51
UNIVERSITI PUTRA MALAYSIA NUR KARTINEE KASSIM FS 2013 43 BIOASSAY GUIDED ISOLATION OF ANTIOXIDATIVE COMPOUNDS FROM TWO RUTACEOUS SPECIES MELICOPE GLABRA(BLUME) T.G. HARTLEY AND MICROMELUM MINUTUM (G. FORST) WIGHT AND ARN

UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

Embed Size (px)

Citation preview

Page 1: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

UNIVERSITI PUTRA MALAYSIA

NUR KARTINEE KASSIM

FS 2013 43

BIOASSAY GUIDED ISOLATION OF ANTIOXIDATIVE COMPOUNDS FROM TWO RUTACEOUS SPECIES MELICOPE GLABRA(BLUME) T.G. HARTLEY AND MICROMELUM MINUTUM (G. FORST) WIGHT AND ARN

Page 2: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

BIOASSAY GUIDED ISOLATION OF ANTIOXIDATIVE COMPOUNDS

FROM TWO RUTACEOUS SPECIES MELICOPE GLABRA(BLUME) T.G.

HARTLEY AND MICROMELUM MINUTUM (G. FORST) WIGHT AND ARN

By

NUR KARTINEE KASSIM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,

in Fulfilment of the Requirement for the Degree of Doctor of Philosophy.

December 2013

Page 3: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

COPYRIGHT

All material contained within the thesis, including without limitation text,

logos, icons, photographs and all other artwork, is copyright material of

Universiti Putra Malaysia unless otherwise stated. Use may be made of

any material contained within the thesis for non-commercial purposes

from the copyright holder. Commercial use of material may only be made

with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Page 4: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

ii

Abstract of thesis presented to Senate of Universiti Putra Malaysia in

fulfilment of the requirement for the degree of Doctor of Philosophy

BIOASSAY GUIDED ISOLATION OF ANTIOXIDATIVE COMPOUNDS FROM TWO

RUTACEOUS SPECIES MELICOPE GLABRA(BLUME) T.G.HARTLEY AND

MICROMELUM MINUTUM (G. FORST.) WIGHT AND ARN

By

NUR KARTINEE BINTI KASSIM

December 2013

Chairman : Professor Mawardi Rahmani, PhD

Faculty : Science

Research on the application, characteristics and sources of natural antioxidants especially

phenolic had received great interest as synthetic antioxidants were reported to give adverse health

effects. Melicope glabra (Blume) T.G.Hartley and Micromelum minutum (G. Forst.) Wight and

Arn. (Rutaceae) are edible plants of the Rutaceae family. Both plants are traditionally used in the

treatment of various diseases and known to contain a number of rutaceous compounds such as

coumarins, lignans and alkaloid. To date, the reports on the bioactive compounds responsible for

their medicinal properties are very limited. Thus, the search to identify bioactive compounds

particurlarly as antioxidant agent from these unexplored plants are really significant. A bioassay-

guided isolation technique by 1, 1-diphenyl-2-dipicrylhydrazyl (DPPH) radical was used to locate

and identify the presence of antioxidant components in various extracts of these plants. The three

extracts (hexane, ethyl acetate and methanol) of M. glabra were screened for antioxidant

properties by four different assays; DPPH free radical scavenging, oxidation of β-carotene and

linoleic acid, oxygen radical antioxidant capacity (ORAC) and total phenolic content (TPC). The

results showed that the ethyl acetate and methanol extracts possessed very good antioxidant

potential and were selected for activity-guided fractionation. The DPPH IC50 values obtained for

ethyl acetate and methanol extracts were 24.81 and 13.01µg/mL with the antioxidant activity of

99.5 and 93.0% on the β-carotene bleaching assay as compared to α-tocopherol (100%). They

also gave high ORAC values (1521 and 2182 µmol TE/g) for the former and latter, respectively.

The column chromatograhic separation on active extracts gave five active fractions namely ME

21, ME 24, ME 31, MM 13 and MM 16 with the DPPH IC50 values of 17.22, 58.98, 30.21, 17.72

and 49.13 µg/mL respectively. The methanolic extract of M. minutum also exhibited good

antioxidant activities against radical scavenging, β-carotene bleaching and ORAC assays by

Page 5: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

iii

exhibiting values of 54.3 µg/mL, 55.19% and 5123 µmol TE/g respectively. The M. minutum

fraction gave the DPPH IC50 of 168.9 µg/ml and ORAC value of 5.75%. Phytochemical

investigation on Melicope glabra active fractions led to the isolation of ten compounds including

one lignan sesamin (36), a number of coumarin derivatives (umbelliferone (37), scopoletin (40), a

new pyranocoumarin, glabranin (41), scoporone (42), 6,7,8-trimethoxycoumarin (43) and

marmesin (44)) together with two new glycosides (3-β-D-galactopyranosyl)-O-(2-hydroxy-4-

methylenedioxy) cinammate (38) and 22-hydroxyfurost-5-ene-(6→O)-α-methylalanyl-3-O-β-

glucopyranoside (39)). Meanwhile, phytochemical study on M.minutum methanol bark extract

succesfully yielded one lignan sesamin (45) which was previously isolated from the earlier plant,

two new coumarins (hydramicromelinin (46) and micromelinin (47)) along with three glycosides

