Bit and LPF Use Optimum Settings

Page 19: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 19 of 61

0

1

2

3

4

5

6

7

8

9

10

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (MHz)

VGS = 0VGS = 1VGS = 2VGS = 3VGS = 4VGS = 5VGS = 6VGS = 7

1411

5-04

0

Figure 40. Conversion Gain vs. RF Frequency

for All VGS Bit Settings, RFB and LPF Use Optimum Settings

181920212223242526272829303132333435363738

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

INPU

T IP

3 (d

Bm

)

RF FREQUENCY (MHz)

VGS = 0VGS = 1VGS = 2VGS = 3VGS = 4VGS = 5VGS = 6VGS = 7

1411

5-14

1

Figure 41. Input IP3 vs. RF Frequency for All VGS Bit Settings,

RFB and LPF Use Optimum Settings

3.03.54.04.55.05.56.06.57.07.58.08.59.09.5

10.0

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (MHz)

LPF = 0LPF = 2LPF = 4LPF = 6

1411

5-14

6

Figure 42. Conversion Gain vs. RF Frequency for All LPF Settings,

RFB and VGS Bit Use Optimum Settings

8.08.59.09.5

10.010.511.011.512.012.513.013.514.014.515.0

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

INPU

T P1

dB (d

Bm

)

RF FREQUENCY (MHz)

VGS = 0VGS = 1VGS = 2VGS = 3VGS = 4VGS = 5VGS = 6VGS = 7

1411

5-04

3

Figure 43. Input P1dB vs. RF Frequency for All VGS Bit Settings,

RFB and LPF Use Optimum Settings

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

SSB

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (MHz)

VGS = 0VGS = 1VGS = 2VGS = 3VGS = 4VGS = 5VGS = 6VGS = 7

1411

5-14

4

Figure 44. SSB Noise Figure vs. RF Frequency for All VGS Bit Settings,

RFB and LPF Use Optimum Settings

5

6

7

8

9

10

11

12

13

14

15

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

INPU

T P1

dB (d

Bm

)

RF FREQUENCY (MHz)

LPF = 0LPF = 2LPF = 4LPF = 6

1411

5-14

9

Figure 45. Input P1dB vs. RF Frequency for All LPF Settings,

RFB and VGS Bit Use Optimum Settings

Page 20: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 20 of 61

1011121314151617181920212223242526272829303132333435

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

INPU

T IP

3 (d

Bm

)

RF FREQUENCY (MHz)

LPF = 0LPF = 2LPF = 4LPF = 6

1411

5-14

7

Figure 46. Input IP3 vs. RF Frequency for All LPF Settings,

RFB and VGS Bit Use Optimum Settings

TEMPERATURE (°C)

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

–40 –20 0 20 40 60 80

POW

ER D

ISSI

PATI

ON

(W)

IFA_MAINBIAS = 3IFA_MAINBIAS = 4IFA_MAINBIAS = 5IFA_MAINBIAS = 6IFA_MAINBIAS = 7

IFA_MAINBIAS = 8IFA_MAINBIAS = 9IFA_MAINBIAS = 10IFA_MAINBIAS = 11IFA_MAINBIAS = 12

1411

5-34

7

IFA_MAINBIAS = 13IFA_MAINBIAS = 14IFA_MAINBIAS = 15

Figure 47. Power Dissipation vs. Temperature for Various IFA_MAINBIAS Settings

TEMPERATURE (°C)

2.16

2.18

2.20

2.22

2.24

2.26

2.28

2.30

2.32

2.34

2.36

2.38

–40 –20 0 20 40 60 80

POW

ER D

ISSI

PATI

ON

(W)

IFA_LINBIAS = 0IFA_LINBIAS = 1IFA_LINBIAS = 2IFA_LINBIAS = 3IFA_LINBIAS = 4IFA_LINBIAS = 5IFA_LINBIAS = 6IFA_LINBIAS = 7

IFA_LINBIAS = 8IFA_LINBIAS = 9IFA_LINBIAS = 10IFA_LINBIAS = 11IFA_LINBIAS = 12IFA_LINBIAS = 13IFA_LINBIAS = 14IFA_LINBIAS = 15

1411

5-34

8

Figure 48. Power Dissipation vs. Temperature for Various IFA_LINBIAS Settings

8

9

10

11

12

13

14

15

16

17

18

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

SSB

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (MHz)

LPF = 0LPF = 2LPF = 4LPF = 6

1411

5-15

0

Figure 49. SSB Noise Figure vs. RF Frequency for All LPF Settings,

RFB and VGS Bit Use Optimum Settings

TEMPERATURE (°C)

10

15

20

25

30

35

40

–40 –20 0 20 40 60 80

INPU

T IP

3 (d

Bm

)

IFA_MAINBIAS = 3IFA_MAINBIAS = 4IFA_MAINBIAS = 5IFA_MAINBIAS = 6IFA_MAINBIAS = 7IFA_MAINBIAS = 8IFA_MAINBIAS = 9

IFA_MAINBIAS = 10IFA_MAINBIAS = 11IFA_MAINBIAS = 12IFA_MAINBIAS = 13IFA_MAINBIAS = 14IFA_MAINBIAS = 15

1411

5-35

0

Figure 50. Input IP3 vs. Temperature for Various IFA_MAINBIAS Settings

22

24

26

28

30

32

34

36

–40 –20 0 20 40 60 80

INPU

T IP

3 (d

Bm

)

TEMPERATURE (°C)

IFA_LINBIAS = 0IFA_LINBIAS = 1IFA_LINBIAS = 2IFA_LINBIAS = 3IFA_LINBIAS = 4IFA_LINBIAS = 5IFA_LINBIAS = 6IFA_LINBIAS = 7

IFA_LINBIAS = 8IFA_LINBIAS = 9IFA_LINBIAS = 10IFA_LINBIAS = 11IFA_LINBIAS = 12IFA_LINBIAS = 13IFA_LINBIAS = 14IFA_LINBIAS = 15

1411

5-35

1

Figure 51. Input IP3 vs. Temperature for Various IFA_LINBIAS Settings

Page 21: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 21 of 61

–160

–150

–140

–130

–120

–110

–100

–90

–80

–70

–60

0.001 0.01 0.1 1 10

PHA

SE N

OIS

E (d

Bc/

Hz)

OFFSET FREQUENCY (MHz)

890MHz +10dBm1910MHz +10dBm2510MHz +10dBm

1411

5-35

2

Figure 52. Phase Noise at IF Output vs. Offset Frequency with 10 dBm Blocker

in Integer Mode

–160

–150

–140

–130

–120

–110

–100

–90

–80

–70

–60

0.001 0.01 0.1 1 10

PHA

SE N

OIS

E (d

Bc/

Hz)

OFFSET FREQUENCY (MHz)

890MHz +10dBm1910MHz +10dBm2510MHz +10dBm

1411

5-35

3

Figure 53. Phase Noise at IF Output vs. Offset Frequency with 10 dBm Blocker

in Fractional Mode

Page 22: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 22 of 61

MIXER, HIGH EFFICIENCY MODE TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, ZO = 50 Ω, fREF = 122.88 MHz, fREF power = 4 dBm, fPFD = 1.536 MHz, low-side LO injection, optimum RFB and LPF settings, unless otherwise noted.

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

PO

WE

R D

ISS

IPA

TIO

N (

W)

RF FREQUENCY (MHz)

TA = –40°C, HIGH-SIDE LOTA = 25°C, HIGH-SIDE LOTA = 85°C, HIGH-SIDE LOTA = –40°C, LOW-SIDE LOTA = 25°C, LOW-SIDE LOTA = 85°C, LOW-SIDE LO

1411

5-15

1

Figure 54. Power Dissipation vs. RF Frequency over Three Temperatures

3.03.54.04.55.05.56.06.57.07.58.08.59.09.5

10.010.511.011.512.0

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

CO

NV

ER

SIO

N G

AIN

(d

B)

RF FREQUENCY (MHz)

TA = –40°C, HIGH-SIDE LOTA = +25°C, HIGH-SIDE LOTA = +85°C, HIGH-SIDE LOTA = –40°C, LOW-SIDE LOTA = +25°C, LOW-SIDE LOTA = +85°C, LOW-SIDE LO

1411

5-15

2

Figure 55. Conversion Gain vs. RF Frequency over Three Temperatures

RF FREQUENCY (MHz)

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

INP

UT

IP

3 (d

Bm

)

TA = –40°C, HIGH-SIDE LOTA = +25°C, HIGH-SIDE LOTA = +85°C, HIGH-SIDE LOTA = –40°C, LOW-SIDE LOTA = +25°C, LOW-SIDE LOTA = +85°C, LOW-SIDE LO

1411

5-15

3

Figure 56. Input IP3 vs. RF Frequency over Three Temperatures

30

35

40

45

50

55

60

65

70

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

INP

UT

IP

2 (d

Bm

)

RF FREQUENCY (MHz)

TA = –40°C, HIGH-SIDE LOTA = +25°C, HIGH-SIDE LOTA = +85°C, HIGH-SIDE LOTA = –40°C, LOW-SIDE LOTA = +25°C, LOW-SIDE LOTA = +85°C, LOW-SIDE LO

1411

5-35

7

Figure 57. Input IP2 vs. RF Frequency over Three Temperatures

3

4

5

6

7

8

9

10

11

12

13

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

INP

UT

P1d

B (

dB

m)

RF FREQUENCY (MHz)

TA = –40°C, HIGH-SIDE LOTA = +25°C, HIGH-SIDE LOTA = +85°C, HIGH-SIDE LOTA = –40°C, LOW-SIDE LOTA = +25°C, LOW-SIDE LOTA = +85°C, LOW-SIDE LO

1411

5-15

5

Figure 58. Input P1dB vs. RF Frequency over Three Temperatures

8

9

10

11

12

13

14

15

16

17

18

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

SS

B N

OIS

E F

IGU

RE

(d

B)

RF FREQUENCY (MHz)

–40°C LOCKED–40°C EXTERNAL LO+25°C LOCKED+25°C EXTERNAL LO+85°C LOCKED+85°C EXTERNAL LO

1411

5-15

6

Figure 59. SSB Noise Figure vs. RF Frequency over Three Temperatures

Page 23: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 23 of 61

SYNTHESIZER VS = high performance mode, TA = 25°C, measured on LO output, fLO = 1700 MHz, ZO = 50 Ω, fREF = 122.88 MHz, fPFD = 1.536 MHz, fREF power = 4 dBm, integer mode loop filter, unless otherwise noted.

–180

–160

–140

–120

–100

–80

–60

–40

1k 10k 100k 1M 10M 100M

OPE

N-L

OO

P PH

ASE

NO

ISE

(dB

c/H

z)

OFFSET FREQUENCY (Hz) 1411

5-15

7

Figure 60. VCO_0 Open-Loop Phase Noise vs. Offset Frequency,

fVCO_0 = 2.55 GHz, Divide by Two Selected, VCOVTUNE = 1.5 V

1k 10k 100k 1M 10M 100M–180

–160

–140

–120

–100

–80

–60

–40

OPE

N-L

OO

P PH

ASE

NO

ISE

(dB

c/H

z)

OFFSET FREQUENCY (Hz) 1411

5-15

8

Figure 61. VCO_1 Open-Loop Phase Noise vs. Offset Frequency,

fVCO_1 = 2.2 GHz, Divide by Two Selected, VCOVTUNE = 1.5 V

1k 10k 100k 1M 10M 100M–180

–160

–140

–120

–100

–80

–60

–40

OPE

N-L

OO

P PH

ASE

NO

ISE

(dB

c/H

z)

OFFSET FREQUENCY (Hz) 141 1

5-15

9

Figure 62. VCO_2 Open-Loop Phase Noise vs. Offset Frequency,

fVCO_2 = 1.9 GHz, Divide by Two Selected, VCOVTUNE = 1.5 V

–160

–150

–140

–130

–120

–110

–100

–90

–80

–70

–60

0.001 0.01 0.1 1 10 100

CLO

SED

-LO

OP

PHA

SE N

OIS

E (d

Bc/

Hz)

OFFSET FREQUENCY (MHz)

LO_DIV = ÷2LO_DIV = ÷4LO_DIV = ÷8

1411

5-06

0

Figure 63. VCO_0 Closed-Loop Phase Noise vs. Offset Frequency for Various

LO_DIV Dividers, fVCO_0 = 5.1 GHz

–160

–150

–140

–130

–120

–110

–100

–90

–80

–70

–60

0.001 0.01 0.1 1 10 100

CLO

SED

-LO

OP

PHA

SE N

OIS

E (d

Bc/

Hz)

OFFSET FREQUENCY (MHz)

