24
i UPGRADE FMS200: SHAFT SUPPLY MODULE THOUGH HUMAN MACHINE INTERFACE LEE HO CHUNG This report is submitted in partial fulfilment of the requirements for the award of Bachelor of Electronic Engineering (Industrial Electronics) with Honours Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka April 2010

UPGRADE FMS200: SHAFT SUPPLY MODULE THOUGH …eprints.utem.edu.my/3028/1/Upgrade_FMS200_-_Shaft_Supply_Module... · daripada ini, secara asalnya, Sistem ini juga kekurangan pilihan

Embed Size (px)

Citation preview

i

UPGRADE FMS200: SHAFT SUPPLY MODULE THOUGH HUMAN MACHINE INTERFACE

LEE HO CHUNG

This report is submitted in partial fulfilment of the requirements for the award of Bachelor of Electronic Engineering (Industrial Electronics) with Honours

Faculty of Electronic and Computer Engineering

Universiti Teknikal Malaysia Melaka

April 2010

ii

UNIVERSTI TEKNIKAL MALAYSIA MELAKA

FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN

PROJEK SARJANA MUDA II

Tajuk Projek : UPGRADE FMS200: SHAFT SUPPLY MODULE WITH HUMAN MACHINE INTERFACE

Sesi Pengajian : 0 9 / 1 0

Saya LEE HO CHUNG mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut: 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi

pengajian tinggi.

4. Sila tandakan ( √ ) :

SULIT*

*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

TERHAD**

**(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh:

_____________________________________________ ___________________________________

(TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA)

Tarikh: ……………………….. Tarikh: ………………………..

iii

“I hereby declared this report is result of my own effort except for works that have been cited clearly in the references.”

Sinature : ……………………………

Name : LEE HO CHUNG

Date : 30 APRIL 2010

iv

“I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering

(Industrial Electronics) with Honours.”

Signature : ……………………………

Name : YUSMARNITA BINTI YUSOP

Date : 30 APRIL 2010

v

Dedicated to my family especially my parents, brothers and to all of my friend.

vi

ACKNOWLEGEMENT

I wish to express sincere appreciation to Universiti Teknikal Malaysia Melaka (UTeM) for giving me a chance to further my study on Bachelor of Degree in Industrial Electronics in Faculty of Electronic and Computer Engineering (FKEKK).

Despite of that, I would take this opportunity to express my profoundest gratitude and deepest regards to all those who gave me the possibility to successfully complete this PSM. I am deeply indebted to my Project Supervisor Puan Yusmarnita Binti Yusop and I wish to express a million thanks for her exemplary guidance, monitoring and constant encouragement throughout the development of the project.

I would like to express my gratitude and appreciation to the following people for their essential helps, guidance and supports in making my PSM’s project more successful. They are Mr. Erik, and Mr. Eugene from SMC Pneumatic Sdn. Bhd. Mr. Muhamad Syahrizan and to all my lecturers, panels, technicians, course mates and friends who are directly or indirectly involved in my PSM’s project.

vii

ABSTRACT

For FMS-200 system, each of the workstations is comprised of a structure based on

aluminum profiles where the elements to carry out the corresponding process are located.

The front part includes the control unit which consists of the control panel and the PLC

selected by the user. The conventional FMS200 system is controlled by using push button

control panel which is inconvenient in term of controllability and appearance. Besides

that, the system is also lack of options for material shaft selection and will insert two

kinds of the shafts into the assembly which contributes to the limitation of the

performance of the system. This particular project is to upgrade the FMS200 with the

touch screen control panel and enhance the system with ability to carry out material

selection for the shaft. The upgrade plc programming code with material selection

function is developed with CX-programmer software. While the Human machine

interface is create by using CX-Designer. This front panel provides user interface, which

is used to operate the system with multiple options such as start or stop operation, auto or

manual operation, reset operation, and material selection option. In order to conduct

interfacing between the PLC controller and the Touch screen control panel, an interface

card is required to be installed to the system.

viii

ABSTRAK

Untuk sistem FMS-200, setiap stesen kerja melaksanakan bahagian yang tertentu dimana

setiap hasil pemasangan daripada stesen yang tertentu akan dihantar ke stesen yang

seterusnya untuk kerja pemasangan yang tertentu. Secara asalnya, sistem ini dikawal

melalui suis tekan tutup pada papan pengawalannya. Akan tetapi, jenis pengawalan

secara ini adalah kurang cekap dari segi pengawalan serta dalam segi kecantikan. Selain

daripada ini, secara asalnya, Sistem ini juga kekurangan pilihan untuk memilih jenis