(marmesin glycoside (48), maltose (49) and sucrose (50)). Five of the compounds were identified

as new since there has been no previous reports on these compounds. The structure elucidation of

the isolates were characterized by different spectroscopic techniques such as UV (ultraviolet), IR

(infrared), MS (mass spectra), NMR (nuclear magnetic resonance) and comparison with

published data. The isolated compounds, sesamin (36), umbelliferone (37), scopoletin (40),

glabranin (41), 3-(β-D-galactopyranosyl)-O-(2-hydroxy-4-methylenedioxy) cinammate (38) and

22-hydroxyfurost-5-ene-(6→O)-α-methylalanyl-3-O-β-glucopyranoside (39) displayed DPPH

IC50 values of 2508.63, 810.02, 413.19, 240.20, 323.78 and 124.13 µg/mL respectively. In the

assesment of antioxidant activities by β-carotene bleaching assay on the isolated compounds,

sesamin (36) displayed the most potent antioxidant with the antioxidant activity of 95.9%. The

antioxidant activity observed for other compounds (glabranin (41), umbelliferone (37) and

scopoletin (40)) were 74.9, -44.0 and -54.2 % respectively. Umbelliferone (37) and scopoletin

(40) showed slightly prooxidant activities. Two isolated compounds from M.minutum namely

hydramicromelinin (46) and marmesin glycoside (48) were also exhibited prooxidant behavior

with the antioxidant activity of -116.35 and -34.18%, respectively. The measurement of

scavenging activity by ORAC method revealed umbelliferone (37) as highly potential antioxidant

agent with the ORAC value 24,965 µmol TE/g compared to ascorbic acid (5785 µmol TE/g ).

Hydramicromelinin (46) also showed strong antioxidant activity with the ORAC value of 5539

µmol TE/g. The ORAC values recorded for other compounds; glabranin (41), scopoletin (40),

sesamin (36) and marmesin glycoside (48) were 2883, 2007, 2319 and 4031µmol TE/g

respectively.

Page 6: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

iv

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia bagi memenuhi

keperluan untuk ijazah Doktor Falsafah

PEMENCILAN KOMPONEN ANTIOXIDATIF BERPANDUKAN AKTIVITI BIO ASAI

DARI DUA RUTACEAE SPESIS MELICOPE GLABRA(BLUME) T.G.HARTLEY DAN

MICROMELUM MINUTUM (G. FORST.) WIGHT DAN ARN

Oleh

NUR KARTINEE KASSIM

Disember 2013

Pengerusi: Professor Mawardi Rahmani, PhD

Fakulti: Sains

Kajian ke atas kegunaan, ciri-ciri dan sumber antioksidan semulajadi terutamanya sebatian

fenolik telah mendapat perhatian yang meluas memandangkan antioksidan sintetik dilaporkan

memudaratkan kesihatan. Melicope glabra (Blume) T.G. Hartley dan Micromelum minutum (G.

Forst.) Wight dan Arn. (Rutaceae) adalah tumbuhan yang boleh dimakan tergolong dalam

keluarga Rutaceae Kedua-dua tumbuhan ini digunakan secara tradisional bagi merawat pelbagai

penyakit dan diketahui mengandungi beberapa sebatian rutaceous seperti coumarins, lignan dan

alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap khasiat

perubatan adalah sangat terhad. Oleh itu, penyelidikan bertujuan mengenalpasti sebatian bioaktif

terutamaya sebagai ejen antioksidan daripada tumbuhan yang belum diterokai ini adalah sangat

berfaedah. Satu teknik pemencilan antioksidan berpandukan aktiviti 1,1-difenil-2-dipikrilhidrazil

(DPPH) radikal telah digunakan untuk mencari dan mengenal pasti kehadiran komponen

antioksidan dalam pelbagai ekstrak tumbuh-tumbuhan ini. Tiga M. glabra ekstrak (heksana, etil

asetat dan metanol) disaring untuk sifat antioksidan menggunakan empat ujian yang berbeza;

DPPH memerangkap radikal bebas, pengoksidaan, β-karotena, oksigen kapasiti antioksidan

radikal (ORAC) dan jumlah kandungan fenolik (TPC). Keputusan ujian antipengoksidaan

menunjukkan ekstrak etil asetat dan metanol mempunyai potensi antipengoksidaan yang kuat dan

telah terpilih untuk fraksinasi aktiviti berpandu. Nilai IC50 DPPH yang diperolehi oleh etil asetat

dan ekstrak metanol adalah masing-masing 24.81 dan 13.01μg/mL dengan aktiviti antioxidan

sebanyak 99.5 dan 93.0% ke atas perubahan warna β-karotena berbanding α-tokoferol (100%).