LO_DIV = ÷2LO_DIV = ÷4LO_DIV = ÷8

1411

5-06

1

Figure 64. VCO_1 Closed-Loop Phase Noise vs. Offset Frequency for Various

LO_DIV Dividers, fVCO_1 = 4.5 GHz

–160

–150

–140

–130

–120

–110

–100

–90

–80

–70

–60

0.001 0.01 0.1 1 10 100

CLO

SED

-LO

OP

PHA

SE N

OIS

E (d

Bc/

Hz)

OFFSET FREQUENCY (MHz)

LO_DIV = ÷2LO_DIV = ÷4LO_DIV = ÷8

1411

5-06

2

Figure 65. VCO_2 Closed-Loop Phase Noise vs. Offset Frequency for Various

LO_DIV Dividers, fVCO_2 = 3.8 GHz

Page 24: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 24 of 61

1k 10k 100k 1M 10M 100M–160

–140

–120

–100

–80

–60

–40

OPE

N-L

OO

P PH

ASE

NO

ISE

(dB

c/H

z)

OFFSET FREQUENCY (Hz) 1411

5-16

3

Figure 66. VCO_3 Open-Loop Phase Noise vs. Offset Frequency,

fVCO_3 = 1.6 GHz, Divide by Two Selected, VCOVTUNE = 1.5 V

1k 10k 100k 1M 10M 100M–180

–160

–140

–120

–100

–80

–60

0

–20

–40

OPE

N-L

OO

P PH

ASE

NO

ISE

(dB

c/H

z)

OFFSET FREQUENCY (Hz) 1411

5-56

7

Figure 67. VCO_4 Open-Loop Phase Noise vs. Offset Frequency, fVCO_4 = 3.087 GHz, Divide by One Selected, VCOVTUNE = 1.5 V

1k 10k 100k 1M 10M 100M–180

–160

–140

–120

–100

–80

–60

0

–20

–40

OPE

N-L

OO

P PH

ASE

NO

ISE

(dB

c/H

z)

OFFSET FREQUENCY (Hz) 1411

5-56

8

Figure 68. VCO_5 Open-Loop Phase Noise vs. Offset Frequency, fVCO_5 = 3.375 GHz, Divide by One Selected, VCOVTUNE = 1.5 V

–160

–150

–140

–130

–120

–110

–100

–90

–80

–70

–60

0.001 0.01 0.1 1 10 100

CLO

SED

-LO

OP

PHA

SE N

OIS

E (d

Bc/

Hz)

OFFSET FREQUENCY (MHz)

LO_DIV = ÷2LO_DIV = ÷4LO_DIV = ÷8

1411

5-06

6

Figure 69. VCO_3 Closed-Loop Phase Noise for Various LO_DIV Dividers vs.

Offset Frequency, fVCO_3 = 3.2 GHz

–180

–160

–170

–150

–140

–130

–120

–110

–100

–90

–80

–70

–60

0.001 0.01 0.1 1 10 100

CLO

SED

-LO

OP

PHA

SE N

OIS

E (d

Bc/

Hz)

OFFSET FREQUENCY (MHz)

–40°C+25°C+85°C

1411

5-57

0

Figure 70. VCO_4 Closed-Loop Phase Noise for Various Temperatures vs.

Offset Frequency, fVCO_4 = 1.536 GHz, Divide by Two Selected

–180

–160

–170

–150

–140

–130

–120

–110

–100

–90

–80

–70

–60

0.001 0.01 0.1 1 10 100

CLO

SED

-LO

OP

PHA

SE N

OIS

E (d

Bc/

Hz)

OFFSET FREQUENCY (MHz)

–40°C+25°C+85°C

1411

5-57

1

Figure 71. VCO_5 Closed-Loop Phase Noise for Various Temperatures vs.

Offset Frequency, fVCO_5 = 1.688 GHz, Divide by Two Selected

Page 25: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 25 of 61

–230

–225

–220

–215

–210

–205

–200

1430 1630 1830 2030 2230 2430 2630 2830

FOM

(dB

c/H

z/H

z)

LO FREQUENCY (MHz)

–40°C+25°C+85°C

141 1

5-36

7

Figure 72. PLL Figure of Merit (FOM) vs. LO Frequency, Integer Mode

–180

–160

–140

–120

–100

–80

–60

–40

–20

0

1430 1630 1830 2030 2230 2430 2630 2830

OPE

N-L

OO

P PH

ASE

NO

ISE

(dB

c/H

z)

LO FREQUENCY (MHz)

10MHz OFFSET

500kHz OFFSET

100kHz OFFSET

1kHz OFFSET

–40°C+25°C+85°C

1411

5-16

5

Figure 73. Open-Loop Phase Noise vs. LO Frequency,

Divide by Two Selected

–230

–225

–220

–215

–210

–205

–200

1430 1630 1830 2030 2230 2430 2630 2830

FOM

(dB

c/H

z/H

z)

LO FREQUENCY (MHz)

–40°C+25°C+85°C

1411

5-47

0

Figure 74. PLL Figure of Merit (FOM) vs. LO Frequency, Fractional Mode,

Offset = 45 kHz, Bleed = 125 µA

–170

–160

–150

–140

–130

–120

–110

–100

–90

1430 1630 1830 2030 2230 2430 2630 2830

OPE

N-L

OO

P PH

ASE

NO

ISE

(dB

c/H

z)

LO FREQUENCY (MHz)

–40°C+25°C+85°C

50kHz OFFSET

200kHz OFFSET

1MHz OFFSET

40MHz OFFSET

1411

5-16

8

Figure 75. Open-Loop Phase Noise vs. LO Frequency,

Divide by Two Selected

–170

–160

–150

–140

–130

–120

–110

–100

–90

–80

–70

1430

PHA

SE N

OIS

E (d

Bc/

Hz)

LO FREQUENCY (MHz)

–40°C+25°C+85°C 1kHz OFFSET

100kHz OFFSET

500kHz OFFSET

10 MHz OFFSET

1630 1830 2030 2230 2430 2630

1411

5-06

9

Figure 76. Integer Loop Filter Phase Noise vs. LO Frequency, Divide by Two

Selected, Offset = 1 kHz, 100 kHz, 500 kHz, and 10 MHz

–180

–160

–140

–120

–100

–80

–60

1525 1545154015351530

PHA

SE N

OIS

E (d

Bc/

Hz)

LO FREQUENCY (MHz)

–40°C+25°C+85°C

1kHz OFFSET

100kHz OFFSET

500kHz OFFSET

10MHz OFFSET

141 1

5-58

0

Figure 77. VCO_4 GSM Loop Filter Phase Noise, Divide by Two Selected,

Offset = 1 kHz, 100 kHz, 500 kHz, and 10 MHz

Page 26: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 26 of 61

–170

–160

–150

–140

–130

–120

–110

–100

–90

–80

PHA

SE N

OIS

E (d

Bc/

Hz)

LO FREQUENCY (Hz)

–40°C+25°C+85°C

50 kHz OFFSET

200 kHz OFFSET

1MHz OFFSET

40MHz OFFSET

1430 1630 1830 2030 2230 2430 2630

1411

5-07

2

Figure 78. Integer Loop Filter Phase Noise vs. LO Frequency, Divide by Two

Selected, Offset = 50 kHz, 200 kHz, 1 MHz, and 40 MHz

–170

–160

–150

–140

–130

–100

–110

–120

–90

1525 1545154015351530

PHA

SE N

OIS

E (d

Bc/

Hz)

LO FREQUENCY (MHz)

–40°C+25°C+85°C

50kHz OFFSET

200kHz OFFSET

40MHz OFFSET

1MHz OFFSET

1411

5-58

3

Figure 79. VCO_4 GSM Loop Filter Phase Noise, Divide by Two Selected,

Offset = 50 kHz, 200 kHz, 1 MHz, and 40 MHz

–180

–60

–80

–100

–120

–140

–160

1668 1673 1678 1683 1688 1693 1698 1703 1708

PHA

SE N

OIS

E (d

Bc/

Hz)

LO FREQUENCY (MHz)

–40°C+25°C+85°C

1kHz OFFSET

100kHz OFFSET

500kHz OFFSET

10MHz OFFSET

1411

5-58

4

Figure 80. VCO_5 GSM Loop Filter Phase Noise, Divide by Two Selected,

Offset = 1 kHz, 100 kHz, 500 kHz, and 10 MHz

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

2860 3360 3860 4360 4860 5360

INTE

GRA

TED

PH

ASE

NO

ISE,

WIT

H S

PUR

S (°

rms)

VCO FREQUENCY (MHz)

–40°C+25°C+85°C

LO_DIV = ÷8

LO_DIV = ÷2

LO_DIV = ÷4

1411

5-07

0

Figure 81. 10 kHz to 40 MHz Integrated Phase Noise vs. VCO Frequency,

Divide by Two, Four, and Eight, Including Spurs

0

0.05

0.10

0.15

0.20

0.35

0.30

0.25

0.40

1525 1545154015351530

INTE

GR

ATE

D P

HA

SE N

OIS

E W

ITH

SPU

RS

(°rm

s)

LO FREQUENCY (MHz)

–40°C+25°C+85°C

1411

5-58

6

Figure 82. VCO_4 10 kHz to 40 MHz Integrated Phase Noise vs. VCO

Frequency, For Various Temperatures, Including Spurs

–170

–80

–90

–100

–110

–120

–130

–140

–150

–160

1668 1673 1678 1683 1688 1693 1698 1703 1708

PHA

SE N

OIS

E (d

Bc/

Hz)

LO FREQUENCY (MHz)

–40°C+25°C+85°C

50kHz OFFSET

200kHz OFFSET

1MHz OFFSET

40MHz OFFSET

1411

5-58

7

Figure 83. VCO_5 GSM Loop Filter Phase Noise, Divide by Two Selected,

Offset = 50 kHz, 200 kHz, 1 MHz, and 40 MHz

Page 27: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 27 of 61

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

2860 3360 3860 4360 4860 5360

INT

EG

RA

TE

D P

HA

SE

NO

ISE

,W

ITH

OU

T S

PU

RS

(°r

ms)

VCO FREQUENCY (MHz)

–40°C+25°C+85°C

LO_DIV = ÷8

LO_DIV = ÷2

LO_DIV = ÷4

1411

5-07

3

Figure 84. 10 kHz to 40 MHz Integrated Phase Noise vs. VCO Frequency, Divide by Two, Four, and Eight, Excluding Spurs

0

0.05

0.10

0.15

0.20

0.35

0.30

0.25

0.40

1525 1545154015351530

INT

EG

RA

TE

D P

HA

SE

NO

ISE

WIT

HO

UT

SP

UR

S (

°rm

s)

LO FREQUENCY (MHz)

–40°C+25°C+85°C

1411

5-58

9

Figure 85. VCO_4 10 kHz to 40 MHz Integrated Phase Noise vs. VCO Frequency, For Various Temperatures, Excluding Spurs

0

0.05

0.10

0.15

0.20

0.35

0.30

0.25

0.45

0.40

1668 17081703169816931688168316781673

INT

EG

RA

TE

D P

HA

SE

NO

ISE

WIT

H S

PU

RS

(°r

ms)

LO FREQUENCY (MHz)

–40°C+25°C+85°C

1411

5-59

0

Figure 86. VCO_5 10 kHz to 40 MHz Integrated Phase Noise vs. VCO Frequency, For Various Temperatures, Including Spurs

–135

–125

–115

–105

–95

–85

–75

2860 3360 3860 4360 4860 5360

RE

FE

RE

NC

E S

PU

RS

(d

Bc)

, 1

× P

FD

OF

FS

ET

VCO FREQUENCY (MHz)

–40°C LO_DIV = ÷8+25°C LO_DIV = ÷8+85°C LO_DIV = ÷8

–40°C LO_DIV = ÷2+25°C LO_DIV = ÷2+85°C LO_DIV = ÷2–40°C LO_DIV = ÷4+25°C LO_DIV = ÷4+85°C LO_DIV = ÷4

1411

5-07

1

Figure 87. fPFD Reference Spurs vs. VCO Frequency, 1 × PFD Offset, Measured at LO Output, Integer Mode

–135

–125

–115

–105

–95

–85

–75

2860 3360 3860 4360 4860 5360

RE

FE

RE

NC

E S

PU

RS

(d

Bc)

, 3

× P

FD

OF

FS

ET

VCO FREQUENCY (MHz)

–40°C LO_DIV = ÷8+25°C LO_DIV = ÷8+85°C LO_DIV = ÷8

–40°C LO_DIV = ÷2+25°C LO_DIV = ÷2+85°C LO_DIV = ÷2–40°C LO_DIV = ÷4+25°C LO_DIV = ÷4+85°C LO_DIV = ÷4

1411

5-07

5

Figure 88. fPFD Reference Spurs vs. VCO Frequency, 3 × PFD Offset, Measured at LO Output, Integer Mode

0

0.05

0.10

0.15

0.20

0.35

0.30

0.25

0.45

0.40

1668 17081703169816931688168316781673INT

EG

RA

TE

D P

HA

SE

NO

ISE

WIT

HO

UT

SP

UR

S (

° rm

s)

