31
ER 390, RNS Diploma, University of Victoria Mycorestoration When mycology meets restoration Maryanna Kenney 6/11/2013

When Mycology Meets Restoration

  • Upload
    lekhue

  • View
    248

  • Download
    5

Embed Size (px)

Citation preview

Page 1: When Mycology Meets Restoration

   

 

 

 

   

ER  390,  RNS  Diploma,  University  of  Victoria  

Mycorestoration  When  mycology  meets  restoration  

Maryanna  Kenney  6/11/2013    

Page 2: When Mycology Meets Restoration

2  |  P a g e    

TABLE  OF  CONTENTS  

Acknowledgements…………………………………………………………………………………………………………3  

Abstract…………………………………………………………………………………………………………………………..4  

1.0 Objective……………………………………………………………………………………………………………………5  2.0 Introduction……………………………………………………………………………………………………………….6  

2.1 Ecological  Restoration……………………………………………………………………………………..7  2.2 Mycorestoration……………………………………………………………………………………………..8  2.3 Kingdom  Fungi…………………………………………………………………………………………………9  2.4 Fungi  &  Plants………………………………………………………………………………………………..12  

3.0 Site  Assessment…………………………………………………………………………………………………………12  3.1 Current  Issues…………………………………………………………………………………………………13  

3.1.1 Hydrology………………………………………………………………………………………13  3.1.2 Soil  Disturbance…………………………………………………………………………….13  

3.2 Mycological  Assessment…………………………………………………………….....................14  3.3 Site  Selection………………………………………………………………………………………………….15  

4.0 Methods…………………………………………………………………………………………………………………….16  4.1 Restoration……………………………………………………………………………………………………..19  4.2 Sources  of  Mycelium……………………………………………………………………………………….20  4.3 Other  Restoration  Applications……………………………………………………………………….21  

5.0 Results……………………………………………………………………………………………………………………….22  6.0 Conclusion………………………………………………………………………………………………………………….24  

References……………………………………………………………………………………………………………………….26  

Appendix  1:  Copy  of  Lab  Results  for  Site  1  

Appendix  2:  Map  of  Mycofiltration  Sites  

 

 

 

 

 

 

 

 

 

Page 3: When Mycology Meets Restoration

3  |  P a g e    

Acknowledgements    

Many  incredible  teachers  and  influences  have  led  me  to  ecological  restoration.    Our  time  on  earth  is  limited  and  I  am  grateful  that  I  have  been  given  the  opportunity  to  understand  and  help  heal  degraded  ecosystems.    It  is  a  privilege.  

The  Restoration  of  Natural  Systems  Diploma  at  the  University  of  Victoria  provided  me  with  a  holistic  understanding  of  ecological  restoration  and  was  the  impetus  for  this  project.    I  gained  knowledge  from  professors,  colleagues,  academic  literature  and  tangible  examples  of  restoration  projects.    Many  thanks  to  Dr.  Val  Schaefer  for  his  support,  feedback  and  lessons  in  ecological  restoration.      He  bridges  the  gap  between  ecological  systems  and  human  culture,  and  ensures  that  academia  is  applicable  and  beneficial  to  the  broader  community.    The  University  of  Victoria  Sustainability  Project  (UVSP)  supported  this  initiative  through  their  student  grant  program.      A  heartfelt  thanks  to  the  members  of  the  UVSP;  students  supporting  students  through  environmental  projects.    June  Pretzer  and  Christmas  Hill  Nature  Sanctuary  made  this  mycological  adventure  possible  by  providing  the  project  site  and  subsequent  opportunities  for  future  projects.    Thanks  goes  out  to  Tayler  Krawcyk  for  exposing  me  to  "Mycelium  Running"  and  the  world  of  permaculture,  where  earth  care  and  people  care  collide.  Paul  Stamets,  author  of  “Mycelium  Running”  has  spent  30  or  more  years  studying  fungi  and  his  passion  for  mycorestoration  is  contagious.    Stamets  and  his  Fungi  Perfecti  team  shared  their  expertise  and  answered  many  of  my  inquiries  over  a  4  day  mycology  course  in  October  2012.    In  April  2013,  Peter  McKoy  instructed  a  valuable  and  practical  course  on  mushroom  cultivation  which  will  benefit  future  mycorestoration  projects.    Last,  but  not  least,  a  special  thanks  to  Andrew  Poirier  for  his  patience  and  encouragement  through-­‐out  the  final  stages  of  the  project.  

                                         

Page 4: When Mycology Meets Restoration

4  |  P a g e    

Abstract    

The  literary  research,  mycological  assessment  and  restoration  of  Swan  Lake/  Christmas  Hill  Nature  Sanctuary  (SLCHNS)  were  conducted  for  over  a  year  commencing  in  May  2013  in  Saanich,  British  Columbia.    Swan  Lake  and  the  surrounding  riparian  and  terrestrial  ecosystem  include  48  ha  of  streams,  urban  forest,  woody  shrubs  and  grassland.    The  watershed  northeast  of  Swan  Lake  drains  from  the  lake  into  the  Colquitz  River  on  its  journey  south  to  merge  with  the  Pacific  Ocean  at  the  Victoria  Harbour.    Swan  Lake  is  an  urban  hotspot  for  biodiversity  providing  habitat  for  numerous  species  of  plants  and  animals.    The  urban  area  surrounding  Swan  Lake  is  largely  impervious  resulting  in  increased  levels  of  sediments,  nutrients,  and  toxic  chemicals.    The  intent  of  this  study  was  to  transform  soil  and  water  contaminants  at  SLCHNS  with  the  help  of  strategically  placed  saprophytic  fungi.    Saprophytes  are  on  nature’s  clean-­‐up  crew,  connecting  life  and  death  by  playing  a  significant  role  in  digesting  plant  matter  and  other  hydrocarbon  bonds,  similar  in  structure.    This  project  required  eleven  mycofilters  which  were  developed  by  inoculating  Alnus  rubra  substrate  with  Pleurotus  ostreatus  in  sterilized  burlap  sacks.    Two  trial  sites  (one  aquatic  and  one  terrestrial)  were  determined  following  a  comprehensive  site  assessment  that  identified  the  areas  with  the  greatest  need  for  mycological  restoration.    The  results  of  this  study  reveal  that  there  are  a  myriad  of  reasons  that  may  impact  the  fungi’s  ability  to  establish  itself  in  the  field.    Issues  can  arise  due  to  inadequate  timing  or  moisture,  contaminated  substrate  or  inoculum,  and  competition  with  bacteria  or  other  established  fungi.    Although  the  Pleurotus  ostreatus  species  is  very  vigorous  and  adaptive,  a  new  strategy  could  consist  of  spawn  generated  by  fruiting  bodies  collected  on  site  which  would  be  more  robust  and  locally  adapted.    This  initial  exploration  of  mycological  restoration  at  SLCHNS  will  provide  important  insights  and  guidance  for  future  projects  within  this  field.                                    

