6
259 HWAHAK KONGHAK Vol. 40, No. 2, April, 2002, pp. 259-264 (2001 8 3 , 2001 11 30 ) Wastewater Nitrification in Airlift Biofilm Reactors Il-Soon Suh and Choong Hoi Heo Department of Chemical Engineering, Konkuk University, Seoul 143-701, Korea (Received 3 August 2001; accepted 30 November 2001) 27.7 L 0.613 mm . 130 0.140 mm . , 6.34 cm/s 30 o C 5 kg N/m 3 d . . . . 5 o C 20 o C 20 o C 30 o C . . Abstract - The nitrifying biofilm was formed on the carriers of granular activated carbon with the diameter of 0.613 mm in the airlift bioreactor of 27.7 L to investigate the influences of temperature and dissolved oxygen concentration on the nitrifi- cation rate. The biofilm of 0.140 mm thickness was obtained after the operation of 130 days with the dilution rate higher than the maximum specific growth rate of nitrifying bacteria. As raising alternately air velocity and ammonium loading rate, ammo- nium oxidation rate increased stepwise up to the maximum value of 5 kg N/m 3 d at the riser air velocity of 6.34 cm/s and the temperature of 30 o C. The ammonium oxidation rate increased with increasing the dissolved oxygen concentrations, while the nitrite oxidation rates were almost independent from the dissolved oxygen concentration during the early stages of the reactor operation. The biofilm formed at the late phase, however, led the nitrite build-up to disappear and exhibited the nitrite oxida- tion rates which increased with the dissolved oxygen concentration. As raising temperature, the nitrification rate increased appreciably at the low temperatures of 5 o C to 20 o C and then slightly at the high temperatures of 20 o C to 30 o C. The oxygen diffusion in the biofilm played a dominant role at high temperatures rather than the nitrification kinetics. Key words: Nitrification, Airlift Biofilm Reactor, Biofilm Formation, Dissolved Oxygen, Temperature, Nitrite Build-up 1. , . . . . . . , - [1, 2]. To whom correspondence should be addressed. E-mail: [email protected]

Wastewater Nitrification in Airlift Biofilm Reactors HWAHAK KONGHAK Vol. 40, No. 2, April, 2002, pp. 259-264 † (2001 8 3 , 2001 11 30 ) Wastewater Nitrification in Airlift Biofilm

  • Upload
    lyque

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

HWAHAK KONGHAK Vol. 40, No. 2, April, 2002, pp. 259-264

����� ��� ��� �� ��

���†����

����� �����(2001 8 3� � , 2001 11 30� ��)

Wastewater Nitrification in Airlift Biofilm Reactors

Il-Soon Suh† and Choong Hoi Heo

Department of Chemical Engineering, Konkuk University, Seoul 143-701, Korea(Received 3 August 2001; accepted 30 November 2001)

� �

��� ������ ��� ��� ��� ���� ��� � ���� 27.7 L ���� ��!"� #

$% 0.613 mm &'( )* +, -'./0. � 12�3 45 6�7��80 9 :;<� ���� 130= >? @

AB C DE 0.140 mm ���F -'GH0. ��I�J KLMN O�P� QRSTU VW.X YZ, KLMN �

���� [\STU VW�� 6.34 cm/s ]^_ ��I� ` 30oC �� # 5 kg N/m3ad 45��b cdeH0. KL

MN ����� ������b VW.X YZ VW�f0. 3� ����� !"� @A g� � ������ h

��� ij kl0. mnc C� -'G� ���o 3� pS� �q./Tr ������W VWs YZ VW

�� 3� ����b 8f0. ���� ��b VW.X YZ 5 oC # 20oC to ��u� #� ]vw VW�

fx 20oC # 30oC yo ��u� #� z{ VW�f0. yo �� #� ��� # �� �|�F � !"

��} 80 ~�B ��� �f0.

Abstract − The nitrifying biofilm was formed on the carriers of granular activated carbon with the diameter of 0.613 mm in

the airlift bioreactor of 27.7 L to investigate the influences of temperature and dissolved oxygen concentration on the nitrifi-

cation rate. The biofilm of 0.140 mm thickness was obtained after the operation of 130 days with the dilution rate higher than

the maximum specific growth rate of nitrifying bacteria. As raising alternately air velocity and ammonium loading rate, ammo-

nium oxidation rate increased stepwise up to the maximum value of 5 kg N/m3�d at the riser air velocity of 6.34 cm/s and the

temperature of 30oC. The ammonium oxidation rate increased with increasing the dissolved oxygen concentrations, while the

nitrite oxidation rates were almost independent from the dissolved oxygen concentration during the early stages of the reactor

operation. The biofilm formed at the late phase, however, led the nitrite build-up to disappear and exhibited the nitrite oxida-tion rates which increased with the dissolved oxygen concentration. As raising temperature, the nitrification rate increased

appreciably at the low temperatures of 5oC to 20oC and then slightly at the high temperatures of 20oC to 30oC. The oxygen

diffusion in the biofilm played a dominant role at high temperatures rather than the nitrification kinetics.