LO FREQUENCY (MHz)

–40°C+25°C+85°C

1411

5-59

3

Figure 89. VCO_5 10 kHz to 40 MHz Integrated Phase Noise vs. VCO Frequency, For Various Temperatures, Excluding Spurs

Page 28: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 28 of 61

–135

–125

–115

–105

–95

–85

–75

2860 3360 3860 4360 4860 5360

RE

FE

RE

NC

E S

PU

RS

(d

Bc)

, 4

× P

FD

OF

FS

ET

VCO FREQUENCY (MHz)

–40°C LO_DIV = ÷8+25°C LO_DIV = ÷8+85°C LO_DIV = ÷8

–40°C LO_DIV = ÷2+25°C LO_DIV = ÷2+85°C LO_DIV = ÷2–40°C LO_DIV = ÷4+25°C LO_DIV = ÷4+85°C LO_DIV = ÷4

1411

5-07

8Figure 90. fPFD Reference Spurs vs. VCO Frequency,

2 × PFD Offset, Measured at LO Output, Integer Mode

–135

–125

–115

–105

–95

–85

–75

2860 3360 3860 4360 4860 5360

RE

FE

RE

NC

E S

PU

RS

(d

Bc)

, 4

× P

FD

OF

FS

ET

VCO FREQUENCY (MHz)

–40°C LO_DIV = /8+25°C LO_DIV = /8+85°C LO_DIV = /8

–40°C LO_DIV = /2+25°C LO_DIV = /2+85°C LO_DIV = /2–40°C LO_DIV = /4+25°C LO_DIV = /4+85°C LO_DIV = /4

1411

5-07

8

Figure 91. fPFD Reference Spurs vs. VCO Frequency, 4 × PFD Offset, Measured at LO Output, Integer Mode

–90

–85

–80

–75

–70

–65

–60

1430 1630 1830 2030 2230 2430 2630 2830

RE

FE

RE

NC

E S

PU

RS

(d

Bc)

, 1

× P

FD

OF

FS

ET

LO FREQUENCY (MHz)

–40°C+25°C+85°C

1411

5-37

9

Figure 92. fPFD Reference Spurs vs. LO Frequency, 1 × PFD Offset, Measured at LO Output, Fractional Mode

1430 1630 1830 2030 2230 2430 2630 2830–80

–78

–76

–74

–72

–70

–68

–66

–64

–62

–60

RE

FE

RE

NC

E S

PU

RS

(d

Bc)

, 2

× P

FD

OF

FS

ET

LO FREQUENCY (MHz)

–40°C+25°C+85°C

1411

5-38

2

Figure 93. fPFD Reference Spurs vs. LO Frequency, 2 × PFD Offset, Measured at LO Output, Fractional Mode

1430 1630 1830 2030 2230 2430 2630 2830–90

–88

–86

–84

–82

–80

–78

–76

–74

–72

–70

RE

FE

RE

NC

E S

PU

RS

(d

Bc)

, 3

× P

FD

OF

FS

ET

LO FREQUENCY (MHz)

–40°C+25°C+85°C

1411

5-38

0

Figure 94. fPFD Reference Spurs vs. LO Frequency, 3 × PFD Offset, Measured at LO Output, Fractional Mode

1430 1630 1830 2030 2230 2430 2630 2830

LO FREQUENCY (MHz)

–90

–88

–86

–84

–82

–80

–78

–76

RE

FE

RE

NC

E S

PU

RS

(d

Bc)

, 4

× P

FD

OF

FS

ET

–40°C+25°C+85°C

1411

5-38

3

Figure 95. fPFD Reference Spurs vs. LO Frequency, 4 × PFD Offset, Measured at LO Output, Fractional Mode

Page 29: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 29 of 61

–140

–120

–100

–80

–60

–40

–20

0

1430 1630 1830 2030 2230 2430 2630 2830

RE

FE

RE

NC

E S

PU

RS

(d

Bc)

, 1

× P

FD

OF

FS

ET

LO FREQUENCY (MHz)

IF AT –40°CIF AT +25°CIF AT +85°CLO AT –40°CLO AT +25°CLO AT +85°C

1411

5-38

4

Figure 96. fPFD Reference Spurs vs. LO Frequency, Divide by Two Selected, 1 × PFD Offset, Measured on LO Output and IF Output

–12

–10

–8

–6

–4

–2

0

2

4

3

8

10

350 850 1350 1850 2350 2850

LO

AM

PL

ITU

DE

(d

Bm

)

LO FREQUENCY (MHz)

LO_DRV_LVL = 0 AT –40°CLO_DRV_LVL = 0 AT +25°CLO_DRV_LVL = 0 AT +85°C

LO_DRV_LVL = 1 AT –40°CLO_DRV_LVL = 1 AT +25°CLO_DRV_LVL = 1 AT +85°C

LO_DRV_LVL = 2 AT –40°CLO_DRV_LVL = 2 AT +25°CLO_DRV_LVL = 2 AT +85°C

LO_DRV_LVL = 3 AT –40°CLO_DRV_LVL = 3 AT +25°CLO_DRV_LVL = 3 AT +85°C

1411

5-50

0

Figure 97. LO Amplitude vs. LO Frequency, LO_DRV_LVL = 0, 1, 2, and 3

125

135

145

155

165

175

185

195

205

215

225

350 850 1350 1850 2350 2850

VC

C7

SU

PP

LY C

UR

RE

NT

(m

A)

LO FREQUENCY (MHz)

LO_DRV_LVL = 0 AT –40°CLO_DRV_LVL = 0 AT +25°CLO_DRV_LVL = 0 AT +85°C

LO_DRV_LVL = 1 AT –40°CLO_DRV_LVL = 1 AT +25°CLO_DRV_LVL = 1 AT +85°C

LO_DRV_LVL = 2 AT –40°CLO_DRV_LVL = 2 AT +25°CLO_DRV_LVL = 2 AT +85°C

LO_DRV_LVL = 3 AT –40°CLO_DRV_LVL = 3 AT +25°CLO_DRV_LVL = 3 AT +85°C

1411

5-38

6

Figure 98. Supply Current for VCC7 vs. LO Frequency, LO_DRV_LVL = 0, 1, 2, and 3

–100

–90

–80

–70

–60

–50

–40

–30

–20

–10

0

700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900

ISO

LA

TIO

N (

dB

)

RF FREQUENCY (MHz) 1411

5-38

7

Figure 99. RF to LO Output Feedthrough, LO_DRV_LVL = 0

1480

1485

1490

1495

1500

1505

1510

1515

1520

0 10 20 30 40 50 60 70 80 90 100

LO

FR

EQ

UE

NC

Y (

MH

z)

LOCK TIME (ms) 1411

5-38

8

Figure 100. LO Frequency Settling Time, Integer Mode Loop Filter, Integer Mode

1480

1485

1490

1495

1500

1505

1510

1515

1520

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

LO

FR

EQ

UE

NC

Y (

MH

z)

LOCK TIME (ms) 1411

5-38

9

Figure 101. LO Frequency Settling Time, Fractional Loop Filter, Fractional Mode

Page 30: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 30 of 61

0

0.5

1.0

1.5

2.0

2.5

1430 1630 1830 2030 2230 2430 2630 2830

V TU

NE

(V)

LO FREQUENCY (MHz)

+85°C–40°C

1411

5-18

7

Figure 102. VCO Tuning Voltage (VTUNE) vs. LO Frequency for Lock at Cold

Drift to Hot

0

0.5

1.0

1.5

2.0

2.5

1430 1630 1830 2030 2230 2430 2630 2830

V TU

NE

(V)

LO FREQUENCY (MHz)

+85°C–40°C

1411

5-18

8

Figure 103. VTUNE vs. LO Frequency for Lock at Hot Drift to Cold

–140

–130

–120

–110

–100

–90

–80

–70

–60

–100 –80 –60 –40 –20 0 20 40 60 80 100

PFD

SPU

RS

(dB

c)

OFFSET FREQUENCY (MHz)

3.18GHz3.81GHz4.45GHz5.08GHz

1411

5-18

9

Figure 104. PFD Spurs vs. Offset Frequency for Four VCOs, Integer Mode

0

0.5

1.0

1.5

2.0

3.5

3.0

2.5V T

UN

E (V

)

LO FREQUENCY (MHz)

+85°C–40°C

1525 1530 1535 1540 1545

1411

5-61

7

Figure 105. VCO_4 VTUNE vs. LO Frequency for Lock at Hot Drift to Cold

Page 31: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 31 of 61

0

0.5

1.0

1.5

2.0

3.5

3.0

2.5

V TU

NE

(V)

LO FREQUENCY (MHz)

+85°C–40°C

1668 17081703169816931688168316781673

1411

5-61

8

Figure 106. VCO_5 VTUNE vs. LO Frequency for Lock at Hot Drift to Cold

0

0.5

1.0

1.5

2.0

3.5

3.0

2.5

V TU

NE

(V)

LO FREQUENCY (MHz)

+85°C–40°C

1525 1530 1535 1540 1545

1411

5-61

9

Figure 107. VCO_4 VTUNE vs. LO Frequency for Lock at Cold Drift to Hot

0

0.5

1.0

1.5

2.0

3.5

3.0

2.5

V TU

NE

(V)

LO FREQUENCY (MHz)

+85°C–40°C

1668 17081703169816931688168316781673

1411

5-62

0

Figure 108. VCO_5 VTUNE vs. LO Frequency for Lock at Cold Drift to Hot

Page 32: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 32 of 61

SPURIOUS PERFORMANCE (N × fRF) − (M × fLO) spur measurements were made using the standard evaluation board. Mixer spurious products are measured in dBc from the IF output power level. Data was measured only for frequencies less than 6 GHz; blank cells indicate frequencies that were not measured. Typical noise floor of the measurement system = −100 dBm.

High Performance Mode

VS = high performance mode, TA = 25°C, ZO = 50 Ω, fREF = 122.88 MHz, fREF power = 4 dBm, fPFD = 1.536 MHz, low-side LO injection, optimum RFB and LPF settings, unless otherwise noted.

Table 11. RF = 900 MHz, LO = 697 MHz M 0 1 2 3 4 5 6 7 8 9

N

0 −27.1 −32.1 −39.1 −27.0 −54.2 −48.5 −69.3 −65.6

1 −35.5 0.0 −52.5 −18.4 −56.6 −43.6 −66.7 −53.5 −87.4 −73.5

2 −55.3 −68.9 −68.8 −73.4 −64.9 <−100 −68.3 <−100 −80.6 <−100

3 −88.2 −88.4 <−100 −79.5 <−100 −94.1 <−100 <−100 <−100 <−100

4 <−100 −56.6 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 5 <−100 −43.6 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 6 <−100 −66.7 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100

7 −53.5 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100

8 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100

9 <−100 <−100 <−100 <−100 <−100 <−100

Table 12. RF = 1900 MHz, LO = 1697 MHz M 0 1 2 3 4 5 6 7 8 9

N

0 −37.0 −31.2 −64.2 1 −30.2 0.0 −47.9 −52.1 −74.4 2 −70.8 −71.9 −81.6 −81.2 −67.2 <−100 3 <−100 <−100 −93.5 −75.2 <−100 <−100 <−100

4 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100

5 <−100 <−100 <−100 <−100 <−100 <−100 <−100

6 <−100 <−100 <−100 <−100 <−100 <−100

7 <−100 <−100 <−100 <−100 <−100

8 <−100 <−100 <−100 <−100 9 <−100 <−100 <−100

Table 13. RF = 2500 MHz, LO = 2297 MHz M 0 1 2 3 4 5 6 7 8 9

N

0 −40.7 −44.1

1 −29.0 0.0 −49.4 −58.7

2 −81.0 −87.3 −75.4 −79.0 −84.7

3 <−100 −91.9 −74.7 <−100 <−100

4 <−100 <−100 <−100 <−100 <−100 5 <−100 <−100 <−100 <−100 <−100 <−100 6 <−100 <−100 <−100 −92.5 <−100 <−100 7 <−100 <−100 <−100 <−100

8 <−100 <−100 <−100

9 <−100 <−100

Page 33: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 33 of 61

High Efficiency Mode

VS = high efficiency mode, TA = 25°C, ZO = 50 Ω, fREF = 122.88 MHz, fREF power = 4 dBm, fPFD = 1.536 MHz, low-side LO injection, optimum RFB and LPF settings, unless otherwise noted.