Page 5: When Mycology Meets Restoration

5  |  P a g e    

1.0  Objective  

 

Mycology  holds  the  key  to  many  of  our  ecological  challenges,  and  the  realization  of  this  

potential  requires  human  comprehension  and  action.  The  intent  of  this  study  was  to  increase  

my  mycological  knowledge  and  ability  to  utilize  fungi  for  restoration  purposes.  This  project  will  

integrate  fungal  biotechnology  and  environmental  engineering  as  a  means  to  restore  two  

contaminate  sites  at  SLCHNS  in  Saanich,  British  Columbia.  

Mycologist, Paul Stamets on Cortez Island, teaching students about fungal diversity in October 2012.

 

Page 6: When Mycology Meets Restoration

6  |  P a g e    

2.0  Introduction  

 

        The  Restoration  of  Natural  Systems  (RNS)  Diploma  at  the  University  of  Victoria  requires  

participating  students  to  conduct  a  final  restoration  project  (ER  390)  of  their  choice  in  the  

community.    Through-­‐out  the  RNS  Diploma,  students  are  exposed  to  a  vast  range  of  restoration  

techniques  and  the  final  project  is  designed  to  take  students  out  of  the  classroom  and  apply  a  

chosen  theory.    I  am  fascinated  by  fungi  and  the  way  in  which  they  connect,  contribute  to  and  

cycle  life.    One  could  say  that  the  conversations  and  lessons  learned  through-­‐out  the  RNS  

diploma  is  the  mycelium  network  that  led  me  to  do  my  final  project  on  mycorestoraiton.  

 

2.1  Ecological  Restoration  

Ecological  Restoration  is  a  scientific  discipline  that  has  emerged  due  to  the  increasing  

need  to  restore  damaged  ecosystems  (Val  Schaefer,  personal  communication).    For  most  of  

human  history,  nature  has  had  the  upper  hand;  and  people  were  forced  to  live  at  the  mercy  of  

storms,  droughts,  famines,  diseases  and  other  natural  phenomena  (Merchant  1990).    Attitudes  

of  domination  stemming  from  the  Scientific  Revolution  have  enabled  humans  to  threaten  all  

other  forms  of  life  at  the  expense  of  improving  our  “quality”  of  life  through  quantifiable  things.  

Natural  habitats  throughout  the  world  have  been  modified  as  a  result  of  the  current  economic  

paradigm.    When  a  business  creates  a  product  from  a  raw  resource,  they  reap  the  profits  from  

selling  the  product  but  do  not  compensate  for  the  consequences  such  as  habitat  destruction,  

emissions  from  transport,  or  waste  products  created  during  processing  and  again  when  

packaging.    These  factors  combined  with  the  resulting  increase  in  the  number  of  threatened  

Page 7: When Mycology Meets Restoration

7  |  P a g e    

and  endangered  species  have  raised  concerns  about  diminishing  biodiversity.    Ecosystem  

restoration  work  is  real  living  work  that  creates  long-­‐term  benefits  that  may  be  difficult  to  

quantify  under  prevailing  economic  systems.    Given  that  costs  to  restore  an  ecosystem  are  

often  a  barrier,  it  is  important  to  acknowledge  that  the  root  of  the  problem  is  how  we  define  

the  value  of  healthy  /  functioning  ecosystems.  

Ecological  restoration  is  more  than  removing  unwanted  conditions  (i.e.  invasive  species);  

it  is  also  about  adding  or  enhancing  desired  conditions  while  keeping  past  land  use  in  mind.    

The  goal  is  to  achieve  sustainable,  resilient  and  interconnected  ecosystems  married  with  socio-­‐

ecological  systems  (Cairns  1988).  In  most  cases  we  are  aiming  to  recover  pre-­‐European  

biodiversity,  and  even  this  reference  point  is  subjective.    The  earliest  attempts  at  restoration  

simply  aimed  to  establish  self-­‐sustaining  vegetation  cover  on  sites  that  had  been  degraded  by  

mining  and  other  activities  (Ruiz-­‐Jaen  &  Mitchell  Aide  2005).    More  recently,  practitioners  have  

attempted  to  create  functional  replicates  of  target  communities  of  conservation  importance  in  

areas  damaged  by  intensive  agricultural  management  (Pywell  &  Putwain  1997).    Successful  

ecosystem  restoration  requires  a  fundamental  understanding  of  the  ecological  characteristics  

of  the  component  species,  together  with  knowledge  of  how  they  assemble,  interact  and  

function  as  communities  (Ruiz-­‐Jaen  &  Mitchell  Aide  2005).    The  human  desire  to  control  nature  

may  create  tension  between  expectations  and  outcomes  when  planning  restoration  projects.  

Yet,  restoration  is  a  highly  complex  and  subjective  activity  that  is  not  like  a  cookbook  recipe.  

Restoration  techniques  need  to  be  modified  accordingly  to  a  site’s  unique  attributes  and  history.  

As  this  movement  builds  momentum,  additional  restoration  case  studies  will  provide  a  crucial  

test  for  embedded  ecological  models  and  theories.    Through  active  involvement  in  real  world,  

Page 8: When Mycology Meets Restoration

8  |  P a g e    

large-­‐scale  projects,  these  insights  can  generate  new  information  and  stimulate  new  

models  (Aronson  2005).  

Ecological  restoration  practitioners  have  been  looking  for  ways  to  deal  with  the  influx  of  

toxins  contaminating  terrestrial  and  aquatic  ecosystems.    The  best  solutions  are  usually  those  

that  mimic  natural  processes  and  have  stood  the  test  of  time.    Beneath  the  soil  exists  a  very  

discrete  but  important  resource  that  is  frequently  overlooked  when  considering  ways  to  restore  

a  degraded  site.    It  has  been  said  that  soil  is  the  building  block  of  life,  but  what  is  the  building  

block  of  soil?    