Key words: Nitrification, Airlift Biofilm Reactor, Biofilm Formation, Dissolved Oxygen, Temperature, Nitrite Build-up

1. � �

�� �� ��� � �� � �� ��� ����� �� �

���� �� ���, ����� ��� !"� �� #$%& '

�#( )* �#+� ��,. ���� - '�# ./� �01 ��

( 2� 3456�7 89":� ;<�= .> 89?:� #@ A

<�,. �$BC�7 ��D �#�� EF� !"� �� ,G

'�#� �@ )* HEI+� �JKL� ��9� ��M ��

�NO P)D,.

�$!"� Q� �RFS >T� U�VW1 �$X6�7 YZ[

� \]��NO !^ _`( a� 2�M Q: �1%&b �,. cd

I e �f� �g� e � \]�@ hi�,. � a jL� k^l

m !^ �6$no� YZ[( �$ !"� Hp c�RFS .K+

� qR�r .<s � t,. X�uvw \]� X�� "f%

Kxy�7� �^ ^�g. �zy�7� �^ ^�g{, |� }(

�~�& Kxy5 �zy A.� �� �^��( ���M � f9

@ \]� �� �� ��G� � t+=, |� �-� �8�FS5

�� ����( {M � $�\]� \]��7 � X��b�7 I

<�2@ ��� t,[1, 2]. � a \]� \]� � !^�S@ |†To whom correspondence should be addressed.E-mail: [email protected]

259

260 �������

[3]

[8]

[12]

: �1�=, ;� ��(�� 0.30 mm)� k^@ A<� X�uvw

� a \]� �-� �8�FS@ �6� � f9 clmI(

|: �1� � t& |� \]FS@ �~�& X��h� ���9

c@ K�� �� � t R�. t,. Table 1� U�VW1[3, 4],  

8¡¢[5], �6£[6-8], �¤£[9-13] - X�uvw[14-17] ¥� MW

jL� \]�@ .<� �� �$� y� ¦i§( h¨ 6u�©,.

Tanaka ¥[11]� �� 0.27 mm� �ª k^@ .<� �-� �¤£ �

a \]�@ �� �$� I<�M 20 kg/m3� \]� !^�S�

9.60 kg N/m3«d� |� ���� #$FS@ {��©,. �-� �¤

£ \]� �� � f9 � a !^� ¬N ���v�7 �#@

�K� <�G­+�7 #@ X®�©,. .W� �¯�� no� �

a+�NO� Q� !^.° FS >T� � a j�m�7 �u

�� \]C� ±²� >T� \]� ³8� &´�. t,.

�$!"� Q� �RFS � a j�5 µ¶�S &´�( ��

�,. k^ � ·¤I !^ �6$@ �´� � t+� � f9 �

�q#� p� e ¸¹. TP.,[18, 19]. \m� k^ lm 2 �

a jL�� �¤I !^ �6$ � a � �q#� p� ¸¹�

;+� �^� º»S, 8B]¼ - f9 � ½¾� �� � a !^

.°TP >T� !^ �6$� &´�. t,. k^� ¿S, ��, l

m�� - � �S ¥. !^ �6$�7 !^ .°FS@ �6� �

h� À9.,[20]. k^ ¿S� �m f9 � ½¾� �� ½Á. Â7

Ãu� k^� \]� � � �S� �m ½¾ÄS� Â7 � a j�

- µ¶m�7 Åu�,. k^ "2 �^�NO� �¼�I �Æ5 k

^f9 � ½¾½Á� p� ǺÈ@ lm� NÉD !^� PX� �

t )Ê k^ lm��. � a j�� �u�,.

