Vana Jelii‡, diplg

  • View
    41

  • Download
    10

Embed Size (px)

DESCRIPTION

ACROSS Colloquium Combined power management methods in wireless networks of energy- hungry sensors. Vana Jeličić, dipl.ing. January 18, 2013. Content. Research area WSNs – distributed event detection Communication energy  Wake-up radio Energy -hungry sensors - PowerPoint PPT Presentation

Text of Vana Jelii‡, diplg

  • ACROSS Colloquium

    Combined power management methods in wireless networks of energy-hungry sensors

    Vana Jelii, dipl.ing.January 18, 2013

  • ContentResearch areaWSNs distributed event detection Communication energy Wake-up radioEnergy-hungry sensorsVideo surveillance and smart gas monitoringHierarchical, adaptive, event-driven sensingMotivation and challengesProblem approachTo-date resultsFuture researchActivities of AIG18. 01. 2013.* /27

  • Research area Wireless sensor networksWireless sensor nodeEnergy-efficiencyCommunication!

    Distributed sensing systemsEvent detection, alarm generationVideo surveillance, gas monitoringEnergy-hungry sensorsPower managementComm. unit (RX, TX, idle state cca 20 mA!)Sensing unit18. 01. 2013.* / 27

  • Power managementDuty-cycling (D)Reducing activity: sensors & radio

    18. 01. 2013.* / 27Maximal reaction timeCritical event arrival worst casetactive D = tactive / TENERGYLATENCY

  • Eliminating radio idle time18. 01. 2013.Classical WSN problem! One-channel wake-up radioWake-On Radio (WOR) radio periodically wakes up from sleep mode and listens for incoming packets without MCU interaction. TI CC1000, CC1101, CC1100E, CC2500, CC430

    MAC: B-MAC, S-MAC, X-MAC...

    Optimization delay energy trade-off

    * / 27

  • Wake-up receiver (WURx)18. 01. 2013.Two-channel wake-up radioUltra-low-power; Continuously monitoringNo idle listening on main radioLin, Rabaey and Wolisz; Power-efficient rendez-vous schemes for dense WSNs, 2004,
  • WURx prototypes* / 27Jelicic et al. Analytic Comparison of Wake-up receivers for WSNs and Benefits over the Wake-on Radio Scheme. PM2HW2N 2012.18. 01. 2013.

    AuthorYearf [GHz]Rate [kbps]S [dBm]d [m]P [uW]ADl [ms]Implement.Le Huy 20082,450 -50 NA20 YNAsimulationYu20082,4100 -75NA53 NNAsimulationLangevelde20090,86845-89 NA2400 N1,36130 nmPletcher 20092 100 -72 NA52 NNA90 nmDurante2009 2,4 100 -53 NA12,5 Y, FPGANA120 nm Gamm 20100,868 NA-52 402,78 Y13120 nmDrago20102,4 250 -87 NA415 NNA65 nm 500 -82 NAFraunhofer20100,868 1 -60 3033 Y32180 nm Huang20102,4 100 -64 NA51NNA90 nm 0,915100 -75 NAHuang20110,915 10 -86 NA123NNA90 nmMarinkovic 20110,433 5.5 -51 100,270 N, (MCU)9OTS SMDShih 20110,9165 0.370 -122 10001153 YNAOTSHambeck 20110,868 100-71 3042,4Y40-110130 nm

  • WURx prototypes (2)

    Commercially available (LF, 125 kHz)AustriamicrosystemsAtmel18. 01. 2013.* / 27

    Addressing requiredAddressing not required

  • WURx applications

    Applications with WURx proposalsBuilding automation 1, 3, 4Healthcare 2

    No energy vs. latency trade-off!18. 01. 2013.Still not used in WSNs!very promising!* / 271) Zhang et al. Improving Energy-Efficiency in Building Automation with Event-Driven Radio. WCSP 2011.2) Marinkovic et al. Power Efficient Networking Using a Novel Wake-up Radio. PervasiveHealth 2011.3) Gamm et al. Low Power Wireless Sensor Node for use in building automation. WAMICON 2011.4) Gamm et al. Smart Metering Using Distributed Wake-up Receivers. I2MTC 2012.

  • Sensing power management

    Fixed duty cycle energy wastingAdaptive duty cycleWake-up latency: ton twakeup + tacquire18. 01. 2013.* / 27Event-drivenContext-awarenessEnergy-awareness

  • Heterogeneous WSNs for event detection Different sensing modalitiesHierarchy ApplicationsVideo surveillance: Camera + PIRGas monitoring: Gas sensor + PIRHigh-consuming sensors

    18. 01. 2013.* / 27

  • Smart video surveillance18. 01. 2013.Reducing transmitted data size Hierarchical, multi-tier, multimodalPyroelectric InfraRed (PIR) sensorEnergy-aware decisions* / 27

  • Image transmissionTransmission of large amount of data Only when really necessaryIncreasing tactiveZigBee not intended to that Stack modificaton 1Image fragmentation maximal frame fillingDisabled MAC acknowledgment APL layer control

    Today low power WiFi modulesAvoiding transmitting large amounts of data only event

    18. 01. 2013.* / 271) Jelicic et al. Reducing Power Consumption of Image Transmission over IEEE802.15.4/ZigBee Sensor Network. I2MTC 2010.

  • Existing work multimodal video networksPIR sensor mounted on the camera board 1, 2, 3Same FOV; Dynamically changed sensitivity

    Multi-tier Multimodal WSNs 4, 5, 6, 7, 8, 9

    18. 01. 2013.* / 271) Magno et al. A Solar-powered Video Sensor Node for Energy Efficient Multimodal Surveillance. DSD 2008.2) Magno et al. Adaptive Power Control for Solar Harvesting Multimodal Wireless Smart Camera. ICDSC 2009.3) Magno et al. Multimodal abandoned/removed object detection for low power video surveillance systems. AVSS 2009.