 

2.2  Mycorestoration  

Soil  is  a  habitat  of  high  fungal  diversity.    Mycologists  have  identified  70  000  fungi,  

however  it  is  estimated  that  there  are  1.5  million  fungi  on  earth  (Blackwell  2011).    The  Kingdom  

Fungi  performs  critical  roles  in  the  decomposition  and  recycling  of  organic  compounds  which  

builds  soil  (Stamets  2005).    This  paper  will  explore  how  fungi  are  key  players  in  restoring  

ecosystems,  a  concept  known  as  mycorestoration.  

A  major  area  of  environmental  concern  is  the  bio-­‐degradation  of  toxic  wastes.    Nature  

has  been  utilizing  fungi  and  bacteria  for  the  degradation  of  xenobiotic  organic  compounds  since  

they  were  first  introduced  during  the  industrial  revolution  (Singh  2006).    Xenobiotic  compounds  

include  most  pollutants  that  are  foreign  to  living  biota.    We  have  a  simplistic  view  of  the  

interrelationships  between  synthesized  chemicals  and  natural  processes.    The  conventional  

thinking  is  that  we  can  control  our  environment  by  removing  the  chemicals  and  concentrating  

Page 9: When Mycology Meets Restoration

9  |  P a g e    

them  in  a  contained  site  or  dispersing  them  through  incineration.    In  either  situation,  the  

problem  is  not  resolved,  just  merely  rearranged.    As  we  advance  towards  a  whole  systems  

approach  to  sustainability,  we  can  incorporate  other  methodologies  into  restoration  projects.  

Although  many  great  mycologists  preceded  Paul  Stamets,  he  combined  their  findings  along  with  

his  own  and  gave  the  term  mycorestoration  dictionary  meaning.    Mycorestoration  utilizes  the  

power  of  fungi  to  transform  toxic  wastes  and  assist  ecosystem  recovery  post-­‐disturbance  

(Stamets  2005).  

 

2.3  Kingdom  Fungi  

Fungi  are  integral  to  every  life  cycle.    The  oldest  plant  fossils  have  a  fungal  symbiotic  

relationship  and  the  largest  organism  on  earth  is  the  Armillaria  ostoyae  (Honey  Mushroom)  

(Stamets  2012,  personal  communication).    Members  of  the  Kingdom  Fungi  are  versatile  and  

resilient  organisms  that  contribute  to  ecosystems  integrity.    Fungi  have  body  structures  and  

modes  of  reproduction  unlike  those  of  any  other  organism  (Stamets  2005).    The  obvious  part  of  

the  fungal  life  cycle  is  when  they  fruit  into  mushrooms  in  order  to  distribute  spores.    Spores  

spread  fungi  to  new  ecological  niches  and  are  essential  in  the  recombination  of  genetic  material.    

They  travel  significant  distances  by  air,  water,  insects  or  other  mobile  creatures  and  create  

meta-­‐populations  of  mycelium  as  far  as  a  kilometer  away  from  the  parent  population  (Blackwell  

2011).    The  Oyster  mushroom  has  been  reported  to  convert  fifty  percent  of  their  mass  into  

spores  (Stamets  2005).  

 

Page 10: When Mycology Meets Restoration

10  |  P a g e    

 

Honey  (Parasitic)  and  Oyster  (Saprophytic)  Mushrooms  on  Cortez  Island,  October  2012.  

 

As  chemoorganotrophs,  fungi  have  simple  nutritional  requirements  and  can  grow  at  

environmental  extremes  of  low  pH  or  high  temperatures  (Singh  2006).    Fungi  are  also  

heterotrophs  like  animals,  but  they  absorb  food  instead  of  ingesting  it.    Their  extracellular  

enzymes  acquire  small  nutrient  molecules  externally  (Harms  2006).    A  typical  fungus  consists  of  

threadlike  filaments  called  hyphae.    The  finely  branched  filaments  of  the  fungus  provide  an  

extensive  surface  area  for  absorption  of  water  and  minerals  from  the  soil.    These  hyphae  

branch  repeatedly,  forming  a  feeding  and  communication  network  known  as  mycelium  (Nara  

2006).    Fungal  networks  of  threads  expand  outwards  seeking  new  territory,  new  partnerships  

Page 11: When Mycology Meets Restoration

11  |  P a g e    

with  plants  or  new  patches  of  organic  matter.    These  networks  absorb  phosphorus  from  its  

surroundings  and  relocate  it  over  great  distances.    When  the  mycelium  has  completed  its  

lifecycle  as  a  mushroom,  the  phosphorous  is  released.    Fungal  decomposing  bacterium  enters  

the  scene  and  helps  deposit  the  phosphorus  back  into  the  soil,  as  well  as  other  essential  

minerals  like  zinc  and  potassium  (Stamets  2005).  

Mushroom  mycelium  is  the  invisible  body  of  the  mushroom,  just  like  the  body  is  the  

temple  for  the  soul.    The  most  common  type  of  mycelium  is  what  we  see  as  mold  growing  on  an  

aged  lemon.    The  mushrooms  we  find  on  the  lawn  or  in  a  forest  are  the  fruit  of  the  mycelium  

network  that  forms  associations  with  trees  and  other  plants.    Most  of  the  essential  functions  of  

fungi  in  ecosystems  happen  underground.    Fungi  cannot  run  or  fly  in  search  of  food,  but  their  

mycelium  make  up  for  their  lack  of  mobility.    Mycelium  of  many  species  of  mushrooms  will  

create  rhizomorphs  that  closely  resemble  plant  roots.    If  you  imagine  millions  of  these  finely  

braided  roots,  overlapping  and  completing  an  entire  network  in  search  of  food,  water  and  

nutrition,  you  can  see  the  possibility  of  this  model  serving  as  a  biological  filter.  

Fungi,  regardless  of  what  stage  they  are  in  their  lifecycle,  are  often  categorized  by  how  

they  acquire  sustenance.    The  focus  of  this  research  is  on  saprophytic  fungi,  which  depend  on  

plant  and  animal  remains  for  their  nutrition.    Saprophytic  fungi  are  primary  decomposers  and  

will  inhabit  and  break  down  dead  wood  and  other  organic  material.    The  process  used  by  the  

fungi  to  break  down  the  hydro-­‐carbons  in  wood,  gives  mushroom  mycelia  the  ability  to  break  

down  various  other  pathogenic  micro-­‐organisms  as  well  (Matsubara  2005).    The  saprophytes’  

secrete  acids  and  enzymes  which  possess  the  biochemical  and  ecological  capacity  to  degrade  

Page 12: When Mycology Meets Restoration

12  |  P a g e    

environmental  organic  chemicals  and  to  decrease  the  risk  associated  with  heavy  metals  by  

chemical  modification  or  by  influencing  chemical  bioavailability  (Humar  2003).  