Table 14. RF = 900 MHz, LO = 697 MHz M 0 1 2 3 4 5 6 7 8 9

N

0 −30.4 −34.1 −46.7 −29.6 −57.4 −51.2 −74.7 −62.7

1 −37.7 0.0 −52.6 −19.2 −61.6 −44.3 −64.0 −53.6 −91.8 −73.2

2 −70.3 −66.4 −68.8 −71.9 −59.9 −93.0 −67.8 <−100 −79.0 <−100

3 −86.4 −81.0 −96.4 −74.7 <−100 −85.0 <−100 <−100 <−100 <−100 4 <−100 <−100 −97.9 <−100 <−100 <−100 <−100 <−100 <−100 <−100 5 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100

6 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100

7 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100

8 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100

9 <−100 <−100 <−100 <−100 <−100 <−100

Table 15. RF = 1900 MHz, LO = 1697 MHz M 0 1 2 3 4 5 6 7 8 9

N

0 −41.4 −35.1 −69.0 1 −30.5 0.0 −46.9 −52.2 −74.4 2 −71.5 −67.7 −74.6 −71.3 −63.6 <−100

3 <−100 <−100 −89.9 −67.7 <−100 <−100 <−100

4 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100

5 <−100 <−100 <−100 <−100 <−100 <−100 <−100

6 <−100 <−100 <−100 <−100 <−100 <−100

7 <−100 <−100 <−100 <−100 <−100 8 <−100 <−100 <−100 <−100 9 <−100 <−100 <−100

Table 16. RF = 2500 MHz, LO = 2297 MHz M 0 1 2 3 4 5 6 7 8 9

N

0 −42.3 −48.6

1 −29.1 0.0 −48.6 −59.4

2 −75.6 −88.8 −71.6 −70.8 −77.0

3 −59.4 −86.2 −66.9 <−100 <−100

4 −77.0 <−100 <−100 <−100 <−100 5 <−100 <−100 <−100 <−100 <−100 <−100 6 <−100 <−100 <−100 <−100 <−100 <−100

7 <−100 <−100 <−100 <−100

8 <−100 <−100 <−100

9 <−100 <−100

Page 34: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 34 of 61

THEORY OF OPERATION The ADRF6614 consists of two primary components: the RF subsystem and the LO subsystem. The combination of design, process, and packaging technology allows the functions of these subsystems to be integrated into a single die, using mature packaging and interconnection technologies to provide a high performance device with excellent electrical, mechanical, and thermal properties. The wideband frequency response and flexible frequency programming simplifies the receiver design, saves on-board space, and minimizes the need for external components.

The RF subsystem consists of an integrated, tunable, low loss RF balun, a double balanced, passive MOSFET mixer, a tunable sum termination network, and an IF amplifier.

The LO subsystem consists of a multistage, limiting LO amplifier. The purpose of the LO subsystem is to provide a large, fixed ampli-tude, balanced signal to drive the mixer independent of the level of the LO input. A schematic of the device is shown in Figure 110.

RF SUBSYSTEM The single-ended, 50 Ω RF input is internally transformed to a balanced signal using a tunable, low loss, unbalanced to balanced (balun) transformer. This transformer is made possible by an extremely low loss metal stack, which provides both excellent balance and dc isolation for the RF port. Although the port can be dc connected, it is recommended to use a blocking capacitor to avoid running excessive dc current through the device. The RF balun can easily support an RF input frequency range of 700 MHz to 3000 MHz. This balun is tuned over the frequency range by a SPI controlled switched capacitor network at the output of the RF balun.

The resulting balanced RF signal is applied to a passive mixer that commutates the RF input in accordance with the output of the LO subsystem. The passive mixer is a balanced, low loss switch that adds minimum noise to the frequency translation. The only noise con-tribution from the mixer is due to the resistive loss of the switches, which is in the order of a few ohms.

The IF amplifier is a balanced feedback design that simultaneously provides the gain, noise figure, and input impedance required to achieve the overall performance. The balanced open-collector output of the IF amplifier, with an impedance modified by the feedback within the amplifier, permits the output to be connected directly to a high impedance filter, a differential amplifier, or an

analog-to-digital converter (ADC) input while providing optimum second-order intermodulation suppression. The differential output impedance of the IF amplifier is approximately 200 Ω. If operation in a 50 Ω system is desired, the output can be transformed to 50 Ω by using a 4:1 transformer or an LC impedance matching network.

EXTERNAL LO GENERATION The ADRF6614 LO can be generated by an externally applied source or by using the internal PLL synthesizer. To select the external LO mode, write 011 to Register 0x22, Bits[2:0] and apply the differential LO signal to Pin 4 (EXTVCOIN+) and Pin 5 (EXTVCOIN−).

Internal dividers allow the externally applied LO signal to be divided before this signal arrives at the mixer LO input. The divider value is set by Register 0x22, Bits[5:3] and has possible values of 1, 2, 4, and 8. With the divider set to 1, the externally applied LO input frequency range is 250 MHz to 2850 MHz. When using a divider value of other than 1, the maximum externally applied LO frequency is 5700 MHz.

The external LO input pins present a broadband differential 50 Ω input impedance. The EXTVCOIN+ and EXTVCOIN− input pins must be ac-coupled. When not in use, EXTVCOIN+ and EXTVCOIN− can be left unconnected.

INTERNAL LO GENERATION Reference Input Circuitry

The ADRF6614 includes an on-chip PLL for LO synthesis. The PLL, shown in Figure 109, consists of a reference input and input dividers, a PFD, a charge pump, VCOs, and a programmable fractional/integer divider with a 2× prescaler.

The reference path takes in a reference clock and divides it by a factor of 1 to 8191 before passing it to the PFD. The PFD compares this signal to the divided down signal from the VCO. Depending on the PFD polarity selected, the PFD sends an up or down signal to the charge pump if the VCO signal is slow or fast compared to the reference frequency. The charge pump sends a current pulse to the off-chip loop filter to increase or decrease the tuning voltage (VCOVTUNE).

1 TO 8191(REG 0x21[11:0])

N = INT + FRACMOD

(REG 0x02, REG 0x03,REG 0x04)

PFD

MIXER 1 LO

MIXER 2 LO EXTERNALLO INPUT

CHARGEPUMP

2×PRESCALER

CPOUT

C18 C20 C22R7

R8 R10

C23

VCOVTUNELOOP FILTER

GNDCP

REFIN

LO DIVIDER(1, 2, 4, 8, 16, 32)(REG 0x22[5:3])

1411

5-09

0

Figure 109. LO Generation Block Diagram

Page 35: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 35 of 61

In-band (within the band of the loop filter) phase noise perfor-mance is typically limited by the reference source. Due to the inherent phase noise reduction when performing frequency division, improved in-band phase noise performance can be achieved with higher reference divide values. However, the divide chain adds its own small amount of phase noise; thus, there is a limit on how much improvement can be gained by increasing the divider value.

Loop Filters

Defining a loop filter for the ADRF6614 depends on several dynamic: the PLL REFIN and PFD frequency and desired PFD and fractional spur levels. Higher reference and PFD frequencies spread the PFD spurs over a wider bandwidth (wider separation between spurs), but also lead to higher levels of spurs coupling through the reference divider chain. Lower reference and PFD frequencies lower the spacing between PFD spurs, but the spur levels can be significantly improved by using lower frequencies. At lower PFD frequencies, it may also be possible to achieve the desired synthesizer frequency step size using the integer divider mode, therefore eliminating the risk of fractional spurs. Table 17 shows the recommended loop filter components and dynamic loop settings when using integer mode and PFD frequencies at less than 10 MHz.

Table 17. Integer Mode Loop Filter Components and PLL Dynamic Settings Loop Filter Components PLL Dynamic Settings C18 1500 pF R7 910 Ω C20 33 nF R8 1.8 kΩ C22 560 pF R10 20 kΩ C23 39 pF CSCALE 8000 µA Bleed Current 0 µA ABLDLY 0.9 ns

If a smaller frequency step size is desired, the ADRF6614 can be used in fractional mode. The 16-bit FRAC_DIV and MOD_DIV values available in the ADRF6614 mean that small step sizes can be achieved with high PFD frequencies. PFD spurs may be higher in amplitude, but are spaced further apart. Fractional spurs may be present as well.

Table 18. Fractional Mode Loop Filter Components and PLL Dynamic Settings Loop Filter Components PLL Dynamic Settings C18 1000 pF R7 700 Ω C20 33 nF R8 1.8 kΩ C22 560 pF R10 20 kΩ C23 39 pF CSCALE 500 µA Bleed Current 93.75 µA ABLDLY 0 ns

For GSM mode of operation at the PFD rate of 1.536 MHz, the recommended loop filter components and dynamic loop settings are shown in Table 19.

Table 19. GSM Mode Loop Filter Components and PLL Dynamic Settings Loop Filter Components PLL Dynamic Settings C18 2200 pF R7 1.2 kΩ C20 47 nF R8 1 kΩ C22 1200 pF R10 6.2 kΩ C23 330 pF CSCALE 8 mA Bleed Current 0 µA ABLDLY 0.9 ns

VCOs and Dividers

The ADRF6614 has six internal VCOs. Considering the range of these VCOs, the fixed 2× prescaler after the VCO, and the LO_DIV (1, 2, 4, 8, 16, and 32) range, the total LO range allows an RF generation of 200 MHz to 2700 MHz.

Table 20. VCO Range VCO_SEL (Register 0x22, Bits[2:0]) Frequency Range (GHz) 000 4.6 to 5.7 001 4.02 to 4.6 010 3.5 to 4.02 011 2.85 to 3.5 100 3.050 to 3.094 101 3.336 to 3.416

Page 36: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 36 of 61

For the VCO_0, VCO_1, VCO_2, and VCO_3 selections, it is required to set VTUNE_DAC_SLOPE (Register 0x49, Bits[13:9]) = 11d, VTUNE_DAC_OFFSET (Register 0x49, Bits[8:0]) = 184d, VCO_LDO_R2 (Register 0x22, Bits[11:8]) = 0d, and VCO_ LDO_R4 (Register 0x22, Bits[15:12]) = 5d. For VCO_4 and VC0_5 selections, the required settings are VTUNE_DAC_ SLOPE (Register 0x49, Bits[13:9]) = 9d, VTUNE_DAC_OFFSET (Register 0x49, Bits[8:0]) = 171d, VCO_LDO_R2 (Register 0x22, Bits[11:8]) = 2d, and VCO_LDO_R4 (Register 0x22, Bits[15:12]) = 10d. In transitioning from a GSM VCO (VCO_4 and VCO_5) to an octave VCO, the LDO settings must be changed before changing the VCO selection.

The N-divider divides down the differential VCO signal to the PFD frequency. The N-divider can be configured for fractional mode or integer mode by addressing the DIV_MODE bit (Register 0x02, Bit 15). The default configuration is set for fractional mode.

The following equations can be used to determine the N value and the PLL frequency:

Nf

f VCOPFD ×

=2

where: fPFD is the phase frequency detector frequency. fVCO is the voltage controlled oscillator frequency. N is the fractional divide ratio.

MOD

FRACINTN +=

where: INT is the integer divide ratio programmed in Register 0x02. FRAC is the fractional divide ratio programmed in Register 0x03. MOD is the modulus divide ratio programmed in Register 0x04.

LO_DIVIDERNf

f PFDLO

××=

2

where: fLO is the LO frequency going to the mixer core when the loop is locked. LO_DIVIDER is the final divider block that divides the VCO frequency down by 1, 2, 4, or 8 before it reaches the mixer (see Table 21). This control is located in the LO_DIV bits (Register 0x22, Bits[5:3]).

Table 21. LO Divider LO_DIV (Register 0x22, Bits[5:3]) LO_DIVIDER 00 1 01 2 10 4 11 8

The lock detect signal is available as one of the selectable outputs through the MUXOUT pin; a logic high indicates that the loop is locked. The MUXOUT pin is controlled by the REF_MUX_SEL bits (Register 0x21, Bits[14:13]); the PLL lock detect signal is the default configuration.

To ensure that the PLL locks to the desired frequency, follow the proper write sequence of the PLL registers. The PLL registers must be configured accordingly to achieve the desired frequency, and the last writes must be to Register 0x02 (INT_DIV in Table 26), Register 0x03 (FRAC_DIV in Table 26), or Register 0x04 (MOD_DIV in Table 26). When one of these registers is programmed, an internal VCO calibration is initiated, which is the last step in locking the PLL.

The time it takes to lock the PLL after the last register is written can be broken down into two parts: VCO band calibration and loop settling.

After the last register is written, the PLL automatically performs a VCO band calibration to choose the correct VCO band. This calibration takes approximately 5120 PFD cycles. For a 40 MHz fPFD, this corresponds to 128 µs. After calibration is complete, the feedback action of the PLL causes the VCO to lock eventually to the correct frequency. The speed with which this locking occurs depends on the nonlinear cycle slipping behavior, as well as the small signal settling of the loop. For an accurate estimation of the lock time, download the ADIsimPLL™ tool, which correctly captures these effects. In general, higher bandwidth loops tend to lock faster than lower bandwidth loops.