Ë ¦i�7 � a j�� �u� ¿S ;� ÅÌÍ� lm��

( {. U�Î f9@ !^ �6$ k^� A<�©,[21]. Q� ¿

S� k^ X�uvw \]� �� k^f9 ��� t&7S �u

�,. Ï � f9@ \]� ��7 ��GÐr Q� �^ ��FS�

Ñh�= cdI ;� X� "f�g( A<� � t,. Q� X��g

� Q� � a !^ .°FS >T� � a j� - µ¶ m�7 �

u�� Q� �-� #8�FS� À� Q� \]� �K <Ò# �

S >T� � f9 lm "�� !^Ó U�. �1%& �$FS m�

7 Åu� Ô+� �ÕD,. Ö×7 X��g. ���� - '�#

#$FS� �Ø �ÆS ÙÚ�©,. Û1a+�, Ë ¦i�7 /S

� �$FS� �Ø �Æ( <Ò#�S �Æ5 ÜÝ �Þ�©,.

2. �� � �

2-1. ���

Ë ¦i�7 A<D X�uvw � a \]�@ Fig. 1� �~�ß,.

\]� 8^NÇ 27.7 L� ABR-I5 4.5 L� ABR-II@ A<�©,(Table

Table 1. Previous works on the biological nitrification in various reactors

Reactor (media) Oxygen sourceAmmonium oxidation

rate[kg N/m3d]Biomass conc.

[kg/m3]Reference

Activated sludge air 0.199 1.95 Benniger and Sherrard

Activated sludge air 0.384 2.5-3.5Adams and Eckenfelder[4]

Rotating disk air 0.137 n.a. Prakasama et al.[5]Submerged filter(2.8-3.4 mm vitrified clay) air 0.23-0.41 n.a. Stensel et al.[6]Sand filter(1 mm diam.) hydrogen peroxide 1.39 n.a. Mueller[7]Submerged filter(25-38 mm diam. quartzite stone) pure oxygen 1.73 2.7 Huag and McCartyFluidized bed(a)(sand) pure oxygen 2.57 8.5 Jeris et al.[9]Fluidized bed(a)(activated carbon) pure oxygen 6.72 30 Tsunoda et al.[10]Fluidized bed(a)(0.27 mm diam. sand) pure oxygen 9.60 20 Tanaka et al.[11]Fluidized bed(a)(0.4-0.6 mm diam. sand) pure oxygen 0.50-1.09 4.4-9.9 Cooper and WilliamsFluidized bed(a)(0.05-0.15 mm diam. sand) air 3.60 n.a. Gauntlett[13]Airlift(0.26 mm diam. basalt) air 6 n.a. Tijhuis et al.[14]Airlift(0.1-0.3 mm diam. basalt) air 0.9-2.0(b) 15-40 Heijnen et al.[15]Bubble column(9.9 mm diam.×8.1 mm height polyethylene) air 0.24(b) n.a. Hem et al.[16]Three-phase draft-tube fluidized bed

(1.3 mm diam. activated carbon)air 1.92(b) 6.24 Cheng and Chen[17]

(a) oxygenated indirectly in the external liquid recycle stream.(b) in the case of the simultaneous nitrification and organic oxidation.n.a.: not available

Fig. 1. Airlift biofilm reactor.

���� �40� �2� 2002� 4�

��� �� ����� �� �� 261

2). \]� X� Jà¸, ¤áâ �y - �-�-� ãK �u�� i�

%ß+=, X�@ �y� �AÜ+�7 �y. Kxy+� ;¤�: �

©,. \]� ¬ä� åæ( çØ�M /S@ èé�©,. \]� �

<Ò#�S #8ê(CellOx 325, WTW)( A<�M ë6�©,.

2-2. ��

�6� ���� N�FS@ �1�� 2�M ÛÃìí, îuïð, ñ

í, iu - ò ¥� �g� �( Ü�� �â����(NH4Cl; 2.513 g/

L, KH2PO4; 1.984 g/L, NaHCO3; 6.414 g/L)@ �ó � YZ�M \]

�� ¦¤ôv(Model 302s, Watson Marlow)� X®�©,[16].

2-3. ��� �� �

7õG �gö E÷ÈuR�7 U�VW1@ øù�M N� �( ú

8Gû P)� ü \]�� �� - U�Î k^� ÜÝ "f�M ��

� �] - k^ lm�� !^ NÉ( 2�M 14��  �¶+� \

]�@ ³8�©,. .> k^lm� �$!"� NÉ( ý: �� 2�

M þ�ÿ�J �<�( ��I+� "f���7 _�¬ ,�»@ �c

� EF� !"� k^lm�� NÉ - µ¶S ÜÝ �S�©,[17].