 

2.4  Fungi  &  Plants  

The  mycorihzal  fungi  found  on  the  root  tips  of  plants  are  evident  on  some  of  the  oldest  

plant  fossils  and  are  a  key  adaptation  that  makes  it  possible  for  plants  to  live  on  land  (Stamets  

2005).    As  such,  the  mycelium  network  is  a  key  component  of  functioning  vegetation  

communities.    Fungi  facilitate  beneficial  partnerships  by  helping  the  plant  retain  moisture  and  

food  in  exchange  for  sugars  and  other  organic  by-­‐products  of  the  plant’s  photosynthesis  

(Blackwell  2011).    The  economic  and  ecological  benefits  of  inoculating  plant  roots  with  

mycorrhizal  fungi  are  currently  being  studied  in  re-­‐forestation  projects  (Stamets  2005).  

 

3.0  Site  Assessment  

This  project  was  executed  at  SLCHNS  within  the  District  of  Saanich  in  British  Columbia.  

SLCHNS  is  located  the  Coastal  Douglas  Fir  (CDF)  biogeoclimatic  zone  at  48  °27’  35’’N  123°  

22’30’’W  (Jungen  and  Ag,  1985).    Historically,  the  SLCHNS  site  was  used  as  a  dumping  ground  

for  raw  sewage,  a  winery  and  cattle  farm  (Swan  Lake  2012).  

 

 

 

Page 13: When Mycology Meets Restoration

13  |  P a g e    

3.1  Current  Issues  

3.1.1  Hydrology    

There  is  a  marshy  lowland  area  that  is  the  recipient  of  precipitation  flowing  over  

impervious  surfaces  such  as  roads,  roofs,  or  sidewalks.    When  water  is  unable  to  infiltrate  these  

mediums,  it  carries  with  it  motor-­‐oil,  antifreeze,  herbicides  and  any  substance  light  enough  to  

flow  over  private  and  public  properties.    Storm  water  collects  this  urban  concoction  of  

chemicals  and  transports  it  to  underground  pipes,  which  drains  into  Swan  Lake  impacting  native  

fish  and  oxygen  levels.    The  lowland  marsh  functions  like  a  sponge  due  to  the  extensive  root  

mass  of  wetland  plants  that  extract  contaminants  and  nutrients  from  water.    This  natural  

cleaning  process  removes  particles  of  sediment  and  metals  as  the  water  percolates  through  

wetland  soils.  

 

3.1.2  Soil  Disturbance    

Given  that  the  site  at  Swan  Lake  was  historically  a  refuse  dump  covered  with  soil,  

contaminants  leaching  into  soil  is  a  concern.    Additionally,  the  pre-­‐existing  mycelium  network  

would  have  been  greatly  disturbed.    The  soil  was  noticeably  compacted  from  urban  run-­‐off  and  

trail  use  by  humans  and  pets.  

   

   

 

 

Page 14: When Mycology Meets Restoration

14  |  P a g e    

3.2  Mycological  Assessment  

During  the  summer  and  early  fall  of  2012,  fruiting  bodies  of  fungi  (mushrooms)  were  

sought  out  at  SLCHNS  and  identified  using  “Mushrooms  of  the  Pacific  Northwest”  by  Steve  

Trudell  and  Joe  Amaratti.  Fruiting  bodies  of  mushrooms  were  closely  examined  and  identified  in  

order  to  get  acquainted  with  the  local  fungal  diversity.    I  revisited  the  site  countless  times  to  

enhance  my  mycological  identification  skills.  The  summer  and  fall  of  2012  were  exceptionally  

dry  and  unfavourable  for  fungal  reproductions  which  made  this  task  even  more  challenging.  

The  white  rot  fungus,  Pleurotus  ostreatus,  was  chosen  to  be  the  bioremediation  agent  in  

the  mycofilters  following  this  assessment.    White  rot  fungi  decompose  the  lignin  and  or  

cellulose  in  the  substrate  material,  which  lightens  the  substrate  appearance  (Matsubara  2006).      

Pleurotus  ostreatus  is  a  known  dissembler  of  biomass  that  can  consume  a  wide  variety  of  

substrates  including  chippings,  grass  clippings,  manures  and  mulches  of  wood  chips,  and  straw.  

The  substrate  is  any  material  that  the  mushroom  consumes  as  a  food  source  (Stamets  

2005).      Alnus  rubra  (Alder)  wood  chips  were  the  chosen  substrate  in  this  trial  because  they  are  

an  early  successional  tree  species  that  is  quick  to  decompose.  

In  demonstrated  laboratory  trials,  the  web  like  tissue  of  Pleurotus  ostreatus  mycelia  has  

successfully  targeted  E.  coli  bacteria,  PAH's,  PCB's,  dioxins,  and  some  heavy  metals  (Stamets  

2005).    Scientific  literature  suggests  that  other  chemicals  such  as  herbicides,  phenols,  and  dyes  

may  be  broken  down  in  the  same  way  (Rogers  2012).  

Page 15: When Mycology Meets Restoration

15  |  P a g e    

                                                                                                                                               Field  Guide  utilized  to  identify  fungal  species  at  SLCHNS  

3.3  Site  Selection  

During  the  site  assessment  two  microfiltration  trial  sites  were  determined.    Site  1  was  

located  in  the  storm  drain  adjacent  to  Saanich  municipal  hall  parking  lot,  near  the  Swan  Lake  

trail  entrance.    The  rationale  for  this  location  was  to  stop  water  borne  toxins  carried  by  urban  

run-­‐off  from  reaching  Swan  Lake.  

Site  2  is  along  the  walking  path,  halfway  down  an  east  facing  slope.    This  area  has  

noticeable  orange  sludge  that  is  seeping  from  the  earth  below.    Given  that  this  area  was  

historically  used  for  industrial  refuse,  it  is  assumed  that  this  sludge  remains  from  old  scrap  

Page 16: When Mycology Meets Restoration

16  |  P a g e    

metal  that  had  been  covered  with  soil.    In  order  to  effectively  restore  a  landscape,  it  is  

important  to  consider  where,  when  and  how  the  affluent  affects  the  topography.  