Additional LO Controls

To access the LO signal going to the mixer core through the LOOUT+ and LOOUT− pins (Pin 13 and Pin 14), enable the LO_DRV_EN bit in Register 0x01, Bit 7. This setting offers direct monitoring of the LO signal to the mixer for debug purposes; or the LO signal can be used to daisy-chain many devices synchronously. One ADRF6614 can serve as the master where the LO signal is sourced, and the subsequent slave devices share the same LO signal from the master. This flexibility substantially eases the LO requirements of a system with multiple LOs.

The LO output drive level is controlled by the LO_DRV_LVL bits (Register 0x22, Bits[7:6]). Table 22 shows the available drive levels.

Table 22. LO Drive Levels LO_DRV_LVL (Register 0x22, Bits[7:6]) Amplitude (dBm) 00 −4 01 0.5 10 3 11 4.5

Page 37: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 37 of 61

EXTVCOIN+

EXTVCOIN–

DECL3

DEC

L1

DEC

L2

LOO

UT+

LOO

UT–

LDO

1

VCC2

SDIO

SCLK C

S

IFO

UT2

+IF

OU

T2–

VCC3

DN

C

VCC6

VCC4

VCC5

RFBCT2RFIN2

LDO

2

VCC8

VCC

10

RFBCT1

RFIN1

IFO

UT1

+IF

OU

T1–

VCC

11

DN

C

CPO

UT

REF

IN

MU

XOU

T

LDO3

VCC

12

VCO

VTU

NE

SPICONTROL

DIVIDE BY1 TO 32

PLLCHARGE PUMP

3.3V LDO

VCOLDO

SPI2.5VLDO

LO DIV3.3VLDO

VCO

VCO

VCO

4

5

9

10

11

12

151413

16

17 18 19 22 23

40

21

39 3841

20

424347

37

2

44

45

46

27

28

29

25

26

30

35

36

32

34

VCC7 31

3 6 24

GN

D

GN

D

GN

D

GN

D

GN

D

GN

D

1 48

VCC

9

33

INTN-DIVIDER

2.5VLDO

7

N-DIVIDER

REFINDIVIDER

PFD

LOCKDETECT

VPTATSCAN

EXPOSEDPAD VCO

BUFFERLDO

VCO BANDSWITCH LDO

VCC1DECL4

DECL5

LDO4

8

1411

5-09

1

Figure 110. Simplified Schematic

Page 38: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 38 of 61

APPLICATIONS INFORMATION The ADRF6614 mixer is designed to downconvert radio frequencies (RF) primarily between 700 MHz and 3000 MHz to lower intermediate frequencies (IF) between 40 MHz to 500 MHz. Figure 111 depicts the basic connections of the mixer. It is

recommended to ac couple the RF and LO input ports to prevent nonzero dc voltages from damaging the RF balun or LO input circuit. A RFIN capacitor value of 22 pF is recommended.

EXTVCOIN+

EXTVCOIN–

DECL3

DEC

L1

DEC

L2

LOO

UT+

LOO

UT–

LDO

1

VCC2

SDIO

SCLK C

S

IFO

UT2

+IF

OU

T2–

VCC3

DN

C

VCC6

VCC4

VCC5

RFBCT2RFIN2

LDO

2

VCC8

VCC

10

RFBCT1

RFIN1

IFO

UT1

+IF

OU

T1–

VCC

11

DN

C

CPO

UT

REF

IN

MU

XOU

T

LDO3

VCC

12

VCO

VTU

NE

SPICONTROL

DIVIDE BY1 TO 32

PLLCHARGE PUMP

3.3V LDO

VCOLDO

SPI2.5VLDO

LO DIV3.3VLDO

VCO

VCO

VCO

4

5

910

11

12

151413

16

17 18 19 22 23

40

21

39 3841

20

424347

37

2

44

45

46

27

28

29

25

26

30

35

36

32

34

VCC731

3 6 24

GND

1 48

VCC

9

33

INTN-DIVIDER

2.5VLDO

7

N-DIVIDER

REFINDIVIDER

PFD

LOCKDETECT

VPTATSCAN

10µF(0603)

0.1µF(0402) 6.8pF

(0402)

22pF(0402)

2700pF(0402)

3.16kΩ(0402)

10kΩ(0402)

10kΩ(0402)

22pF(0402)

+5V

150pF(0402)

150pF(0402)

150pF(0402)

330nH 330nH

RFIN1

RFIN2

IFOUT1

REFIN

1000pF(0402)

50Ω(0402)

100pF(0402)

LOIN100pF(0402)100pF(0402)

EXPOSEDPAD

VCOBUFFER

LDO

VCO BANDSWITCH LDO

22pF(0402)

10pF(0402)

10pF(0402)

10pF(0402)

10pF(0402)

10pF(0402)

10µF(0603)

10pF(0402)

10pF(0402)

10pF(0402)

10pF(0402)

10pF(0402)

10pF(0402)

10pF(0402)

10µF(0603)

10µF(0603)

10µF(0603)

10µF(0603)

10µF(0603)

10nF(0603)

10nF(0603)

10µF(0603)

10µF(0603)

10µF(0603)

10µF(0603)

0.1µF(0402)

10µF(0603)

0.1µF(0402)

10µF(0603)

0.1µF(0402)

VCC110µF

(0603)0.1µF

(0402)

100pF(0402)

100pF(0402)

100pF(0402)

DECL4100pF(0402)

DECL5100pF(0402)

LDO4100pF(0402)

10pF(0402)

10pF(0402)

10pF(0402)

100pF(0402)

100pF(0402)

100pF(0402)

10µF(0603)

0.1µF(0402)

10µF(0603)

0.1µF(0402)

10µF(0603)

0.1µF(0402)

10µF(0603)

0.1µF(0402)

10µF(0603)

0.1µF(0402)

10µF(0603)

0.1µF(0402)

10µF(0603)

0.1µF(0402)

8

+5V

150pF(0402)

150pF(0402)

150pF(0402)

330nH 330nH

IFOUT2LOOUT

22pF(0402)

1411

5-08

2

Figure 111. Basic Connections Diagram

Page 39: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 39 of 61

BASIC CONNECTIONS BY PIN DESCRIPTION Table 23. Basic Connections Pin No. Mnemonic Description Basic Connection

5 V Power Decouple to GND with a 10 µF, a 0.1 µF, and a 10 pF capacitor as close to the pin as possible.

7 VCC1 5 V VCO supply 16 VCC2 5 V supply for SPI port 20, 41 VCC3, VCC11 5 V biases for IF Channel 2 and IF Channel 1 27, 28, 29, 32, 33, 34 VCC4, VCC5, VCC6,

VCC8, VCC9, VCC10 5 V supplies for mixer LO amplifier

31 VCC7 5 V supply for mixer LO divider chain 46 VCC12 5 V supply for internal PLL

Internal LDO Nodes Decouple to GND with a 10 µF and a 100 pF capacitor, as close to the pin as possible.

8, 9 DECL1, DECL2 VCO LDO outputs 10, 11, 12 DECL3, DECL4, DECL5 External decoupling for VCO circuitry 15 LDO1 External decoupling for internal 2.5 V SPI LDO 30 LDO2 External decoupling for internal 3.3 V

PLL/divider LDO

44 LDO3 External decoupling for internal 2.5 V PLL LDO 45 LDO4 External decoupling for internal 3.3 V PLL LDO

GND Connect directly to the PCB ground through a low impedance connection.

1 GND External loop filter ground 3, 6 GND Common ground for external loop filter 24, 37 GND IF stage, Channel 2 and Channel 1 ground 48 GND External charge pump ground

SPI 17 SDIO SPI port data input/output 18 SCLK SPI port clock 19 CS SPI port chip select

RF, Mixer, IF Path 4, 5 EXTVCOIN+,

EXTVCOIN− External VCO or LO inputs DC block with 100 pF capacitors.

13, 14 LOOUT+, LOOUT− Differential LO outputs DC block with 100 pF capacitors. 22, 23 IFOUT2+, IFOUT2− Channel 2 differential IF outputs Bias to 5 V supply with 330 nH inductors and dc

block with 150 pF capacitors. 25 RFBCT2 Internal mixer bias control for Channel 2 RF

input Decouple to GND with a 10 pF and a 10 nF capacitor, as close to the pin as possible.

26 RFIN2 Channel 2 single-ended RF input DC block with a 22 pF capacitor. 36 RFBCT1 Internal mixer bias control for Channel 1 RF

input Decouple to GND with a 10 pF and a 10 nF capacitor, as close to the pin as possible.

35 RFIN1 Channel 1 single-ended RF input DC block with a 22 pF capacitor. 38, 39 IFOUT1−, IFOUT1+ Channel 1 differential IF outputs Bias to 5 V supply with 330 nH inductors and dc

block with 150 pF capacitors.

PLL/VCO 2 VCOVTUNE Control voltage for internal VCO Output from external loop filter. 43 REFIN External reference for internal PLL 47 CPOUT Charge pump output Input to external loop filter.

Other 42 MUXOUT Output for various internal analog signals,

including PLL lock detect and voltage proportional to absolute temperature (VPTAT)

Can be read directly from the pin; the user must be careful of loading effects; not a low impedance output.

21, 40 DNC Do not connect

Page 40: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 40 of 61

MIXER OPTIMIZATION RF INPUT BALUN INSERTION LOSS OPTIMIZATION At lower input frequencies, more capacitance is needed. This increase is achieved by programming higher codes into BAL_COUT. At high frequencies, less capacitance is required; therefore, lower BAL_COUT codes are appropriate.

As shown in Figure 112 and Figure 113, this tuning range can be further optimized by adding capacitance across the RF input in conjunction with tuning BAL_COUT. This added capacitance can help to increase the low frequency range of the device significantly.

–20

–18

–16

–14

–12

–10

–8

–6

–4

–2

0

500 900 1300 1700 2100 2500 2900

RET

UR

N L

OSS

(dB

)

RF FREQUENCY (MHz)

NO CAP1pF2pF3.3pF

4pF5.6pF6.8pF

1411

5-09

6

Figure 112. Return Loss; Optimum BAL_COUT vs. RF Frequency for Various

Tuning Capacitor Values on RFINx Using a High-Side LO

–20

–18

–16

–14

–12

–10

–8

–6

–4

–2

0

500 900 1300 1700 2100 2500 2900

RET

UR

N L

OSS

(dB

)

RF FREQUENCY (MHz)

NO CAP1pF2pF3.3pF

4pF5.6pF6.8pF

1411

5-09

7

Figure 113. Return Loss; Optimum BAL_COUT vs. RF Frequency for Various

Tuning Capacitor Values on RFINx Using a Low-Side LO

IIP3 OPTIMIZATION In applications in which performance is critical, the ADRF6614 offers IIP3 optimization. The IF amplifier bias current can be reduced to trade performance vs. power consumption. This tradeoff saves on the overall power at the expense of degraded performance.

Figure 114 to Figure 117 show the IIP3 sweeps for all combinations of IFA main bias and linearity bias. The IIP3 vs. main bias and linearity bias figures show both a surface and a contour plot in one

figure. The contour plot is located directly underneath the surface plot. The best approach for reading the figure is to localize the peaks on the surface plot, which indicate maximum IIP3, and to follow the same color pattern to the contour plot to determine the optimized IFA main bias and linearity bias settings.