“shaft” iaitu sama ada jenis aluminium ataupun jenis nylon. Dimana ia akan memasuki

kedua-dua jenis shaft ke dalam assembly. Dalam projek ini, sistem ini akan di naik taraf

dengan produk teknologi terkini iaitu dengan “Touch screen control panel”. Selain

daripada ini, dalam projek ini aturcara untuk membolehkan pengguna membuat pilihan

untuk jenis “shaft” yang dimasukan dalam sistem juga telah dituliskan dengan

menggunakan CX- Programmer. Manakala sistem pengawalan untuk “touch screen”

akan dicipta dengan menggunakan aturcara “CX-Designer”. Sistem pengawalan ini

membolehkan pengguna mengawalkan sistem dengan pilihan seperti operasi start atau

stop, operasi auto atau manual, operasi reset, dan jenis shaft pemilihan. Demi tujuan

perantaraan antara Pengawal PLC dan “Touch Screen Control Panel” satu kard

perantaraan dipasangkan pada mesin.

ix

CONTENT

CHAPTER CONTENT PAGE

ACKNOWLEDGEMENT

ABSTRACT

ABSTRAK

CONTENT

LIST OF TABLE

LIST OF FIGURE

vi

vii

viii

ix

xii

xiii

I INTRODUCTION

1.1 Introduction to FMS 200 system

1.2 Project Objective

1.3 Problem Statement

1.4 Scope of Work

1.5 Report Structure

1

3

4

4

5

II LITERATURE REVIEW

2.1 Introduction

2.1.1 Flexible Manufacturing System 200

2.1.2 Shaft Supply Module

2.2 Programmable Logic Controller (PLC)

2.2.1 PLC Block Diagram

2.2.2 Logic Instruction (Mnemonic)

2.2.3 Logic Instructions and Graphic Programming

2.3 Pneumatic

2.4 Pneumatic Cylinder

6

7

9

12

15

16

17

18

19

x

2.4.1 Operation

2.5 Pneumatic Valve

2.6 Pressure Gauge

2.7 Sensor

2.7.1 Capacitive Sensor

2.7.2 Inductive Sensor

2.7.3 Photoelectric Sensor

2.7.4 Potentiometer

2.7.5 Limit Switch

2.7.6 Reed Switch

2.8 Touch Screen

2.8.1 Resistive Touch Screen

2.8.2 Capacitive Touch Screen

2.8.3 Surface Acoustic Wave Touch Screen

2.8.4 Comparison between the Touch Screen

Technologies

2.9 CX-Programmer Software

19

20

23

23

24

26

28

31

32

33

34

34

35

36

36

37

III PROJECT METHODOLOGY

3.1 Project Planning

3.2 Literature Review

3.3 Study the Programming Language

3.4 Familiarize the FMS200: Shaft Selection Module

3.5 Troubleshooting

3.6 Finishing

39

41

42

43

44

41

IV RESULT AND ANALYSIS

4.1 Introduction of Result and Analysis

4.1.1 Ladder Diagram for type of shaft supply

selection

4.1.2 Manual selection operation for each

45

45

53

66

xi

subsystem

4.1.3 Counter operation

4.2 Virtue Control Interface for Touch Screen

4.2.1 Main Control Interface

4.2.2 Main Menu Interface

4.2.3 Manual Selection Interface

4.2.4 Sensor Signal Interface

4.2.5 Output Signal Interface

4.2.6 Counter Output Interface

4.3 Discussion

71

71

72

73

74

75

76

77

V CONCLUSION AND SUGGESTIONS

5.1 Conclusion

5.2 Suggestion

78

79

REFERENCES

APPENDIX

80

81

xii

LIST OF TABLE

NO TITLE PAGE

2.1 Differentials between PLC and PIC 13

2.2 Differentials between PLC and Conventional Controller 14

2.3 Mnemonic Code 16

2.4 Basic Instruction 17

2.5 Different between Pneumatic system and Hydraulic system 22

2.6 List of feature and figuration Photoelectric 30

xiii

LIST OF FIGURE

NO TITLE PAGE

1.1 Block Diagram 2

2.1 FMS200 System 8

2.2 Index Plate 9

2.3 Feeding Module 9

2.4 Shaft Verification Module 10

2.5 Evacuation Module 10

2.6 Shaft Supply Module 11

2.7 PLC Block Diagram 17

2.8 Pneumatic Cylinder 19

2.9 Two Block Valve Diagram 21

2.10 Capacitive Sensor 24

2.11 Inductive Sensor 27

2.12 Photoelectric Sensor 28

2.13 Limit Switch 32

2.14 Reed Switch 33

3.1 Flow Chart Diagram 37

4.1 Ladder Diagram for Section 4 (Evacuation Process) 45

4.2 Ladder Diagram for Section 4 (Control path for Evacuation

and Insertion)

