Vortex Shedding From Oscillating Bluff Bodies

  • View
    213

  • Download
    0

Embed Size (px)

Text of Vortex Shedding From Oscillating Bluff Bodies

  • 8/16/2019 Vortex Shedding From Oscillating Bluff Bodies

    1/28

    nn. Re Fluid Mech 984 6 9222 rht ©  b l eview c ll rih reerved

    VRTE SHEDDING FRM SCILAI BU BDIS P W  epatent of Aeonautcs, Ipeal ollee, London W7 , Enland

     NTRUTN hen paced  a ud stea, soe bodes eneae sepaaed o ove a subsantal popoon of he suface and hence can be classed as blu n shapeded bu bodes, sepaaon s ed  he e ede,  whee on blu bodes th contnuous suface cuvaue the locaton o sepaaon depends boh on he shape o the body and he sae o he  bounday laye At lo Reynolds nubes hen sepaaon s occus,

     he o aound a blu body eans sable bu as he Reynolds nube s  nceased a ccal alue s eached beyond hch nstabltes deelop Thee e  ed o ozed uned we oon d oaned oon o a cobnaon of bo Reula voe sheddn he subect of ths acle s a donant featue of odensonal blubody  akes and s pesent espece of hethe he sepaatn bounday layes ae lana o ubulent It has been the subect o eseach o oe than a  centuy and any hundeds o papes hae been tten In ecent yeas voe shedn has been the opc of Euoech eetns epoed on by M  Maull 7 d Beaan  Gh 80 and  oehee eew h ee udee  Bee  We 7

    Voe seddn and eneal ae tubulence ndue ucuatn pes sues on the suface o he enean blu body and f he body s exble  hs can cause oscllaons Oscllaons eced by ote sheddn ae  usually n  decon noal o ha of he fee sea and apludes as  lae as .5 o 2 od dee ay e eoded  ddon o he eneatn body any othe bodes n s ake ay be foced no oscllaon

    Boadband foce ucuaons, nduced by tubuence poduced n he oaound a blu body, aely lead o oscllatons as seee as hose caused by oe hedd Soe o o eod n, uh h ove

    5  006648/84/0505$0200

     A  n  n  u  . R

     e  v  .  F  l u  i d  M  e  c  h  .  1  9  8  4  . 1  6  : 1  9  5  - 2 2  2  .  D  o  w  n  l o  a  d  e  d  f r  o  m  w  w  w  . a  n  n u a

     l r  e  v  i e  w  s .  o  r g

        A   c   c   e   s  s   p   r  o   v    i   d   e    d   b

      y    R   o   y   a    l    M   e    l   b   o   u   r  n   e    I  n   s   t    i   t   u    t  e   o   f   T

      e   c    h   n   o    l  o   g   y    (   R    M    I   T    )   o   n    0    5    /   2    8    /   1   6  .

       F   o   r   p   e   r  s   o   n   a    l   u   s  e   o   n    l  y  .

  • 8/16/2019 Vortex Shedding From Oscillating Bluff Bodies

    2/28

    96 BEARMAN

     ents o  blu boy eelop etn oes n phse ith the boy's veloity y lso le to le oslltion pltues llopn s one  ele o n instblity heeby soe blu boies n ett eney o  u ste n sustin oslltons n ths eie only vbtons use

     by vote shen e onsee o  ulle susson o oinue btons the ok o lens (1977 s eoene elent sueys o otenue oslltons o blu boies hve been

     itten b kinson (1974 n Sky (1979 It is hoe tht the  esent e ill oleent these evies n ve n ootunity to eonse soe o the es pesente n the n the ht o oe eent

     eelopents The oty o peous epeent ok n ths e s elte to ote shen o u ylnes Mthetl oels

     eeope to peit voteinue oslltons e so nly onene

     ith this boy she hs eoupton ith the ul ylne s uste on  nube o uents the ost pesusive e tht it is n  pont stuul o n s onnnly esone by Mokovn (19 tht t pesents  henn unentl poble o u  ehnsts In the pesent ee hoee ote shen o  btn blu boes o ous os s onsee n oe to enty  oon etues e bein th  susson o ote shen o e  blu boes

     IXE BLU BIE Althouh thee is no olete soluton to the  ble o vot shen  e hve  esonbly le nsht nto the ehns n oels e  ontinuousl bein eveloe to esibe it thetilly e 966 hs en n eteely useul physl espton o the ehns o the  ototon eon A key to n the oton o  otesteet  ke s the utul nteton beteen the to septn she yes It s  postulte by e (196 tht  vote ontnues to o e by  iultion o its onnete she lye untl t s ston e�ouh to  he oosn she lye oss the ne ke he ppoh o opositely sne otty n suent onentton uts o uthe supply o ulton to the on ote hh s then she n oves o  onste

    es voteoton oel s illustte n ue 1 by  seth shoin n instntneous lent lne tten ntinent plys n  ipont ole n vote oton n iue 1 ntes sevel

     entnent poesses ntne u ()  s enue nto the on ote he ( ns ts y nto the eelopn she lye The neke eon beteen the bse o te boy n the on vote oslltes in

     A  n  n  u  . R

     e  v  .  F  l u  i d  M  e  c  h  .  1  9  8  4  . 1  6  : 1  9  5  - 2 2  2  .  D  o  w  n  l o  a  d  e  d  f r  o  m  w  w  w  . a  n  n u a

     l r  e  v  i e  w  s .  o  r g

        A   c   c   e   s  s   p   r  o   v    i   d   e    d   b

      y    R   o   y   a    l    M   e    l   b   o   u   r  n   e    I  n   s   t    i   t   u    t  e   o   f   T

      e   c    h   n   o    l  o   g   y    (   R    M    I   T    )   o   n    0    5    /   2    8