 

4.0  Methods  

Mycofilters  capture  and  metabolize  pathogens  by  utilizing  the  cellular  web  of  

mushroom  mycelia  to  digest  organic  debris  and  toxins  by  secreting  antibacterial  metabolites  

(Stamets  2005).    The  procedure  to  make  mycofilters  starts  with  generating  Pleurotus  

ostreatus  sawdust  spawn  starts  with  a  heat  treatment  of  a  media  matrix  consisting  of  

debarked  Alnus  rubra  sawdust.    The  heat  treatment  process  is  achieved  at  a  base  minimum  

internal  temperature  of  99  degrees  Celsius  at  15  psi  for  a  minimum  of  one  hour.    After  one  hour,  

it  is  cooled  in  front  of  a  HEPA  filtered  laminar  flow  hood  and  the  bags  are  inoculated  with  the  

mushroom  mycelium  of  Pleurotus  ostreatus  and  heat  sealed.    Each  bag  is  then  incubated  for  7  

days,  after  which  the  product  is  inspected  to  ensure  foreign  pathogens  have  not  contaminated  

the  product.  

Page 17: When Mycology Meets Restoration

17  |  P a g e    

                                                                                               

Sterile  lab  for  sawdust  spawn  production.  

The  sawdust  spawn  of  Pleurotus  ostreatus  was  mixed  with  five  parts  Alder  wood  chips  in  

sterilized  burlap  sacks.    The  sacks  were  stored  outside  in  a  shaded  location  with  a  daily  

temperature  range  between  8  and  14  degrees  Celsius  for  four  weeks  in  October  2012.    The  bags  

were  checked  every  five  days  to  monitor  the  degree  to  which  the  substrate  was  colonized.  

 

Page 18: When Mycology Meets Restoration

18  |  P a g e    

TABLE  1.  Materials  &  Costs  

Item   Source   Quantity  Cost   Total  Cost  

Sawdust  Spawn-­‐Pleurotus  ostreatus  

Fungi  Perfecti   10   $37.00   $370.00  

Burlap  Sacks   Castle  Building  Victoria,  BC  

10   $2.00   $25.00  

Alder  Woodchips  (smoked  for  cooking)  

Canadian  Tire  Saanich,  BC  

14  bags   $5.99   $93.92  

Mixed  Woodchips   M.B.  Labs  ltd.  Saanich,  BC  

 10  kg    In  Kind,  Chris  Dyziak    $0.00  

Baseline  Water  Tests   M.B.  Labs  ltd.  Sydney,  BC  

 1   In  Kind,  Saanich  Waterworks  

 $0.00  

   

Mycofilter  Water  Tests   M.B.  Labs  ltd.  Sydney,  BC  

 1    $120.00   $120.00  

   

Page 19: When Mycology Meets Restoration

19  |  P a g e    

                                           

Inoculated burlap sacks, ready to be sealed and placed at the terrestrial trial site (2).  

4.1  Restoration  

At  Site  1,  I  observed  the  storm  drain  during  3  different  rain  events  before  the  mycofilter  

installation  stones  were  strategically  placed  in  order  to  slow  the  velocity  of  water  in  the  stream.  

The  mycofilters  were  placed  in  the  path  of  the  water,  allowing  the  water  to  flow  through  and  

over  the  filter.    The  flow  strength  of  the  water  is  an  important  consideration  when  determining  

how  high  to  make  the  filters.    A  30  cm  layer  of  wood  chips  can  be  placed  over  the  mycofilters  to  

avoid  rapid  evaporation  and  to  ensure  the  health  of  the  delicate  mycelia  (Stamets  2005).    I  

Page 20: When Mycology Meets Restoration

20  |  P a g e    

decided  not  to  add  another  layer  of  wood  chips  because  the  water’s  high  velocity  during  the  

observed  rain  events.    In  other  documented  field  trials,  the  mushroom  mycelia  would  inhabit  

the  wood  chips  after  three  months,  and  after  1  year  would  have  completely  colonized  the  base  

of  the  mycofilter  to  wood  chip  top  layer.    A  healthy  mycofilter  can  be  active  for  up  to  three  

years,  although  the  filter  shrinks  significantly  as  the  mushroom  mycelia  ingests  the  organic  

matter.    Even  after  three  months,  I  noticed  quite  a  bit  of  shrinkage  with  the  Swan  Lake  

mycofilters.    One  way  to  replenish  food  for  the  mycelia  is  to  add  another  burlap  sack  filled  with  

wood  chips  and  stake  this  in  place  so  that  it  does  not  gush  downstream  during  storms.    Once  

the  mycelium  is  no  longer  active,  the  by-­‐products  remaining  in  the  burlap  sacks  can  be  used  as  

humus  rich  compost.  

Sawdust  may  have  been  difficult  for  the  mycelium  to  digest  quickly,  so  in  following  trials  

I  will  supplement  them  with  some  source  of  protein  such  as  rice,  wheat,  oat  bran,  barley  from  

breweries;  vegetable  oil  and  stale  bread.    The  extra  nutrients  will  help  contaminants  grow  

quickly  so  the  sterilization  time  will  need  to  be  doubled.    Enriched  sawdust  would  include:  45  kg  

of  sawdust,  22  kg  of  wood  chips,  18  kg  of  bran,  and  3  kg  of  gypsum,  moistened  to  60%  water  

and  then  sterilized  (Stamets  2005).  

 

4.2  Other  Sources  of  Mycelium    

• Stem  butts  (wild  or  store  bought)  

• Plugs  (commercially  available  spiral  grooved  birch  dowels)  can  be  expanded  or  used  as  

spawn.  

Page 21: When Mycology Meets Restoration

21  |  P a g e    

•    Spawn  starts  

• Spores,  spore  syringes  (for  restoration  purposes  spores  should  be  collected  from  local  

sources).  

o  Add  spores  or  a  piece  of  mushrooms  tissue  to  nitrified  agar  in  a  petri  dish.    Over  

1-­‐3  weeks  the  dish  will  become  covered  in  mycelium.    A  piece  of  this  mycelium  is  

then  cut  out  and  introduced  to  a  substrate  (i.e.  sterilized  grains  like  rye).    This  

produces  bulk  mycelium,  referred  to  as  spawn.    A  final  substrate  is  then  heat  

pasteurized  to  kill  competitors.    Sterilization  uses  a  significant  amount  of  fuel  

and  may  require  long  hours  depending  on  the  substrate  (Peter  McKoy,  personal  

communication).  