47

4.3 Evacuation module carry the unwanted shaft from the rotary

plate

49

4.4 Ladder Diagram for section 2 (Manual Selection) 57

4.5 Ladder Diagram for section 3 (Manual Selection) 63

xiv

4.6 Ladder Diagram for section 5 (Manual Selection) 65

4.7 Ladder Diagram for section 5 (Counter Data) 70

4.8 Main Control Interface 71

4.9 Main Menu Interface 72

4.10 Manual Selection Interface 73

4.11 Sensor Signal Interface Part 1 74

4.12 Sensor Signal Interface Part 2 74

4.13 Output Signal Interface Part 1 75

4.14 Output Signal Interface Part 2 75

4.15 Counter Output Data Interface 76

CHAPTER I

INTRODUCTION

In this chapter, discusses regarding the introduction of FMS200 and describing

the technique used to upgrade the shaft selection option by using CX-Programmer. The

block diagram gave the general ideas on this project. In addition, objectives, problem

statement of the project and the report structure is included as well.

1.1 Introduction to FMS 200 system

The purposes for this project are to upgrading the FMS200 with the touch screen

control panel and enhance the system with ability to carry out material selection for the

shaft. The conventional FMS200 system is controlled by using push button control panel

which is inconvenient, lack of description about the operation of the system, high of cost

maintenance, and having a lot of wiring. Besides that, the system is also lack of options

for material shaft selection and will insert two kinds of the shafts into the assembly which

contributes to the limitation of the performance of the system.

First of all, the CX-programmer software is used to create a plc programming

code. The function of this new programming code is to enable the user to select either

one type of the shaft to be inserted to the assembly while evacuate the other. In addition

2

to that, the CX- Designer software is also used to construct a front panel of virtual

instrument. This front panel provides user interface, which is used to operate the system

with multiple options such as start or stop operation, auto or manual operation, reset

operation, and material selection option. In order to conduct interfacing between the PLC

controller and the Touch screen control panel, an interface card is required to be installed

to the system. Thus by upgrading the systems to a LCD touch screen control panel, it is

now able eliminate the limitation for the conventional control panel and enhances the

performance of the system.

Figure 1 : Block Diagram

FMS 200: Shaft Selection Module

PLC Controller

Interface LCD Touch Panel

(CX-Designer)

Personal Computer (CX- Programmer)

3

1.2 Project Objectives

There are several objectives that need to be achieved at the end of PSM. The

objectives are listed as below:

i. To upgrade the system with LCD Touch Screen control panel which will

increases flexibility of the system, reduces the wiring as well as the space

requirement for the control panel.

ii. To enhance the system with ability to conduct reprogramming without

consideration in hardware input.

iii. To upgrade the system with ability option to carry out material selection for shaft

supply.

iv. To reduce the cost of maintenance of conventional push button control panel.

v. To provide a medium for the user to collect the information data regarding the

performance of the system such as total output, total reject and etc.

vi. To enable the user to understanding the operation of the system with more easily

way though manual selection.

vii. To provide a platform for user to verify the input signal and output signal and also

as a platform for training purpose.

4

1.3 Problem Statement

The FMS-204, which is the fourth station from the SMC-FMS-200 Training

module, is mounted with the inductive and capacitive detector to detect the material of

the shaft. However, it is unable to evacuate the undesired material from the rotation plate

and hence, it will insert two different types of material shafts into the assembly. This is

mainly due to the conventional control program lack of function to carry out a selection

of shafts.

The conventional control panel consists of a start push button, stop push button, a

reset push button, a selective switch to choose either continuous cycle or single cycle, and

a push button meant for emergency stop. This control panel is lack of description about

the operation of the system, and consist a lot of wiring.

1.4 Scope of Work

The scope of work in this project is started as given:

1. Familiarization on the FMS200 operation.

2. The PLC Programming Code is required to be modified in order to enable

selection of material of shafts using CX-Programmer from CX-One Software.

3. NS-5 has been chosen as the LCD Touch screen to replace the conventional push

button control panel.

4. CX-Designer from CX-One software is used to create the human machine

interface.

5. Interface Card from Omron Manufacturer is used to communicate between the

PLC and the LCD Touch screen.

5

1.5 Report Structure

This thesis is a document report of the ideas generated, the theories and concepts

applied, the activities performed and the final product of this project produced. The thesis

consists of five chapters and each chapter is described as below:

Chapter 1, the introduction of FMS200 and describing the technique used to

upgrade the shaft selection option by using CX- Programmer. The block diagram gave

the general ideas on this project. In addition, objectives, problem statement of the project

and the report structure is included as well.