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16

IIP3

(dB

m)

IFA_MAINBIAS

IFA_LINBIAS = 0IFA_LINBIAS = 1IFA_LINBIAS = 2IFA_LINBIAS = 3IFA_LINBIAS = 4IFA_LINBIAS = 5IFA_LINBIAS = 6IFA_LINBIAS = 7

IFA_LINBIAS = 8IFA_LINBIAS = 9IFA_LINBIAS = 10IFA_LINBIAS = 11IFA_LINBIAS = 12IFA_LINBIAS = 13IFA_LINBIAS = 14

1411

5-40

0

Figure 114. IIP3 vs. Main Bias (IFA_MAINBIAS) and Linearity Bias

(IFA_LINBIAS) Level at IF Frequency = 50 MHz

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16

IIP3

(dB

m)

IFA_MAINBIAS

IFA_LINBIAS = 0IFA_LINBIAS = 1IFA_LINBIAS = 2IFA_LINBIAS = 3IFA_LINBIAS = 4IFA_LINBIAS = 5IFA_LINBIAS = 6IFA_LINBIAS = 7

IFA_LINBIAS = 8IFA_LINBIAS = 9IFA_LINBIAS = 10IFA_LINBIAS = 11IFA_LINBIAS = 12IFA_LINBIAS = 13IFA_LINBIAS = 14

1411

5-40

1

Figure 115. IIP3 vs. Main Bias (IFA_MAINBIAS) and Linearity Bias

(IFA_LINBIAS) Level at IF Frequency = 100 MHz

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16

IIP3

(dB

m)

IFA_MAIN

IFA_LINBIAS = 0IFA_LINBIAS = 1IFA_LINBIAS = 2IFA_LINBIAS = 3IFA_LINBIAS = 4IFA_LINBIAS = 5IFA_LINBIAS = 6IFA_LINBIAS = 7

IFA_LINBIAS = 8IFA_LINBIAS = 9IFA_LINBIAS = 10IFA_LINBIAS = 11IFA_LINBIAS = 12IFA_LINBIAS = 13IFA_LINBIAS = 14

1411

5-40

2

Figure 116. IIP3 vs. Main Bias (IFA_MAINBIAS) and Linearity Bias

(IFA_LINBIAS) Level at IF Frequency = 150 MHz

Page 41: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 41 of 61

0

5

10

15

20

25

30

35

0 2 4 6 8

IFA_MAINBIAS

10 12 14 16

IIP3

(dB

m)

1411

5-40

3

IFA_LINBIAS = 0IFA_LINBIAS = 1IFA_LINBIAS = 2IFA_LINBIAS = 3IFA_LINBIAS = 4IFA_LINBIAS = 5IFA_LINBIAS = 6IFA_LINBIAS = 7

IFA_LINBIAS = 8IFA_LINBIAS = 9IFA_LINBIAS = 10IFA_LINBIAS = 11IFA_LINBIAS = 12IFA_LINBIAS = 13IFA_LINBIAS = 14

Figure 117. IIP3 vs. Main Bias (IFA_MAINBIAS) and Linearity Bias

(IFA_LINBIAS) Level at IF Frequency = 200 MHz

VGS PROGRAMMING The ADRF6614 allows programmability for internal gate-to-source voltages (VGS) for optimizing mixer performance over the desired frequency bands. The ADRF6614 default VGS setting is 0. Both channels of the ADRF6614 are programmed together using the same VGS setting. Power conversion gain, input IP3, input P1dB, and SSB noise figure can be optimized, as shown in Figure 40, Figure 41, Figure 43, and Figure 44, respectively.

LOW-PASS FILTER PROGRAMMING The ADRF6614 allows programmability for the low-pass filter terminating the mixer output. This filter blocks sum term mixing products at the expense of some noise figure and gain and can significantly increase input IP3. The ADRF6614 default LPF setting is 0. Both channels of the ADRF6614 are programmed together using the same LPF settings. Power conversion gain, input P1dB, input IP3, and SSB noise figure can be optimized as shown in Figure 42, Figure 45, Figure 46, and Figure 49, respectively.

Page 42: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 42 of 61

Table 24. Recommended Optimum Settings for High Performance Mode (in Decimal) RF Frequency (MHz) LO Frequency (MHz) IFA_MAINBIAS IFA_LINBIAS BAL_COUT LPF VGS 700 497 5 11 14 4 0 800 597 5 11 14 4 0 900 697 5 11 10 4 0 1000 797 5 11 10 4 0 1100 897 5 15 10 4 0 1200 997 5 15 10 4 0 1300 1097 5 15 10 4 0 1400 1197 5 15 6 4 0 1500 1297 5 15 6 4 0 1600 1397 5 15 4 4 0 1700 1497 5 15 4 4 0 1800 1597 5 15 4 4 0 1900 1697 5 15 4 4 0 2000 1797 5 15 4 4 0 2100 1897 5 15 4 4 0 2200 1997 5 15 4 4 0 2300 2097 5 15 2 4 0 2400 2197 5 15 2 4 0 2500 2297 5 15 2 4 0 2600 2397 5 15 2 4 0 2700 2497 5 15 2 4 0 2800 2597 5 15 2 4 0 2900 2697 5 15 0 4 0 3000 2797 5 15 0 4 0

Table 25. Recommended Optimum Settings for High Efficiency Mode (in Decimal) RF Frequency (MHz) LO Frequency (MHz) IFA_MAINBIAS IFA_LINBIAS BAL_COUT LPF VGS 700 497 5 15 14 4 0 800 597 5 15 14 4 0 900 697 5 15 10 4 0 1000 797 5 15 10 4 0 1100 897 5 15 10 4 0 1200 997 5 15 10 4 0 1300 1097 5 15 10 4 0 1400 1197 7 15 6 4 0 1500 1297 7 15 6 4 0 1600 1397 7 15 4 4 0 1700 1497 7 15 4 4 0 1800 1597 7 15 4 4 0 1900 1697 7 15 4 4 0 2000 1797 7 15 4 4 0 2100 1897 7 15 4 4 0 2200 1997 7 15 4 4 0 2300 2097 13 15 2 4 0 2400 2197 13 15 2 4 0 2500 2297 13 15 2 4 0 2600 2397 13 15 2 4 0 2700 2497 13 15 2 4 0 2800 2597 13 15 2 4 0 2900 2697 13 15 0 4 0 3000 2797 13 15 0 4 0

Page 43: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 43 of 61

GSM MODE OF OPERATION The ADRF6614 supports GSM phase noise specifications in typical GSM bands such as the 800 MHz, 900 MHz, 1800 MHz, and 1900 MHz. GSM phase noise performance in the 800 MHz and 900 MHz bands is met by simply tuning the integrated PLLVCO to the desired frequency.

Integrated VCO cores (VCO_4 and VCO_5) support GSM phase noise performance in the 1800 MHz and 1900 MHz GSM bands. To ensure that GSM phase noise performance is achieved when using the ADRF6614 in 1800 MHz or 1900 MHz bands, select the VCO_4 core by writing the VCO_SEL bits in the VCO_ CTRL1 register (Register 0x22, Bits[2:0]) for a frequency range of 1.525 GHz to 1.547 GHz, and the VCO_5 core for a frequency range of 1.668 GHz to 1.708 GHz.

The VCO_4 and VCO_5 cores operate at fundamental frequencies of 3.050 GHz to 3.094 GHz and 3.336 GHz to 3.416 GHz, respec-tively. To generate the desired LO frequency in the 1800 MHz and 1900 MHz bands, enable divide by 2 by writing to LO_DIV (Register 0x22, Bits[5:3]).

For the GSM mode of operation, the recommended loop filter components and dynamic loop settings are shown in Table 19 at the PFD rate of 1.536 MHz.

See Figure 118 for the GSM mode phase noise performance of −145 dBc/Hz at 800 kHz offset at the carrier frequency of 1.535 GHz.

When using the VCO_4 or VCO_5 cores, it is required to set VTUNE_DAC_SLOPE (Register 0x49, Bits[13:9]) = 9d, VTUNE_DAC_OFFSET (Register 0x49, Bits[8:0]) = 171d, VCO_LDO_R2 (Register 0x22, Bits[11:8]) = 2d, and VCO_ LDO_R4 (Register 0x22, Bits[15:12]) = 10d. In transitioning from a GSM VCO (VCO_4 and VCO_5) to an octave VCO, the LDO settings must be changed before changing the VCO selection.

–180

–20

–30

–40

–50

–60

–70

–80

–90

–100

–110

–120

–130

–140

–150

–160

–170

PH

AS

E N

OIS

E (

dB

)FREQUENCY (Hz)

1k 10k 100k 1M 10M 100M

1 2

3

4

56

7

8 9

10

1: 1kHz –88.8656dBc/Hz2: 10kHz –91.0102dBc/Hz3: 50kHz –111.8226dBc/Hz4: 100kHz –121.2806dBc/Hz5: 500kHz –141.0461dBc/Hz6: 800kHz –145.2453dBc/Hz7: 1MHz –148.3557dBc/Hz8: 10MHz –158.4950dBc/Hz9: 40MHz –158.6742dBc/Hz10: 100MHz –157.3591dBc/Hz

START: 500HzSTOP: 20MHzCENTER: 10.00025MHzSPAN: 19.9995MHz

INTG NOISE: –47.5392dBc/19.7MHzRMS NOISE: 5.93684 mrad

340.156mdegRMS JITTER: 615.168fsRESIDUAL FM: 866.159Hz

1411

5-62

6

Figure 118. GSM Phase Noise Performance at 1.535 GHz

Page 44: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 44 of 61

REGISTER SUMMARY Table 26. Register Summary Reg. Name Bits Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset RW

0x00 SOFT_RESET [15:8] SOFT_RESET[15:8] 0x0000 R

[7:0] SOFT_RESET[7:0]

0x01 ENABLES [15:8] LO_LDO_EN LO2_ENP BALUN_EN LO1_ENP DIV2P5_EN PWRUPRX LO_PATH_EN 0x0000 RW

[7:0] LO_DRV_EN VCOBUF_LDO_ EN

REF_BUF_EN VCO_EN DIV_EN CP_EN VCO_LDO_EN LDO_3P3_EN

0x02 INT_DIV [15:8] DIV_MODE INT_DIV[14:8] 0x0058 RW

[7:0] INT_DIV[7:0]

0x03 FRAC_DIV [15:8] FRAC_DIV[15:8] 0x0250 RW

[7:0] FRAC_DIV[7:0]

0x04 MOD_DIV [15:8] MOD_DIV[15:8] 0x0600 RW

[7:0] MOD_DIV[7:0]

0x10 IF_BIAS [15:8] IFA_LIN_HIEFFP IFA_MAIN_ HIEFFP

IFA_LINSLOPE IFA_MAINSLOPE IFA_LINBIAS[3:2] 0x02B5 RW

[7:0] IFA_LINBIAS[1:0] IFA_LINBIAS_EN IFA_MAINBIAS IFA_MAINBIAS_EN

0x20 CP_CTRL [15:8] UNUSED CSCALE 0x0026 RW

[7:0] BLEED_ POLARITY

BLEED

0x21 PFD_CTRL1 [15:8] UNUSED REF_MUX_SEL PFD_POLARITY REFSEL[11:8] 0x0003 RW

[7:0] REFSEL[7:0]

0x22 VCO_CTRL1 [15:8] VCO_LDO_R4 VCO_LDO_R2 0x000A RW

[7:0] LO_DRV_LVL LO_DIV VCO_SEL

0x30 BALUN_CTRL [15:8] UNUSED VGS LPF 0x0000 RW

[7:0] BAL_COUT RESERVED

0x40 PFD_CTRL2 [15:8] UNUSED ABLDLY[3] 0x0010 RW

[7:0] ABLDLY[2:0] CPCTRL CLKEDGE

0x42 DITH_CTRL1 [15:8] UNUSED[11:4] 0x000E RW

[7:0] UNUSED[3:0] DITH_EN DITH_MAG DITH_VAL_H

0x43 DITH_CTRL2 [15:8] DITH_VAL_L[15:8] 0x0001 RW

[7:0] DITH_VAL_L[7:0]

0x44 SYNTH_FCNTN_CTRL

[15:8] UNUSED[9:2] 0x0000 RW

[7:0] UNUSED[1:0] DIV_SDM_ DIS

VCOCNT_CG_ DIS

BANDCAL_CG_ DIS

SDM_CG_ DIS

SDM_DIVD_ CLR

BANDCAL_DIVD_ CLR

0x45 VCO_CTRL2 [15:8] UNUSED 0x0020 RW

[7:0] VCO_BAND_SRC BAND

0x46 VCO_CTRL3 [15:8] UNUSED 0x0000 RW

[7:0] VCO_CNTR_ DONE

VCO_BAND

0x47 VCO_CNTR_ CTRL

[15:8] UNUSED[11:4] 0x0000 RW

[7:0] UNUSED[3:0] VCO_CNTR_REFCNT VCO_CNTR_ CLR

VCO_CNTR_EN

0x48 VCO_CNTR_RB [15:8] VCO_CNTR_RB[15:8] 0x0000 R

[7:0] VCO_CNTR_RB[7:0]

0x49 VTUNE_DAC_ CTRL

[15:8] UNUSED VTUNE_DAC_SLOPE VTUNE_DAC_ OFFSET[8]

0x0000 RW

[7:0] VTUNE_DAC_OFFSET[7:0]

0x4A VCO_BUF_LDO [15:8] UNUSED 0x0000 RW

[7:0] VCOBUF_LDO_R4 VCOBUF_LDO_R2

Page 45: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 45 of 61

REGISTER DETAILS Address: 0x00, Reset: 0x0000, Name: SOFT_RESET

Table 27. Bit Descriptions for SOFT_RESET Bits Bit Name Settings Description Reset Access [15:0] SOFT_RESET Soft reset bit. 0x0 R 0 Any write to this register asserts a soft reset command. 0x0 R

Address: 0x01, Reset: 0x0000, Name: ENABLES

Table 28. Bit Descriptions for ENABLES Bits Bit Name Settings Description Reset Access 15 LO_LDO_EN Power up LO LDO. 0x0 RW 14 LO2_ENP LO 2 enable. 0x0 RW 13 BALUN_EN Input balun enable. 0x0 RW 12 LO1_ENP LO 1 enable. 0x0 RW 11 DIV2P5_EN Enable dividers 2.5 V LDO. 0x0 RW [10:9] PWRUPRX Power up Rx. 0x0 RW 0x0 Power down both mixer channels. 0x1 Power up mixer Channel 1. 0x2 Power up mixer Channel 2. 0x3 Power up both mixer channels. 8 LO_PATH_EN External LO path enable. 0x0 RW 7 LO_DRV_EN LO driver enable. 0x0 RW