 

4.3  Other  Restoration  Applications  

Agro-­‐ecology  is  another  form  of  restoration  that  could  benefit  from  the  integration  of  

fungi  into  polyculture  cropping  systems.  Edible  fungi  are  an  incredible  source  of  nutrients  for  

people  and  certain  species  can  aid  food  production  (i.e.  Garden  Giant).  Eighteen  century  

Parisians  discovered  the  ability  to  cultivate  mushrooms  in  old  limestone  caves.    The  sterile  

technique  was  developed  in  the  1920’s  (Peter  McKoy  2013,  personal  communication).    

Cultivated  mushrooms  provide  a  source  of  healthy  food  and  potent  medicine  that  can  be  grown  

year  round.  

 

Page 22: When Mycology Meets Restoration

22  |  P a g e    

5.  0  Results  

The  efficacy  of  Pleurotus  ostreatus  was  anticipated  because  it  is  a  vigorous  strain  that  is  

known  to  purify  contaminated  soil  under  the  appropriate  conditions  (Stamets  2005).    Although  

the  mycelium  colonized  the  wood  chips  before  the  filters  were  installed  in  the  field,  up  until  the  

date  of  this  publication,  the  mycelium  has  not  fruited  which  is  necessary  to  denature  the  soil  

and  water  toxins.  There  are  a  myriad  of  competing  factors  that  may  impact  the  fungi’s  ability  to  

fruit  at  a  restoration  site.    Issues  can  arise  due  to  inadequate  timing  or  moisture,  contaminated  

substrate  or  inoculum,  and  competition  with  bacteria  or  other  established  fungi  (Harms  

2006).    The  density  of  the  mycelia  matt  is  impacted  by  the  concentrations  and  contact  time  of  

contaminants.    Some  heavy  metals  are  toxic  to  the  mycelium  and  may  overwhelm  it  (Matsubara  

2006).    Temperature  has  a  major  effect  on  the  growth  of  mycelia  and  this  corresponds  to  its  

ability  to  target  contaminants.    

At  site  1,  it  was  discovered  that  Pleurotus  ostreatus  mycelium  does  not  like  to  be  

entirely  submerged  in  water,  therefore  a  small  weir  would  need  to  be  created  in  order  to  

control  the  height  of  the  water.  There  are  other  species,  such  as  the  Garden  Giant  (Stropharia  

rugosi  annulata)  that  will  better  tolerate  these  conditions,  but  in  general  a  mycofiltration  

project  should  be  designed  to  encourage  water  to  flow  through  the  mycelium  vertically,  to  

prevent  submersion.    

On  two  separate  occasions,  in  December  2012  and  February  2012,  I  collected  three  

water  samples  to  determine  the  presence  of  E.coli  bacteria  and  PAH’s.  One  sample  was  

collected  at  the  mouth  of  the  storm  water  drain  (#1),  one  2  meters  downstream  form  the  

mycofilters  (#2),  and  one  ten  meters  from  the  mycolfilters  (#3).    The  results  in  Appendix  1  

Page 23: When Mycology Meets Restoration

23  |  P a g e    

indicate  that  there  was  no  significant  change  in  water  quality  between  sample  times.  If  the  

mycofilters  fruit  in  the  fall  of  2013,  I  will  conduct  similar  tests  to  gauge  the  effect.  

With  site  2,  the  mycelium  was  most  likely  out  competed  by  vigorous  bacteria  adapted  to  

the  polluted  environment.  Bacteria  tolerate  a  broader  range  of  habitats,  use  biochemical  

reactions  of  higher  specificity,  and  benefit  from  the  improvement  in  bio-­‐availability  caused  by  

stirring  of  soil.    Reported  failure  of  filamentous  fungi  in  remediation  trials  has  occurred  where  

the  soil  is  mechanically  homogenized  through  digging  or  tilling,  which  prevents  fungi  from  

developing  mycelia  (Harms  2006).      Given  that  the  Swan  Lake’s  previous  history  as  a  refuse  

dump  covered  with  soil,  the  original  mycelium  network  would  have  been  greatly  disturbed.    The  

soil  was  noticeably  compacted  from  urban  run-­‐off  and  trail  use,  therefore  the  biological  agent  

of  choice  would  be  bacteria  over  fungi.  

The  inoculum  I  used  was  created  in  a  sterile  laboratory  and  incubated  in  a  temperature-­‐

controlled  environment.    The  resulting  sawdust  spawn  was  shipped  over  the  Canadian/  US  

border  from  Washington  State  with  plastic  bags  wrapped  around  them  so  they  stay  moist.    Even  

though  the  inoculum  is  endemic  to  the  Pacific  Northwest,  the  local  soil  conditions  would  be  

very  different  (Stamets  2005).    As  such,  the  fungus  was  ecologically  displaced  and  the  extensive  

metabolic  capabilities  of  these  organisms  were  not  realized  (Harms  2006).    The  best  approach  

for  future  trials  would  be  to  create  inoculum  from  the  stem  butts  of  native  fungi.    Incorporating  

site-­‐specific  fungi  into  re-­‐vegetation  and  restoration  is  of  heightened  importance  because  

fungal  diversity  is  being  negatively  impacted  by  deforestation  and  reforestation  practices,  

industrial  agriculture  and  development.    Fungi,  alone  or  in  collaboration  with  bacteria  and  

Page 24: When Mycology Meets Restoration

24  |  P a g e    

plants,  could  become  an  important  component  of  biotechnologies  designed  to  remediate  

polluted  soil,  water  and  air  (Harms  2006).  

These  sites  will  continue  to  be  monitored  and  if  Pleurotus  ostreatus  fruits  from  the  

filters  in  the  future,  the  contents  will  be  taken  to  a  lab  for  analysis  of  heavy  metals  or  other  

contaminants.    This  is  a  lengthy  process  that  may  take  years  therefore  it  is  suited  to  sites  that  

do  not  require  immediate  results  due  to  environmental  legislation.    I  aim  to  conduct  future  

research  to  determine  to  what  soil  depth  mycelium  is  effective  at  reducing  contaminant  levels.  