Chapter 2, the background study of the project along with the literature review is

performed and document about the theoretical concept applied in completing the project.

Background studies on the PLC and operation method are stated throughout this project.

Chapter 3 is the introduction of the methodology for the project, design flow and

construction of the project. Brief description is given about each procedure in the

completion of the project.

Chapter 4 shows overall result and discussion of the result on current project. The

developed of material selection of shaft on FMS200 shaft supply module, the created

electric diagram block diagrams about the project are shown in order to strengthen the

result.

Chapter 5 is the final part of the thesis which concludes the Final Year Project.

This chapter includes the application of the project and the recommendation that can be

implemented for future references.

CHAPTER II

LITERATURE REVIEW

In this chapter, discusses regarding the background study of the project along with

the literature review is performed and documented about the theoretical concept applied

in completing the project. Background studies on the PID controller and AC motor

operation method are stated throughout this project.

2.1 Introduction

A flexible manufacturing system (FMS) is a manufacturing system in which there

is some amount of flexibility that allows the system to react in the case of changes,

whether predicted or unpredicted. This flexibility is generally considered to fall into two

categories, which both contain numerous subcategories.

The first category, machine flexibility, covers the system’s ability to be changed

to produce new product types, and ability to change the order of operations executed on a

part. The second category is called routing flexibility, which consists of the ability to use

multiple machines to perform the same operation on a part, as well as the system’s ability

to absorb large-scale changes, such as in volume, capacity, or capability.

7

Most FMS systems comprise of three main systems. The work machines which

are often automated CNC machine are connected by a material handling system to

optimize parts flow and the central control computer which controls material movements

and machine flow.

The main advantages of an FMS are its high flexibility in managing

manufacturing resources like time and effort in order to manufacture a new product. The

best application of an FMS is found in the production of small sets of products like those

from a mass production.

An advantage of this system is:

i. Productivity increment due to automation.

ii. Preparation time for new products is shorter due to flexibility.

iii. Saved labour cost, due to automation.

iv. Improved production quality, due to automation.

v. However, it is not always necessary that on increasing flexibility productivity also

increases.

2.1.1 Flexible Manufacturing System 200

FMS is a flexible automation cell that allows the introduction of variations in the

posts of which it is comprised towards adapting to the different requirements of

companies and training centres. The system itself has eight stations involving a whole

series of feeding, handling, verification and loading operation worked out using

components from different technologies for smooth operations.

In fact, there are two alternative forms of transferring the final product being

assemble in the different station by using a meter ling bidirectional conveyor belt that

able to attach 8 workstations or using modular conveyor belts. These 8 stations are stated

below.

8

i. Body Feed-Positioning

ii. Pick and Place Bearing

iii. Press Bearing in Hydraulically

iv. Pick and Place Shaft and verify

v. Pick and Place Cover

vi. Fit Screws

vii. Robot Screw Driving

viii. Unloading, storage and palletization of final assembly.

Basically, the station can be easily extracted from the cell so that work can be

done autonomously. Apart from that, each of the station carries out one part of the

assembly process by using various technologies used in automated industry.

Figure 2.1: FMS200 System

9

2.1.2 Shaft Supply Module

In the fourth workstation, the shaft is assembled on the product in process coming

from the previous station. The two types of material of which they are manufactured

which is aluminium and nylon increase the number of possible finished products that are

assembled as well as increasing the didactic capacities of the FMS200.

The distribution around an index plate from the different operation uses an

oscillating pusher cylinder and two stopper cylinders which work alternatively.

Figure 2.2: Index Plate Figure 2.3: Feeding Module

As the shafts remain stored in a gravity feeder, they are extracted and left in the

first position of the revolving plate by using a steeper feeding system. Since the shaft is

not symmetrical, it must therefore be positioned over the assembly in a specific position.

In order to do so, the height is measured by a pneumatic cylinder together with a

magnetic detector.

If the shaft is detected to be incorrectly positioned by the previous module a

handling device has to correct it by rotating it with 180˚ rotary actuator which then places

it back in the correct position.

10

Figure 2.4: Shaft Verification Module Figure 2.5: Evacuation Module

The following two station modules select the type of shafts which is either nylon

or aluminium to be assembled on the product in process and rejects shafts that are

manufactured of undesired materials. This function is done by a handling device with two

shafts with a vacuum pad at the end and each shaft is composed of a dual rod cylinder

which handles the shaft lifting movements and brings it to the evacuation ramp.

When it comes to the last phase of the process, a rotor handling device which has

an arm with vacuum pad then collects, moves and positions the shaft in the assembly by

suction.