    4) Kulkarni et al. SensEye: A Multitier camera sensor network. ACM Multimedia 2005.5) Prati et al. An Integrated MultiModal Sensor Network for Video Surveillance. VSSN 2005.6) He et al. Vigilnet: An integrated sensor network system for energy efficient surveillance. ACM Trans. Sen. Netw. 2006.7) Lopes et al. On the Development of a Multi-tier, Multimodal Wireless Sensor Network for Wild Life Monitoring. IFIP Wireless Days 2008.8) Magno et al. Energy Efficient Cooperative Multimodal Ambient Monitoring. EuroSSC 2010.9) Jelicic et al. An energy efficient multimodal wireless video sensor network with eZ430-RF2500 modules. ICPCA 2010.

  • Heterogeneous WVSN18. 01. 2013.Tier 1PIR nodesCoordinatorCamera + PIR onboardTwo-tier networkWOR duty-cycling!

    wakeupHOMOGENEOUS NWKHETEROGENEOUS NWKTier 2Camera nodes* / 27Two-tier networkWURx NO duty-cycling

    Further reducing cameras activitiesFurther reducing radio activities

  • Smart gas monitoringMetal Oxide Semiconductor (MOX)Small form factorFast responsePower-efficientHeater Resistance change

    Fabrication field System-level fieldTWO SEPARATED AREAS BY NOW!18. 01. 2013.* / 27

  • Related workFabrication field 1, 2Pulse mode (duty-cycling)Temperature dependenceWake-up latency9 mWSystem-level application 3, 4, 5Duty cycle Still high energy consumption18. 01. 2013.* / 271) Sayhan et al. Discontinuously operated metal oxide gas sensors for flexible tag microlab applications. IEEE Sensors J. 2008.2) Rastrello et al. Thermal Transient Measurements of an Ultra-Low-Power MOX Sensor. J. of Sensors 2010.

    3) Ivanov et al. Distributed smart sensor system for indoor climate monitoring. KONNEX Sci. Conf. 2002.4) Postolache et al. Smart Sensors Network for Air Quality Monitoring applications. IEEE Trans. on Instrum. and Meas. 2009.5) Choi et al. Micro sensor node for air pollutant monitoring: HW and SW issues. Sensors 2009.6) De Vito et al. Wireless Sensor Networks for Distributed Chemical Sensing: Addressing Power Consumption Limits With On-Board Intelligence. IEEE Sensors J. 2011.

  • Energy consumption reduction on 3 levels:System-level application our solution18. 01. 2013.Sensor levelduty-cycling gas sensorearly detection of safe conditionsNode levelultra low sleep current (8 uA)duty-cycling sensor nodepeople presence detection (modifying duty cycle)Network levelmessages from neighbor nodes (modifying duty cycle)SensorNodeNetwork1) Jelicic et al. Design, Characterization and Management of a WSN for Smart Gas Detection. IWASI 2011. 2) Jelicic et al. Context-Adaptive Multimodal WSN for Energy-Efficient Gas Monitoring. IEEE Sensors J. 2012.* / 27

  • Early detection of safe conditions18. 01. 2013.R [k]Clean air after long inactive timeClean air after short inactive timeContaminated air after short inactive timethresholdAB47100009000800070001x10-11x1001x1011x1021x10301000200030001x10-11x1001x1011x1021x103time [ms]Stable difference between clean air and contaminated air signals4000500060000200* / 27

  • Adaptive sampling rate (t_ON = 1s)18. 01. 2013.* / 27

  • Quality ratio: node lifetime / worst case reaction time18. 01. 2013.* / 27

  • Motivation and challengePolicies to reduceCommunication energySensing energyCombined methodsReducing amount of wirelessly transmitted dataadaptive sampling, event detectionReducing radio idle consumptionWake-up receiver

    GoalContext- and energy-awarenessGood QoS

    18. 01. 2013.* / 27

  • To-date work and resultsProposed energy saving policies in WVSN & WGSN 1, 2, 5multimodal (PIR nodes); adaptive duty-cyclingReducing communication energy 3, 6Extensive study and comparison of WURx solutions 4

    18. 01. 2013.* / 271) Jelicic et al. Design, Characterization and Management of a WSN for Smart Gas Detection. IWASI 2011. 2) Jelicic et al. Context-Adaptive Multimodal WSN for Energy-Efficient Gas Monitoring. IEEE Sensors J. 2012.3) Jelicic et al. Reducing Power Consumption of Image Transmission over IEEE 802.15.4/ZigBee Sensor Network. I2MTC 2010.4) Jelicic et al. Analytic Comparison of Wake-up Receivers for WSNs and Benefits over the Wake-on Radio Scheme. PM2HW2N 2012.5) Jelicic et al. An energy efficient multimodal wireless video sensor network with eZ430-RF2500 modules. ICPCA 2010.6) Jelicic et al. MasliNET A Wireless Sensor Network based Environmental Monitoring System. MIPRO 2011.

  • AIG WSN activitiesSensors and sensor interfacesHW (PCB) designMeasurementsEmbedded systems MicrocontrollersFPGAFirmwareWireless sensor networksPower managementSignal processing

    ACTIVITIESEnvironmental monitoringAsthma monitoringWheeze detectionAir quality monitoringBerth monitoringFall detection

    APPLICATIONS18. 01. 2013.* / 27

  • Hvala na panji!18. 01. 2013.

    *********