2-4. � ���, ���� ��� ����

\]� �`�� ����, �#./ - '�#./� �S G� �

N� �( 0.2µm� �X ��( � ÑO� P)� ü ���SC

(DR 2000, Hach)@ .<�M ë6�©,[22]. ������ �S

ìVWo( .<�M ���SC(380 nm)@ A<�M ë6�©,. �#

�� �S �� �¡o+� ë6�©,. G� � �#./( �

�+� '�#./+� �¡G ü '�#./( sulfanilic #5 \

]Gû �'è� ( j�G,. �'è� � genistic #5 ���M

���� $� ( j��=, ��� $� �S@ ���SC(500 nm)

@ .<�M ë6Ü+�7 G� � �#� - '�#� ��S@ ë

6�©,. '�#�� �S ferrous sulfate no( .<�M �Z�

©,. '�#./� �#P�ò� ��7 NO� �¡D ü �#P�ò

5 ���M ¦��� FeSO4«NO $� ( j��=, .� �S@ �

��SC(585 nm)@ .<�M ë6Ü+�7 G� � '�#�� �

S@ ë6�©,.

2-5. ���� �� ���

� a �Ý � ���(RM-TH-10, Meiji)� Û.���~@ .<

�M Õ � f9� Hp - H��( ë6�M �!��( #`�

M ë6�©,. H 50� .K� f9@ øù�M pl�!f9��(

#`�©,. � f9 � a+� Òå� !^g� � f9� �

f9�7 � a( P)�M �� k^@ ÕÕ 80oC�7 48G� ¤�

�èG ü �è�g( ë6Ü+�7 #`�©,. � f9@ 4 M �

#$�w� �<�� 4G� ¤� k� ü ��à _��@ .<�M k

^� NÉD � a( P)�©,.

3. � � �

3-1. ���� ��� ��

X�uvw � a \]� ABR-I�7� � a j�5 �$56(

Fig. 2� �~�ß,. \]� /S 30�1 oC� �1�©+=, ��

0.613 mm U�Î f9 600 g( k^� A<�©,. � a �Ý� µ

�Ü� Ö× X��F5 ���� N�FS@ dp� µ�G�,. \]

� ³8 ��� k^lm� NÉD !^� .°( a� 2�M Q�

X��F( A<�©+= \]� ³8 ü�� � a !^� µ¶F

S@ µ�GÐ� 2�M |� X��F(\]� �K <Ò#�S)(

�1�©,. ���� N�FS "� �f� �g( �$G­+�7

µ�G�,. � a j� - µ¶( �FGÐ� 2�M �$!"� H

p c�RFS� ��(12 h at 30oC) {, ;� 0.94-7.07G�� �u

�I ̂ »G�( I<�©,. � �u�I ^»G�( �1�m \]

� �K N�!^� _`. �&� ��. "� � a !^� ��

�%& � a j� - µ¶� �u� \m ! ^»G�( I<�m �

�. "� �q# ¸¹( ?1 " \]� �K N�!^� ��

�%& � a j� - µ¶� Åu�,[20]. \]� ³8 60� üNO

� a �Ý@ ë6�� G;�©+= � a �Ý� CF µ��M A

<� X��F5 �f� �g - ������ �S ¥� ³8è�

��7 6KKL �Ý@ �6�� &´#,. \]� ³8 130� ü�

�Ý 140µm� � a. j�%ß,.

��  �¶ ³8�7 ¦F¶ ³8+� 8�� ü ¨ 2 "�� $*7

\]� �`�� ������ �S ¨ 120 mg N/L�7 ¨ 20 mg

N/L%1 CF &� ü )� �6� }( {©,. à ü� X��F

- �f� �g( µ�G­� Ö× ���� #$FS BCI+� µ

��M ¨ 80�� \]� ³8 ü 6.2 cm/s� Kxy �' X� X(F

S� 540 L/d� �f� �g - 260 mg N/L� �f� ����� �

�S@ A<� ³8�7 5 kg N/m3«d� ���� #$FS@ {©,. \

]� ³8 ��� k^ lm� � a+� Òå� !^g. I&

���� #$FS � a � ��q#� �� P�%1 "� !^

g� �� P�%& � a !^g. µ�Ü� Ö× µ��©,. \m

�, \]� ³8 ü�� � a � �q#. �$ \]FS@ P�

�M \]� �K <Ò#�S ¥� ³8 è�. �Ü� Ö× ���

Table 2. Dimensions of the airlift biofilm reactors

Reactor ABR-I ABR-II

Diameter[m]Height[m]Draft-tube

Diameter[m]Height[m]

Total volume[L]Working volume[L]

110.1411.8

110.1011.027.721.2

0.080.91

10.0540.614.513.61

Fig. 2. Biofilm formation of nitrifying bacteria and nitrification perfor-mance in the airlift biofilm reactor ABR-I at 30 oC.