Page 46: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 46 of 61

Bits Bit Name Settings Description Reset Access 6 VCOBUF_LDO_EN VCO buffer LDO enable. 0x0 RW 5 REF_BUF_EN Reference buffer enable. 0x0 RW 4 VCO_EN Power up VCOs. 0x0 RW 3 DIV_EN Power up dividers. 0x0 RW 2 CP_EN Power up charge pump. 0x0 RW 1 VCO_LDO_EN Power up VCO LDO. 0x0 RW 0 LDO_3P3_EN Power up 3.3 V LDO. 0x0 RW

Address: 0x02, Reset: 0x0058, Name: INT_DIV

Table 29. Bit Descriptions for INT_DIV Bits Bit Name Settings Description Reset Access 15 DIV_MODE Set fractional/integer mode. 0x0 RW 0 Fractional. 1 Integer. [14:0] INT_DIV Set divider INT value. 0x58 RW

Address: 0x03, Reset: 0x0250, Name: FRAC_DIV

Table 30. Bit Descriptions for FRAC_DIV Bits Bit Name Settings Description Reset Access [15:0] FRAC_DIV Set divider FRAC value. 0x250 RW

Address: 0x04, Reset: 0x0600, Name: MOD_DIV

Table 31. Bit Descriptions for MOD_DIV Bits Bit Name Settings Description Reset Access [15:0] MOD_DIV Set divider MOD value. 0x600 RW

Page 47: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 47 of 61

Address: 0x10, Reset: 0x02B5, Name: IF_BIAS

Table 32. Bit Descriptions for IF_BIAS Bits Bit Name Settings Description Reset Access 15 IFA_LIN_HIEFFP Linearity RDAC. 0x0 RW 0 High performance mode. 1 High efficiency mode. 14 IFA_MAIN_HIEFFP Main RDAC. 0x0 RW 0 High performance mode. 1 High efficiency mode. [13:12] IFA_LINSLOPE Linearity slope adjust for IF amps (IPMix). 0x0 RW [11:10] IFA_MAINSLOPE Main slope adjust for IF amps (IPMix). 0x0 RW [9:6] IFA_LINBIAS Linearity bias adjust for IF amps (IPMix). 0xa RW 5 IFA_LINBIAS_EN Enable internal linearity bias adjust for IF amps (IPMix). 0x1 RW [4:1] IFA_MAINBIAS Main bias adjust for IF amps (IPMix). 0xa RW 0 IFA_MAINBIAS_EN Enable internal main bias adjust for IF amps (IPMix). 0x1 RW

Address: 0x20, Reset: 0x0026, Name: CP_CTRL

Table 33. Bit Descriptions for CP_CTRL Bits Bit Name Settings Description Reset Access [15:14] UNUSED Unused. 0x0 RW [13:8] CSCALE Charge pump current adjust. 0x0 RW 7 BLEED_POLARITY Charge pump bleed current polarity. 0x0 RW [6:0] BLEED Charge pump bleed. 0x26 RW

Page 48: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 48 of 61

Address: 0x21, Reset: 0x0003, Name: PFD_CTRL1

Table 34. Bit Descriptions for PFD_CTRL1 Bits Bit Name Settings Description Reset Access 15 UNUSED Unused. 0x0 RW [14:13] REF_MUX_SEL Reference output divide ratio/VPTAT/SCAN/LOCK_DET. 0x0 RW 000 LOCK_DET. 001 VPTAT. 010 REFCLK. 011 REFCLK/2. 100 REFCLK × 2. 101 REFCLK/8. 110 REFCLK/4. 111 SCAN. 12 PFD_POLARITY PFD polarity. 0x0 RW 0 Positive. 1 Negative. [11:0] REFSEL Reference input divide ratio. 0x3 RW

Page 49: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 49 of 61

Address: 0x22, Reset: 0x000A, Name: VCO_CTRL1

Table 35. Bit Descriptions for VCO_CTRL1 Bits Bit Name Settings Description Reset Access [15:12] VCO_LDO_R4 VCO LDO R4 resistor control setting. 0x0 RW [11:8] VCO_LDO_R2 VCO LDO R2 resistor control setting. 0x0 RW [7:6] LO_DRV_LVL External LO amplitude. 0x0 RW 00 −0.8 dBm/15 mA. 01 4.6 dBm/28 mA. 10 7.5 dBm/40 mA. 11 9.2 dBm/49 mA. [5:3] LO_DIV LO divider. 0x1 RW 00 Divide by 1. 01 Divide by 2. 10 Divide by 4. 11 Divide by 8. [2:0] VCO_SEL Select VCO core/external LO. 0x2 RW 000 VCO_0 4.6 GHz to 5.7 GHz. 001 VCO_1 4.02 GHz to 4.6 GHz. 010 VCO_2 3.5 GHz to 4.02 GHz. 011 VCO_3 2.85 GHz to 3.5 GHz. 100 VCO_4 3.050 GHz to 3.094 GHz 101 VCO_5 3.336 GHz to 3.416 GHz 110 External LO/VCO. 111 None

Page 50: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 50 of 61

Address: 0x30, Reset: 0x0000, Name: BALUN_CTRL

Table 36. Bit Descriptions for BALUN_CTRL Bits Bit Name Settings Description Reset Access [15:14] UNUSED Unused. 0x0 RW [13:11] VGS Mixer VGS bias. 0x0 RW [10:8] LPF Mixer output IF low-pass filter. 0x0 RW [7:4] BAL_COUT Set balun COUT (both channels). 0x0 RW [3:0] RESERVED Reserved, set to 0x0. 0x0 RW

Address: 0x40, Reset: 0x0010, Name: PFD_CTRL2

Table 37. Bit Descriptions for PFD_CTRL2 Bits Bit Name Settings Description Reset Access [15:9] UNUSED Unused. 0x0 RW [8:5] ABLDLY Set antibacklash delay. 0x0 RW 00 0 ns. 01 0.5 ns. 10 0.75 ns. 11 0.9 ns.

Page 51: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 51 of 61

Bits Bit Name Settings Description Reset Access [4:2] CPCTRL Set charge pump control. 0x4 RW 000 Both on. 001 Pump down. 010 Pump up. 011 Tristate. 100 PFD. 101 Unused. 110 Unused. 111 Unused. [1:0] CLKEDGE Set PFD edge sensitivity. 0x0 RW 00 Divider and reference down edge. 01 Divider down edge, reference up edge. 10 Divider up edge, reference down edge. 11 Divider and reference up edge.

Address: 0x42, Reset: 0x000E, Name: DITH_CTRL1

Table 38. Bit Descriptions for DITH_CTRL1 Bits Bit Name Settings Description Reset Access [15:4] UNUSED Unused register bits. 0x0 RW 3 DITH_EN Set dither enable. 0x1 RW 0 Disable. 1 Enable. [2:1] DITH_MAG Dither magnitude. 0x3 RW 0 DITH_VAL_H Highest bit of 17-bit dither value. 0x0 RW

Address: 0x43, Reset: 0x0001, Name: DITH_CTRL2

Table 39. Bit Descriptions for DITH_CTRL2 Bits Bit Name Settings Description Reset Access [15:0] DITH_VAL_L Lowest 16 bits of 17-bit dither value. 0x1 RW

Page 52: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 52 of 61

Address: 0x44, Reset: 0x0000, Name: SYNTH_FCNTN_CTRL

Table 40. Bit Descriptions for SYNTH_FCNTN_CTRL Bits Bit Name Settings Description Reset Access [15:6] UNUSED Unused. 0x0 RW 5 DIV_SDM_DIS Disable sigma-delta modulator (SDM) divider. 0x0 RW 4 VCOCNT_CG_DIS Disable built in self test (BIST) clock. 0x0 RW 3 BANDCAL_CG_DIS Disable VCO band calibration (BANDCAL) clock. 0x0 RW 2 SDM_CG_DIS Disable SDM clock. 0x0 RW 1 SDM_DIVD_CLR Clear SDM divider. 0x0 RW 0 BANDCAL_DIVD_CLR Clear BANDCAL divider. 0x0 RW

Address: 0x45, Reset: 0x0020, Name: VCO_CTRL2

Table 41. Bit Descriptions for VCO_CTRL2 Bits Bit Name Settings Description Reset Access [15:8] UNUSED Unused. 0x0 RW 7 VCO_BAND_SRC Set VCO band source. 0x0 RW 0 Automatic 1 Manual [6:0] BAND Set VCO band. 0x20 RW

Page 53: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 53 of 61

Address: 0x46, Reset: 0x0000, Name: VCO_CTRL3

Table 42. Bit Descriptions for VCO_CTRL3 Bits Bit Name Settings Description Reset Access [15:8] UNUSED Unused. 0x0 RW 7 VCO_CNTR_DONE Read back BIST counter status. 0x0 R [6:0] VCO_BAND Read back output of band capacitor mux. 0x0 R

Address: 0x47, Reset: 0x0000, Name: VCO_CNTR_CTRL

Table 43. Bit Descriptions for VCO_CNTR_CTRL Bits Bit Name Settings Description Reset Access [15:4] UNUSED Unused. 0x0 RW [3:2] VCO_CNTR_REFCNT BIST counter integration interval. 0x0 RW 1 VCO_CNTR_CLR Clear BIST counter. 0x0 RW 0 VCO_CNTR_EN Enable BIST counter. 0x0 RW

Address: 0x48, Reset: 0x0000, Name: VCO_CNTR_RB

Table 44. Bit Descriptions for VCO_CNTR_RB Bits Bit Name Settings Description Reset Access [15:0] VCO_CNTR_RB Read back output of BIST counter. 0x0 R

Page 54: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 54 of 61

Address: 0x49, Reset: 0x0000, Name: VTUNE_DAC_CTRL

Table 45. Bit Descriptions for VTUNE_DAC_CTRL Bits Bit Name Settings Description Reset Access [15:14] UNUSED Unused. 0x0 RW [13:9] VTUNE_DAC_SLOPE Set VTUNE proportional to absolute temperature (PTAT) DAC. 0x0 RW [8:0] VTUNE_DAC_OFFSET Set VTUNE zero to absolute temperature (ZTAT) DAC. 0x0 RW

Address: 0x4A, Reset: 0x0000, Name: VCO_BUF_LDO

Table 46. Bit Descriptions for VCO_BUF_LDO Bits Bit Name Settings Description Reset Access [15:8] UNUSED Unused. 0x0 RW [7:4] VCOBUF_LDO_R4 VCOBUF LDO R4 control. 0x0 RW [3:0] VCOBUF_LDO_R2 VCOBUF LDO R2 control. 0x0 RW

Page 55: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 55 of 61

EVALUATION BOARD An evaluation board is available for the ADRF6614. The standard evaluation board schematic is presented in Figure 119. The USB interface circuitry schematic is presented in Figure 121 and/or Figure 120. The evaluation board layout is shown in Figure 122

and Figure 123. The evaluation board is fabricated using Rogers® 3003 material. Table 47 details the configuration for the mixer characterization. The evaluation board software is available on www.analog.com.