     

6.0  Conclusion  

Mycorestoration  is  a  holistic  science  because  it  recognizes  the  importance  of  soil  and  

water.    Water  is  the  solvent  of  life.    As  far  as  we  know,  all  organisms  require  water,  and  water  

availability  is  an  important  factor  affecting  the  growth  of  mycelia  in  nature.    Soil  is  the  

foundation  of  terrestrial  life.    Many  fungi  play  an  important  role  by  recycling  biomass  and  

turning  it  back  into  soil  (Emil  2010).    In  order  for  a  landscape  to  be  restored,  attention  to  the  

quality  of  the  soil  and  water  is  of  utmost  importance.  

Filtering  water  with  fungal  mats  has  many  other  applications  depending  upon  the  end  

goal.    This  technique  can  also  be  used  to  filter  run-­‐off  from  roads  or  manure  from  farms  before  

they  drain  into  watersheds.    With  this  approach,  silt  and  other  contaminants  are  captured  in  

the  fungal  mycelium  mats  before  they  impact  ecosystem  processes.    A  new  era  in  fungal  

biotechnologies  is  gaining  slow  but  steady  momentum.    Some  fungal  strains  have  recently  been  

discovered  that  can  inhabit  and  digest  plastic  waste  in  dump  sites  (Humar  2004).  

Page 25: When Mycology Meets Restoration

25  |  P a g e    

Paul  Stamets,  a  visionary  mycologist,  realized  the  potential  of  white  rot  mushrooms  for  

removing  petroleum  hydrocarbons  from  contaminated  soils.    As  noted  before,  white  rot  fungi  

in  the  genus  Pleurotus  will  completely  degrade  complex  hydrocarbons  in  crude  oil  and  have  

been  used  in  successful  remediation  of  petroleum-­‐contaminated  soils  and  water.    Crude  oil  is  a  

mixture  of  different  types  of  hydrocarbons  based  on  density.    Gasoline  is  quite  light  and  volatile  

so  much  of  it  vaporizes.  This  is  the  part  of  crude  oil  that  BP  claimed  had  vanished  weeks  after  

the  notorious  Gulf  of  Mexico  oil  spill  in  2010  (Stamets,  personal  communication  2012).  The  

heavier  hydrocarbons,  such  as  heating  oils  or  kerosene,  contain  bigger  molecules  that  do  not  

easily  evaporate.  The  most  viscous  compounds,  called  “asphaltic”  compounds,  or  PAH  

(Polycyclic  Aromatic  Hydrocarbons)  are  known  carcinogens  with  a  long  lifespan.    Oyster  

mushroom  mycelium  is  equipped  to  break  down  the  complicated  carbon  chains  in  the  heaviest  

petrochemical  products.    Stamets  tested  the  removal  of  petroleum  hydrocarbons  from  the  

surface  water  in  marine  environments.    These  experiments  were  done  both  in  the  field,  and  in  

lab  with  similar  results.  

There  are  many  different  types  of  fungi,  more  than  scientists  can  comprehend  or  keep  

up  with  (Blackwell  2011).    Fungi  perform  a  variety  of  roles  underlying  the  sustenance  of  forests  

and  other  landscapes.    They  dominate  the  living  biomass  in  soil  and  are  abundant  in  aqueous  

systems.    The  ability  of  some  species  to  form  extended  mycelium  networks  and  use  pollutants  

as  a  growth  substrate  makes  them  ideal  candidates  for  restoration  purposes  (Harms  2006).    

This  project  will  benefit  the  field  of  restoration  by  providing  another  case  study  for  

mycofiltration  in  the  Pacific  Northwest.  To  quote  Paul  Stamets  in  October  2012  at  a  mycology  

course  on  Cortez  Island;  “Fail  hard,  because  it  is  the  price  of  tuition.”  

Page 26: When Mycology Meets Restoration

26  |  P a g e    

References    

Aronson,  J.,  &  van  Adel,  J.  (2005)  Challenges  for  ecological  theory.  Restoration  ecology:  The      new  frontier,  223-­‐233.  

Blackwell,  M.  (2011)  The  Fungi:  1,  2,  3….5.1  million  species?  American  Journal  of  Botony,  98  (3),  426-­‐438.  

Cairns,  J.  (1988)  Restoration  ecology:  the  new  frontier.  Rehabilitating  Damaged  Ecosystems,  1.  

Emil,  F.  (2010)  Mushroom  as  a  Purifier  of  Crude  Oil  Polluted  Soil.  International  Journal  of  Science  and  Nature.  Vol.  1  (2),  127-­‐132.    Harms,  H.,  D.  Schlosser  &  L.  Wick.  (2006)  Untapped  potential:  exploiting  fungi  in  bioremediation  of  hazardous  chemicals.  Nature  Reviews  Microbiology  9,  pp.  177-­‐192.    Humar,  M  et  al.  (2004)  Fungal  bioremediation  of  copper,  chromium  and  boron  treated  wood  as  studied  by  electron  paramagnetic  resonance.    Jungen,  J  and  P.  Ag  (eds).  (1985)  Soils  of  Southern  Vancouver  Island:  Report  #44.  Ministry  of  Environment.    Victoria,  BC.    

Mansur,  M.M.;  Arias,  E.;  Copa-­‐Patino,  J.H.;  Flardh,  M.  and  Gonzalez,  A.E.  (2003)  The  white  rot  fungi  Pleurotusoestreatus  secretes  luccaseisoezyzmes  with  different  specificities.  Mycologia:  95  (6):1013-­‐  1020.  

Matsubara,  M.,J.  Lynch.  F.DeLeij.  (2006)  A  Simple  Screening  procedure  for  selecting  fungi  with  potential  for  use  in  the  bioremediation  of  contaminated  land.  Enzyme  and  Microbial  Technology  39,  1365-­‐1372.  

Meidinger,  D.  and  J.  Pojar.  (eds).  (1991)  Ecosystems  of  British  Columbia.  BC  Ministry  of  Forests.  Victoria  BC.  

Merchant,  C.  (1990)  The  Death  of  Nature:  Women,  Ecology,  and  the  Scientific  Revolution.  University  of  California,  HarperCollins.  

Miller,  K.  V.,  &  Miller,  J.  H.  (2004)  Forestry  herbicide  influences  on  biodiversity  and  wildlife  habitat  in  southern  forests.  Wildlife  Society  Bulletin,  32(4),  1049-­‐1060.  