HWAHAK KONGHAK Vol. 40, No. 2, April, 2002

262 �������

� #$FS� BCI+� µ�� Ô+� �ÕD,. Tijhuis ¥[14]�

175 g/L� basalt(�� 0.26 mm, ¿S 2,600 kg/m3)@ k^� A<� N

Ç 2.6 L� X�uvw � a \]��7 7.5 cm/s� X��F, /S

30 oC, Ãu� pH 7� è��7 6 kg N/m3«d� \]� B2NÇ �

Hp ���' #$FS@ {��©,. '�# #$FS 105�%1

� \]� ³8 ¤�� ���� #$FS� 20%�7 40%%1� Q

� }( {., 105��7 128�%1� \]� ³8 ü�� 1.36 kg N/

m3«d�7 3.46 kg N/m3«d� ®Á� µ��©,[23].

Fig. 3� Fig. 2� �~) �$56� Û1a BC�7 øù� � f

9� ��� A*.,. k^ "�� �� j�D � a( y� � t

,. !^ µ¶FS� Q� �$!"� � a j�� � a \]�@

.<� �$X6�7 �R �h� TP� ��.,. � a j� - µ

¶� � a ��5 .°� �5.,. �� � a .°� |� º»S

@ �~� X�uvw \]��7 �h� ��@ 1+,. � a�7

j�% !^ � ¨ 90%� � a+�NO \]� �K+� .°%

& \]��NO _`D,. Heijnen ¥[20]� k^ ��5 �u�I ^

»G�. �$!" � a j� ��� �Ø �Æ( yÞ�� 2�

M 21 E»� k^@ A<�©,. k^@ � a( )� j�GÐ1 "

k ,̂ k^ lm� cavity� patch jL� � a( j�GÐ k^,

k^ lm� �� � a( j�GÐ k^� i��©,. � a�

jL� �$\]� ,L@ -� ¦yG�,. �� � a� � f9

����( �#+� .8 #$GР\m� patch jL� � a(

�1 � f9 ����( '�#%1Ó N� #$G,� �©

,. ;� ��(0.2-0.3 mm)� )Ê lm��( �~� k^(basalt)�

k^ lm "2� �� � a j�� �u�,� {��©,. ;� �

�� k^ � f9� ½¾� �� ½Á. I&7 � a+�NO�

!^.°. I& � a j�� �u��, )Ê k^lm ��� k^

lm� 4ÉD B�!^ - microcolony� � a+�� µ¶56�7

\]� �K. � f9 lm� ;<� 8B]¼ - � f9 � ½

¾� �� ½Á� p�M ǺÈ@ PXÜ+�7 � a+�NO� !

^.°( a,� �©,. Ë ¦i�7 A<� U�Î k^� c/�

¿S(1,450 kg/m3)@ � anthracite k^S A<�©+=, Ë ¦i�7

A<� k^� c/� ��(0.4-1.0 mm)( � anthracite k^ lm�

)� � a. j�%1 "0� \m� ;� ��(0.2-0.3 mm)�

anthracite !�� � a( j�G�,� {��©,. ÃW� 17 ç

2� 3� 4. Ë ¦i�7 cdI e ��(0.613 mm)� U�Î k

^ lm�S !�� � a. j�5( y� � t�, �����

�#+� )� .8 #$%ß,. Ë ¦i6�7 -� �¤£ � a

\]�@ .<� ��� °�$�7 cdI ��. �� �7³ U�

Î. ��� ;� 8)³ �ªf9� c�7 � a j�5 µ¶� �

uÜ( qÀ� � tß,[21]. ;� f9@ k^� A<� �9 |� �

f9 � �S@ :� |� �S� � a !^ - �� � f9 c

lmI( �r �u�� ��� ;� ¿S� Q� k^� �9 \]

� KB�7� �-� �u� Åu� � t,.