Page 56: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 56 of 61

CLOSE AS POSSIBLE TO THE PINS ON THE CHIP

PLL REF IN

(VCC2LO3)

(VCC2LO4)

THESE SIX 10PF CAPS

SHOULD BE LOCATED AS

CLOSE AS POSSIBLE TO

(VCC5PLL)

(VCC5SPI)

(VCCIF2)

(VCC1LO4)

(VCC1LO3)

(VCC1LO2)

(VCC5DIV)

(VCC2LO2)

PINS 27,28,29,32,33,34

IF OUTPUT 1

(VCCIF1)

IF OUTPUT 2

ALL 100PF DECOUPLING CAPS SHOULD BE AS

(VCC5VCO)

EXT VCO OUTPUT

DNI

.033UF

0

BLK

1500PF

910

1.8K

BLK

22PF

SML-210MTT86

JOHNSON142-0701-851

330NH

22PF

0.1UF

BLU

20K

0

50

DNI

1K

1K DNI

1KDNI

DNI

1K

00

0

DNI

0

0

DNI

00

0

0DNI

0

10UF

10UF

10UF

10UF

10UF

10UF

10UF

TC4-1W+

TC4-1W+

0.1UF

150PF

150PF

TBD0805

DNI

100PF

100PF

100PF

1000PF

10000PF

150PF

100PF

150PF

0.1UF

330NH

BLK

0.1UF

100PF

330NH

150PF

150PF

AT224-1

10UF

10UF

10UF

RED

RED

RED

100PF

100PF

100PF

100PF

BLU

10PF

BLU

10000PF

0.1UF

100PF

0.1UF

100PF

TC1-1-43A+

150PF

150PF

10PF

0.1UF

10PF

0.1UF

10PF

0.1UF

10PF

0.1UF

10PF

0.1UF

10PF

0.1UF

10PF

0.1UF

100PF

100PF

150PF

150PF

330NH

JOHNSON142-0701-851

JOHNSON142-0701-851

DNI

JOHNSON142-0701-851

JOHNSON142-0701-851

JOHNSON142-0701-851

JOHNSON142-0701-851

JOHNSON142-0701-851

DNI

JOHNSON142-0701-851

JOHNSON142-0701-851

2K

TC1-1-43A+

AT224-1

100PF

BLU

10PF

10UF

100PF

100PF

BLK

100PF

0.1UF

100PF

ADRF

6614

ACPZ

560PF

39PF

C9

C3

C27

C25

C31

C28

C11

C12

C6

C17

C16

C41

C45

T5C

38

C39

L3 L4

C35

C34

C30

R18

R16

IF2P

IF2N

EXT_

LOIN

LO_O

UT

RF_I

N2

C43

C42

RF_

IN1

C40

C44

IF1 P IF

1N

R17

R15

T4C3

6

C37

L1 L2

C33

C32

C29

C21

C19

MU

X_O

UT

PLL_

REF

_IN

R19

C54

C7C2

C15

T1

T2

C59

C60

C82

R35

GN

D3

R36 CR

3

GN

D4

GN

D2G

ND1

R38

R39

R37 R40

R41

C89

C26

C24

C51

C4

C52

C10

C53

C46

C55

C47

C56

C48

C90

C49

C91

C50

VCC

_LO

C92

VTU

NE

C100

C10

2C1

01

C10

3C

105

C10

4

C14

C10

8C

107

C5

R93

R94

TP4

R95TP

5

R96

C58

C57

R97

R98

CPO

UT

VCC

_IF

VCC

_SYN

TH

C1

C8

R10

R8

R7

C23

C18

U1

C20

C22

VCOTUNE

VCC_SYNTH

IF2N

IF2P

IF1N

IF1P

PLL_REF_IN

VCC_IF

VCC_IF

VCC_IF

VCC_IF

VCC_SYNTH

VCC_SYNTH

VCC_SYNTH

VCC_LO

VCC_LO

VCC_LO

VCC_SYNTH

VCC_LO

VCC_LO

VCC_LO

LDO3P3DIV

VCC_LO

VCC_IF

LDO2P5SPI

LDO2P5PLL

LDO3P3PLL

MUXOUT

LDO2P5SPIVCC_SYNTH

DATACLKLE

VCC_IF

VCC_LO

VCC_LO

LDO3P3DIV

VCC_SYNTH

VCC_LO

VCC_LO

VCC_LO

VCC_IF

LDO2P5PLLLDO3P3PLLVCC_SYNTH

CPOUT

VCC_SYNTH

VCC_LO

46

2 31

1

23

45

1

23

45

1

23

45

1

23

45

1

23

45

1

23

45

1

23

45

1

23

45

46

2 31

1

23

45

1

23

45

1 346

1 346

1

CA

111

1

P N

1

1

1

1

11

P NP N

47

10

PAD

4243

36 25

1817

2

19

8 9

11 12

2140

4 51 3 6

2437

48

3938

2322

15

30

4445

1314

35 26

7

16

20

27282931323334

41

46

AGN

D

AGN

DAG

ND

AGND

AGND

EPGND

CPOUTVCC12LDO4LDO3

REFINMUXOUT

VCC11DNC

IFOUT1+IFOUT1-

GND RFB

CT1

RFIN

1VC

C10

VCC

9VC

C8

VCC

7LD

O2

VCC

6VC

C5

VCC

4RF

IN2

RFB

CT2

GNDIFOUT2-IFPOUT2+DNCVCC3CS_NSCLKSDIOVCC2LDO1LOOUT-LOOUT+

DEC

L5D

ECL4

DEC

L3D

ECL2

DEC

L1VC

C1

GN

DEX

TVC

OIN-

EXTV

COI

N+G

ND

VCO

VTUN

EG

ND

AGN

DAG

ND

AGN

D

AGN

D

AGND

AGN

DAG

ND

AGN

DAG

ND

AGN

D

AGND

AGN

D

AGN

D

AGN

D

AGN

D

AGN

D

AGN

D

AGN

D

AGND

AGN

D

AGN

D

AGND

AGN

DAG

ND

AGN

D

AGN

D

AGN

D

AGN

D

AGN

D

AGND

AGND

AGN

D

AGND

AGN

D

AGN

D

AGN

D

AGND

AGN

D

AGN

D

AGN

DAG

ND

AGN

D

AGN

D

AGN

D

AGN

D

AGN

D

AGN

D

AGN

D

AGN

D

AGND

AGN

D

AGND

SE

CP

RI

SE

CP

RI

AGND

AGN

D

AGN

D

AGN

D

AGN

D

AGND

AGND

14115-092

Figure 119. Evaluation Board, Main Circuitry

Page 57: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 57 of 61

330PF

330PF

DECOUPLING FOR U1

330PF

78.7K

2K2K

2K

2K

1K DNI

1K DNI

DNI

1K

897-43-005-00-100001

JPR0402

JPR0402

JPR0402

1UF

BLK

1000PF

SNS

DNI

BLK

CY7C68013A-56LTXC

TBD0402

24LC64-I-SN

10PF

0.1UF

0.1UF

0.1UF

10PF

22PF

24.000000MEGHZ

DNI

1UF

0.1UF

0.1UF

0.1UF

0.1UF

0.1UF

0.1UF

ADP3334ACPZ

0.1UF

22PF

TBD0402

DNI

DNI

SML-210MTT86

SML-210MTT86

DNI

TBD0402

0.1UF

100K

100K

140K

JP3

JP2

JP1

R25

C76

R22

C79

C71

Y1

C70

P2

C62

C69

C75

R30

C74

R31

R27

R28

C73

C72

U2

CR2

R29

R24

C78

U4

TP1

SNS1

TP2

R33

R21

U3

C68

C66

C67

C64

C65

C61

C63

CR1

C77

R32

C80

C81

LE

5V_USB

CLK

DATA

3V3_USB

3V3_USB

3V3_USB

3V3_USB

3V3_USB

3V3_USB

3V3_USB

3V3_USB

3V3_USB

3V3_USB

3V3_USB

5V_USB

21

21

21

31

42

54321 G4G3G2G1

7

8

56

4

321

A C

4 5

44

55

43

32

27

17

11

1615

42

1421

5251504948474645

2524232221201918

PAD

40 39 38 37 36 35 34 33

13

56

53

41

28

26

128 9

31 30 29

54

73 106

1

21

1

6 PAD

2187

5

3

A C

ININO

UTO

UT

PAD

FBGN

DSD

DGN

D

DGN

D

DG

NDD

GND

DG

ND

DG

ND

AGND

DG

NDDG

NDD

GND

DG

ND

DGN

DDG

NDCASE

DG

ND

DG

ND

PIN

SG

ND

DGN

D

DGN

D

DGN

D

DGN

D

DGN

D

DGN

D

DGN

D

GND

SCL

SDA

WC_

N

A2A1A0VC

C

DG

NDD

GND

PADGNDVCC

CLKOUTGND

PD7_FD15PD6_FD14PD5_FD13PD4_FD12PD3_FD11PD2_FD10

PD1_FD9PD0_FD8WAKEUP

VCC

RESE

T_N

GND

PA7_

FLAG

D_S

LCS_

NPA

6_PK

TEND

PA5_

FIFO

ADR

1PA

4_FI

FOAD

R0

PA3_

WU

2PA

2_SL

OEPA

1_IN

T1_N

PA0_

INT0

_NVC

CC

TL2_

FLAG

CCT

L1_F

LAGB

CTL0

_FLA

GA

GNDVCCGNDPB7_FD7PB6_FD6PB5_FD5PB4_FD4PB3_FD3PB2_FD2PB1_FD1PB0_FD0VCCSDASCL

RESE

RVED

IFC

LKGN

DVC

CAG

NDDM

INU

SDP

LUS

AVCC

AGND

XTAL

INXT

ALO

UTAV

CCRD

Y1_S

LWR

RDY0

_SLR

D

DGN

D

DG

ND

14115-093

Figure 120. Evaluation Board, Legacy USB Interface

Page 58: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 58 of 61

TBD0

603

100K

0DN

I

0DN

I

0

JPR0

402

FX8-

120S

-SV(

21)

JPR0

402

JPR0

402

DGND

E014

160

24LC

32A-

I/MS

DGND

FX8-

120S

-SV(

21)

100K

DNI

DNI

DNI

DNI

DNI

DNI

JEDE

C_TY

PE=M

SOP8

DNI

DNI

DNI

R1

R10

0

R6

JP6

TP6

R34

TP7

JP4

R9

R99

U11

P7

TP8

JP5

P7

VCC_

SYNT

H

DATA

_SDP

LE_S

DPLE

DATA

CLK

CLK_

SDP

21

21

7

48

56321

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

21

60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

VSS

VCC

WP

A2A1A0 SCL

SDA

DG

ND

DG

ND

DG

ND

14115-094

Figure 121. Evaluation Board, Analog Devices, Inc. SDP-S USB Interface

Page 59: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 59 of 61

Table 47. Evaluation Board Bill of Materials Components Description Default Conditions C1, C2, C8, C11, C12, C13, C14, C15, C18, C19, C20, C23, C26, C27

Power supply decoupling. Nominal supply decoupling consists of a 0.1 μF capacitor to ground in parallel with a 10 pF capacitor to ground positioned as close to the device as possible.

C1, C2, C26, C27 = 0.1 μF (size 0402) C8, C11, C12, C13, C14, C15, C18, C19 C20, C23 = 10 pF (size 0402)

C6, C7, C24, C25 RF input interface. The input channels are ac-coupled through C6 and C24. C7 and C25 provide bypassing for the center tap of the RF input baluns.

C6, C24 = 22 pF (size 0402) C7, C25 = 22 pF (size 0402)

C3, C4, C5, C28, C29, C30, L1, L2, L3, L4, R20, R21, R22, R23, T1, T2

IF output interface. The open-collector IF output interfaces are biased through pull-up choke Inductors L1, L2, L3, and L4. T1 and T2 are 4:1 impedance transformers used to provide single-ended IF output interfaces, with C5 and C30 providing center tap bypassing. Remove R21 and R22 for balanced output operation.

C3, C4, C5, C28, C29, C30 = 120 pF (size 0402) L1, L2, L3, L4 = 470 nH (size 0603) R20, R23 = open R21, R22 = 0 Ω (size 0402) T1, T2 = TC4-1W+ (Mini-Circuits®)

C17 LO interface. C17 provides ac coupling for the local oscillator input. C17 = 22 pF (size 0402) R1, R2 Bias control. R1and R2 set the bias point for the internal IF amplifier. R1, R2 = 910 Ω (size 0402)

1411

5-20

5

Figure 122. Evaluation Board, Top Layer

Page 60: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

ADRF6614 Data Sheet

Rev. 0 | Page 60 of 61

1411

5-20

6

Figure 123. Evaluation Board, Bottom Layer

Page 61: 700 MHz to 3000 MHz, Dual Passive Receive Mixer … · 700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO Data Sheet ADRF6614 Rev. Document Feedback0 Information

Data Sheet ADRF6614

Rev. 0 | Page 61 of 61

OUTLINE DIMENSIONS

1

0.50BSC

BOTTOM VIEWTOP VIEW

PIN 1INDICATOR

48

1324

3637

EXPOSEDPAD

PIN 1INDICATOR

*5.705.60 SQ5.50

0.500.400.30

SEATINGPLANE

0.800.750.70 0.05 MAX

0.02 NOM

0.203 REF

COPLANARITY0.08

0.300.250.20

10-2

4-20

13-D

7.107.00 SQ6.90

FOR PROPER CONNECTION OFTHE EXPOSED PAD, REFER TOTHE PIN CONFIGURATION ANDFUNCTION DESCRIPTIONSSECTION OF THIS DATA SHEET.

0.20 MIN

*COMPLIANT TO JEDEC STANDARDS MO-220-WKKD-2WITH THE EXCEPTION OF THE EXPOSED PAD DIMENSION. Figure 124. 48-Lead Lead Frame Chip Scale Package [LFCSP]

7 mm × 7 mm Body and 0.75 mm Package Height (CP-48-13)

Dimensions shown in millimeters

ORDERING GUIDE Model1 Temperature Range Package Description Package Option ADRF6614ACPZ-R7 −40°C to +85°C 48-Lead Lead Frame Chip Scale Package [LFCSP] CP-48-13 ADRF6614-EVALZ Evaluation Board 1 Z = RoHS Compliant Part.

©2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D14115-0-3/16(0)


Recommended