Molina,  R.  (1994)  The  Role  of  Mycorrhizal  Symbioses  in  the  Health  of  Giant  Redwoods  and  Other  Forest  Ecosystems.  USDA  Forest  Service  Gen.  Tech.  Rep.PSW-­‐151.  

Nara,  K.  (2006)  Ectomycorrhizal  networks  and  seedling  establishment  during  early  primary  succession.  New  Phytologist:  169,  169-­‐178.    

Page 27: When Mycology Meets Restoration

27  |  P a g e    

Pywell,  R.F.,  Putwain,  P.D.  &  Webb,  N.R.  (1997)  The  decline  of  heathland  seed  populations  following  the  conversion  to  agriculture.  Journal  of  Applied  Ecology,  34,  949–960.  

Ruiz-­‐Jaen,  M.  C.,  &  Mitchell  Aide,  T.  (2005)  Restoration  success:  how  is  it  being  measured?  Restoration  Ecology,  13(3),  569-­‐577.    Singh,  H.  (2006).  Mycoremediation:  Fungal  Bioremediation.  Hoboken,  New  Jersey:  John  Wiley  &  Sons  Inc.    Smith,  David  MD  et  al.  (2006).  The  Functional  Dynamic  Network  Framework  and  the  Network  Automata.    Stamets,  P.  (2005).  Mycelium  Running.  How  mushroom  can  help  save  the  world.  Ten  speed  Press,  Berkeley/Toronto.  1st  Edition.  

Stamets,  P.  (2000).  Growing  Gourmet  and  Medicinal  Mushrooms,  Third  Edition,  Ten  Speed  Press,  Berkeley    Swan  Lake  Christmas  Hill  Nature  Sanctuary.  (2012).  About  Us.  Retrieved  Oct  12,  2012  from  http://www.swanlake.bc.ca    Yamac,  Mustafa.  (2006).  Antimicrobial  Activities  of  Fruit  Bodies  and/or  Mycelial  Cultures  of  Some  Mushroom  Isolates.  Pharmaceutical  Biology,  Vol.  44,  No.  9,  pp.  660–667.      

 

 

Page 28: When Mycology Meets Restoration

28  |  P a g e    

Appendix 1: Copy of Lab Results for Site 1 Saanich, Dist. of - Waterwks 06Dec12 9:41a W105215 Attn: Al Keiser Swan Lake 1040 McKenzie Avenue water Victoria, BC 3 V8P 2L4 TEL: (250) 475-5481 Arrival temp.: 8.0C FAX: (250) 475-5487 cc: [email protected] group Samples: Swan Lake Storms Fecal Coliforms * Site_Code Date Time (CFU/100mL) 1 #1 06Dec21 07:30a 1200 2 #2 06Dec12 07:30a 800 #2 DUP 07:30a 800 3 #3 06Dec12 07:30a 800 * membrane filtration Fecal Coliforms may also be known as Thermotolerant Coliforms Results may be adversely affected if samples are submitted to the laboratory more than 24 to 30 hours after collection. - see following page for chemistry results - _____________________ _____________________ M. Milholm W. Riggs Microbiologist Sr. Microbiologist M.B. LABS LTD T: 656-1334 F: 656-0443 E: [email protected] W: www.mblabs.com .

Page 29: When Mycology Meets Restoration

29  |  P a g e    

Saanich, Dist. of - Waterwks 06Dec12 9:41a W105215 pg2 Attn: Al Keiser Swan Lake 1040 McKenzie Avenue water Victoria, BC 3 V8P 2L4 TEL: (250) 475-5481 Arrival temp.: 8.0C FAX: (250) 475-5487 cc: [email protected] group Samples: Swan Lake Storms TEH SAMPLE DATE TIME (mg/L) #1 06Dec21 07:30a ND #2 06Dec12 07:30a ND #3 06Dec12 07:30a ND Lab Blank ND So 0.003 REF. VALUE 50.0 STD ñ 2SD 50.7 ñ 4.19 SD = standard deviation STD = secondary standard calibrated to primary standard reference material So = standard deviation at zero analyte concentration; method detection limit is generally considered to be 3x So value ND = none detected n/a = not applicable ____________________ _____________________ R. Bilodeau H. Hartmann Analytical Chemist Sr.Analytical Chemist M.B. LABS LTD T: 656-1334 F: 656-0443 E: [email protected] W: www.mblabs.com .

Page 30: When Mycology Meets Restoration

30  |  P a g e    

Saanich, University of Victoria 06Jan13 9:49a W106015 Attn: M Kenney Swan Lake 1280 Balmoral water Victoria, BC 3 V8T 1B5 TEL: (250) 896-4202 Arrival temp.: 8.3C FAX: cc: [email protected] group Samples: Swan Lake Storms Fecal Coliforms * Site_Code Date Time (CFU/100mL) 1 #1 06Jan13 07:30a 1100 2 #2 06Jan13 07:30a 900 3 #3 06Jan13 07:30a 800 * membrane filtration Fecal Coliforms may also be known as Thermotolerant Coliforms Results may be adversely affected if samples are submitted to the laboratory more than 24 to 30 hours after collection. - see following page for chemistry results - _____________________ _____________________ M. Milholm W. Riggs Microbiologist Sr. Microbiologist M.B. LABS LTD T: 656-1334 F: 656-0443 E: [email protected] W: www.mblabs.com .

Page 31: When Mycology Meets Restoration

31  |  P a g e    

Saanich, University of Victoria 06Jan13 9:49a W106015p2 Attn: M Kenney Swan Lake 1280 Balmoral water Victoria, BC 3 V8T 1B5 TEL: (250) 896-4202 Arrival temp.: 8.3C FAX: cc: [email protected] group Samples: Swan Lake Storms TEH SAMPLE DATE TIME (mg/L) 1 #1 06Jan13 07:30a ND 2 #2 06Jan13 07:30a ND 3 #3 06Jan13 07:30a ND So 0.003 REF. VALUE 50.0 STD ñ 2SD 50.7 ñ 4.19 SD = standard deviation STD = secondary standard calibrated to primary standard reference material So = standard deviation at zero analyte concentration; method detection limit is generally considered to be 3x So value ND = none detected n/a = not applicable ____________________ _____________________ R. Bilodeau H. Hartmann Analytical Chemist Sr.Analytical Chemist M.B. LABS LTD T: 656-1334 F: 656-0443 E: [email protected] W: www.mblabs.com .