3-2. �!" #$�� ��� %&

�$� �Ø X��F� �Æ( èA�� 2�M \]� ABR-I(

98� ¤� ³8� ü X�� Kxy �' X(FS@ 6.34 cm/s�7 1.27 cm/

s .�� B�� $* BCI+� &G�+= Fig. 4� �~�ß,. �

f9� � a �Ý �! 91.5�8.6µm� )� �6� }( {M

� a �Ý� p�M '6KKL@ �6� � tß,. X�uvw \

]��7 X�� "f% Kxy�7� �^ ^»g� �zy�7�

^»g {, ��� \]� �K� Kxy�7 �zy+� ��D,.

X��F( &G­� Ö× �^^»g� ;� &�M �K ��F

S� &�,[24]. |� X��F�7 X���� Kxy5 �zy

A.@ .8� ���©+� Q� X��F�7 X���� �zy

+� å ��%1 "0,. Ö×7 Q� X��F�7 �-� #8�

. Kxy�7Ó �&<+=, Q� \]� B2NÇ � �-� #8�

C� >T� Q� <Ò# �S@ {©�, ����� �� \]�

�K�S 90 mg N/L�7 170 mg N/L%1 µ��©+=, '�#�

� �S 100 mg N/L�7 40 mg N/L%1 &�©,. �; \]F

S= - � a ��7� ����5 <Ò#� �> �q#C��

4,� �6�m, � a�7� ���� #$FS@ P�� ��(

�6�r \]� �K <Ò# �S� ����� � �S� p

� ?C�Sc(3.5 mg O2/mg NH4+ - N)@ A<� � t,[25]. \]�

³8è�. ?C�Sc .�� > #� � a�7 N�I+� ú

Fig. 3. Microscopic observation shows the activated carbon media to becovered with the homogeneous nitrifier biofilm. Fig. 4. Influences of air velocity on the nitrification in ABR-I.

���� �40� �2� 2002� 4�

��� �� ����� �� �� 263

�%& \]FS@ �6��, ?C�Sc .K�7 ����. �

a( N�I+� ú��M \]� �K ����� ��S� 8^ \

]FS@ �6�,. Fig. 4� 6@�5 ���� #$FS@ �6�

��� <Ò#?( {M',. Ö×7 \]� �K <Ò# �S�

&Ü� Ö× <Ò#� � a ú�A.� &�M � a � �

��� #$FS� &�M \]� �K ���� ��S� µ��

©�, � a � ���� #$� �� '�# ��FSS &�M \

]� �K '�#� ��S� &� Ô+� �ÕD,. Garrido ¥[26]

� �6� X��F(2.2 cm/s)( A<� �� 0.32 mm basalt k^(35 g/

L reactor)� X�uvw � a \]��7 � f9 � a �Ý� µ

�Ü� Ö× �-� #8�C�� &�� <Ò# �S� &�M

'�# âI. �&º,� {��©,. ç� \]� �$ <g� c

� cdI I� ���� N�B(5 kg N/m3d)( I<�M <Ò# �

S� &Ü�S Åi�� ���' ¹K )� �� '�#+� #

$%& '�# ��FS &�1 "0� '�# #$FSÓ &�

M \]� � '�#� ��S� µ�� Ô+� �ÕD,. Ï ���

', <Ò# Ãu� '�#� �7� � a ��7 C ú�� Ô+�

Dë� � t,.

Fig. 5� \]� �K <Ò# �S� \]� B2NÇ � ����

- '�# #$FS� KyyC@ �~�ß,. \]� �K <Ò#

�S� ����� ��S - � a �Ý� c�M Q� }( {©

� >T� � a � ���� - '�# #$FS � a <Ò#

ú�A.� ��M �6D,. <Ò# �S� µ�Ü� Ö× ����

#$FS µ�� \m� '�# #$FS <Ò#�S� )� �

Æ( ?1 "0,. ���� #$!" � a 8^� �� ��%&

���� #$FS <Ò# � a ú�A.� �Æ( ? \m�

'�# #$!" � f9 lm "2� ��%& t& '�# #$

FS <Ò# � a ú�A.� )� �Æ( ?1 " Ô+� �

ÕD,. X��F( �$GÐ& \]� �K <Ò# �S@ �$GÐ

ß� >T� <Ò# �S� �^-� f9 � �8�� p� ¸¹

� �Æ( ¤G� {.� t,. � f9 "2� j�% �a� ��

�-� �8�� p� ¸¹� �Æ� � a N�ú�� �9 �: �

~º,[27, 28]. Ö×7 6P <Ò#� � a � �q# �Æ� ,

I( Ô+� �ÕD,. -� 17 E®� '�#� ��S� ®Á

� �$ � a � '�# #$!"� �� �$@ ��� � t,[29].

\]�@ 230� ¤� ³8� ü �� ¨ 240µm� � a �Ý@ �~

� � f9@ A<�M X�� �# ���^@ .<� <Ò#

�S� �� �2� $Ê �$(34-325% at 20oC)� p� ���� -

'�# #$FS� B�]F �5 <Ò# �S� µ�Ü� Ö× �

� µ��©,[23].

3-3. '�� %&

\]/S� �$� �Ø �Æ( èA�� 2�M \]� ABR-II�

7 \]/S@ Fig. 6� �~) Ô5 4. 5oC�7 30oC%1 BCI+

� �$G�,. � f9 \]� ABR-I( ¨ 175� ¤� ³8� ü

� øù�M A<�©+= � a �Ý ¨ 230µm.ß� k^ lm

� � a jL� Òå� !^� \]� � �S 6.42 g/L.ß,.

�f�� �g5 ����� ��S ÕÕ 40 L/d� 260 mg N/L.

�, X�� Kxy �' X(FS 0.74-2.66 cm/s� �2�7 �$

G�,. /S@ µ�G­� Ö× �`� ����� ��S &�

©� '�#� ��S Q� }( �1�©,. �� /S@ 15oC�

7 20oC� 20oC�7 30oC� ÕÕ µ�G�( > ��� '�#. â

I%, ü�� &�m7 ����� ��S� µ�@ ¤\�©,.

\]� � '�# âI� � a�7� ���� #$� �� '�#

��FS� '�# #$� �� '�# P)FS{, G > �&º,.

. � a B2NÇ � Hp \]FS� ���� #$\]� �9

� '�# #$\]� �9 {, Â7 �&º,� �Õ� � t,[28].

ÃW� '�# âI. H% Ô+� {' �GI '�# âI� �

��� - '�# #$!"� � a � ��;� �� Hp \]

FS ;� ��7 �&� Ô. '�× ��� �� ���� - '

�# #$\]� p� ¸�;<� ��7 �&I � t,� �Õ� �

t,. -� ���� #$FS 5oC� Q� /S�7 <Ò# �

S� )� �Æ( ?1 "� \m� 20oC� cdI |� /S�7

<Ò# �S� �Æ. J( \]� ³8 36� ü� 6@�5�NO

K � t,. . Q� /S�7 � a � \]FS=. Ãu� �

/�7 � a � <Ò# �q#. \]� B2NÇ � ���

� #$FS@ �6� "hÀ9?( ���,[25, 28].

Fig. 5. Variation of the volumetric ammonium and nitrite oxidationrate with the dissolved oxygen concentration in ABR-I. Fig. 6. Temperature variation in the airlift biofilm reactor ABR-II.

HWAHAK KONGHAK Vol. 40, No. 2, April, 2002

264 �������

an

nd.

ss,

at-

al

R.,

.:

.

. L.

.

Fig. 7� \]/S� \]� B2NÇ � ���� #$FS� �Ø

�Æ( �~�ß,. /S�$ ü� �~� '�# âI. H%m7

���� #$FS &�©� '�# #$FS µ��M ���

� #$FS� '�# #$FS )� 4� }( {©+=, '�# â

I. HD �9Ó �´�©,. ���� #$FS \]� /S@ 5oC

�7 20oC%1 µ�GÐ ¤� ̈0.6 kg N/m3«d�7 1.8 kg N/m3«d�

K�� µ�� \m� 20oC�7 30oC� µ�GÐß( > 1.8 kg N/

m3«d�7 2.2 kg N/m3«d� µ��©,. . 17 E®� 3� 4.

���� #$FS� Q� /S�2�7 \]FS=� �� �6%

� |� /S�2�7 � a ��7� <Ò# �q#� �� �

6%� >T.,.

4. �

�� 0.613 mm U�Îf9@ � f9 k^� A<� X�uvw �

a \]�@ �� �$� I<�M � a( j�G�,. X��F5

���� N�FS(�f� �g)@ �;I+� µ�GÐ& \]� ³8

¨ 130� Ó� 140µm �Ý� � a. j�%ß,. /S 30oC - K

xy X��F 6.34 cm/s�7 5.0 kg N/m3«d� ���� #$FS@

�ß,. � a j� ��� ���� #$!"� "� j�%& '

�# âI. ���©+= '�# #$!" ü�� j�%& ���

�. �#+� .8 #$%ß,. ���� #$FS@ �6� "hÀ

9 20oC .K� cdI |� /S�7 <Ò#� � a � �

�q#.� 20oC .�� Q� /S�7 \]FS=?( qÀ�©,.

� �

Ë ¦i �L�M*NåB 1997OS 9�X�5P �M¦iè�c

(E00543)� �� �,%ß+= .� &A���,.

����

1. Siegel, M. H. and Robinson, C. W.: Chem. Eng. Sci., 47, 3215(1992).

2� Heijnen, S. J., Mulder, A., Weltevrede, R., Hols, P. H. and v

Leeuwen, H. L. J. M.: Chem. Eng. Technol., 13, 202(1990).

3. Benniger, R. W. and Sherrard, J. H.: J. WPCF, 50, 2132(1978).

4. Adams, Jr., C. E. and Eckenfelder, Jr., W. W.: J. WPCF, 49, 413(1977).

5. Prakasama, T. B. S., Robinson, W. E. and Lue-Hing, C.: Proc. I

Waste Conf., Purdue University, Lafayette� 745(1977).

6. Stensel, H. D., Brenner, R. C., Lee, K. M., Melcer, H. and Rakne

K.: J. Envir. Engng, 114, 655(1988).

7. Mueller, R.: in B. Mattock(Ed.), “New Processes of Waste Tre

ment and Recovery,” Ellis Horwood, Chichester(1978).

8. Haug, R. T. and McCarty, P. L.: J. WPCF, 44, 2086(1972).

9. Jeris, J. S., Owens, R. W. and Hickey, R.: J. WPCF, 47, 816(1977).

10. Tsunoda, S., Shimada, K. and Aoyagi, Y.: Kagaku Kogaku, 40, 402(1976).

11. Tanaka, H., Uzman, S. and Dunn, I. J.: Biotechnol. Bioeng., 23, 1683

(1981).

12. Cooper, P. F. and Williams, S. C.: Wat. Sci. Tech., 22, 431(1990).

13. Gauntlett, R. B.: in P. F. Cooper and B. Atkinson(Eds.), “Biologic

Fluidized Bed Treatment of Water and Wastewater,” Ellis Horwood,

Chichester, 48(1981).

14. Tijhuis, L., van Loosdrecht, M. C. M. and Heijnen, J. J.: Wat. Sci. Tech.,

26, 2207(1992).

15. Heijnen, J. J., van Loosdrecht, M. C. M., Mulder, R., Weltevrede,

and Mulder, A.: Wat. Sci. Tech., 27, 253(1993).

16. Hem, L. J., Rusten, B. and Odegaard, H.: Wat. Res., 28, 1425(1994).

17. Cheng, S.-S. and Chen, W.-C.: Wat. Sci. Tech., 30, 131(1994).

18. Wijffels, R. H., de Gooijer, C. D., Kortekaas, S. and Tramper, J.: Biotech-

nol. Bioeng., 38, 232(1991).

19. Monbouquette, H. G., Sayles, G. D. and Ollis, D. F.: Biotechnol. Bioeng.,

35, 609(1990).

20. Heijnen, J. J., van Loosdrecht, M. C. M., Mulder, A. and Tijhuis, L

Wat. Sci. Tech., 26, 647(1992).

21. Shin, S. H., Suh, I.-S. and Chang, I. Y.: Korean J. Biotechnol. Bioeng., 16,

337(2001).

22. “Water Analysis Handbook,” 2nd ed., Hach, Loveland(1992).

23. Heo, C. H. and Suh, I.-S.: Theories and Applications of Chem. Eng,

7, 4015(2001).

24. Heijnen, J. J., Hols, J., van der Lans, R. G. J. M., van Leeuwen, H

J. M., Mulder, A. and Weltevrede, R.: Chem. Eng. Sci., 52, 2527(1997).

25. Denac, M., Uzman, S., Tanaka, H. and Dunn, I. J.: Biotechnol. Bioeng.,

25, 1841(1983).

26. Garrido, J. M., van Benthum, W. A. J., van Loosdrecht, M. C. M

and Heijnen, J. J.: Biotechnol. Bioeng., 53, 168(1997).

27. Suh, I.-S.: HWAHAK KONGHAK, 39, 368(2001).

28. Suh, I.-S.: HWAHAK KONGHAK, 39, 501(2001).

29. Wanner, O. and Gujer, W.: Biotechnol. Bioeng., 28, 314(1986).

Fig. 7. Effects of temperature on the volumetric ammonium removalrates in ABR-II.

���� �40� �2� 2002� 4