Tumbuh-tumbuhan ini turut memberi nilai ORAC yang tinggi iaitu 1521 dan 2182 μmol TE/g.

Pemisahan kromatograpi turus ke atas ekstrak-ekstrak aktif ini telah menghasilkan lima fraksi

aktif iaitu ME 21, ME 24, ME 31, MM 13 dan 16 MM dengan nilai IC50 masing-masing

sebanyak 17.22, 58.98, 30.21, 17.72 dan 49.13 μg/mL. Ekstrak metanol M.minutum juga

Page 7: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

v

menunjukkan aktiviti antioksidan yang baik terhadap memerangkap radikal, β-karotena

pelunturan dan asai ORAC radikal dengan mempamerkan nilai masing-masing iaitu 54.3 μg/mL,

55.19% dan 5123 μmol TE/g. Fraksi dari M. minutum memberikan nilai IC50 168.9 μg/ml dan

nilai ORAC sebanyak 5.75%. Penyelidikan fitokimia ke atas fraksi-fraksi aktif M.glabra

membawa kepada pemencilan sepuluh sebatian termasuk satu lignan sesamin (36), beberapa

terbitan koumarin (umbelliferon (37), skopoletin (40), satu piranokoumarin baharu, glabranin

(41), skoparone (42), 6,7,8-trimetoksilkoumarin (43) dan marmesin (44) bersama-sama dengan

dua glikosida baru 3-(β-D-galaktopiranosil)-O-(2-hidrosil-4-methilenedioksil) cinammate (38)

dan 22-hidroksilfurost-5-ena-(6→O)-α-metilalanil-3-O-β-glukopiranosida (39). Sementara itu,

kajian fitokimia ke atas M.minutum ekstrak metanol kulit berjaya menghasilkan satu lignan

sesamin (45) yang sebelum ini telah dipencilkan daripada tumbuhan yang pertama, dua koumarin

baharu (hidramikromelinin (46) dan mikromelinin(47)) bersama-sama dengan tiga glikosida

(glikosida marmesin (48), maltosa (49) dan sukrosa (50)). Lima daripada sebatian ini telah

dikenal pasti sebagai baharu kerana tidak ada laporan terdahulu mengenai sebatian ini. Struktur

kesemua sebatian dikenalpasti berdasarkan teknik spektroskopi yang berbeza seperti UV

(ultralembayung), IR (inframerah), MS (jisim spektrum), NMR (resonans magnetik nuklear) dan

juga perbandingan dengan data yang diterbitkan. Beberapa sebatian terpencil, sesamin (36),

umbelliferon (37), skopoletin (40), glabranin (41), 3-(β-D-galaktopiranosil)-O-(2-hiroksil-4-

methilenedioksil) cinammate (38) dan 22-hidroksilfurost-5-ena-(6→O)-α-metilalanil-3-O-β-

glukopiranosida (39) memaparkan nilai IC50 DPPH masing-masing iaitu 2508.63, 810.02, 413.19,

240.20, 323.78 dan 124.13 μg/mL mendedahkan sifat antioksidan mereka. Penilaian aktiviti

antioksidan oleh cerakinan pelunturan β-karotena pada sebatian-sebatian terpencil, telah

menunjukkan sesamin (36) sebagai agen antioksidan yang paling kuat dengan nilai aktiviti

antioxidan sebanyak 95.9%. Aktiviti antioksidan yang diperhatikan bagi sebatian-sebatian lain

(glabranin (41), umbelliferon (37) dan skopoletin (40)) masing-masing adalah 74.9, -44.0 dan -

54.2%. Umbelliferon (37) dan skopoletin (40) menunjukkan sedikit aktiviti prooksidan. Dua

sebatian terpencil daripada M.minutum iaitu hidramikromelinin (46) dan glikosida marmesin (48)

telah mempamerkan aktiviti prooksidan dengan perencatan peratus masing-masing -116.35% dan

-34.18%. Pengukuran aktiviti memerangkap dengan kaedah ORAC mendapati umbelliferon (37)

sebagai agen antioksidan yang berpotensi tinggi dengan nilai ORAC 24.965 μmolTE/g

berbanding asid askorbik (5785 μmolTE/g). Hidramikromelinin (46) juga menunjukkan aktiviti

antioksidan yang kuat dengan nilai ORAC 5539 μmol TE/g. Nilai-nilai ORAC yang dicatatkan

pada sebatian lain; glabranin (41), skopoletin (40), sesamin (36) dan glikosida marmesin (48)

masing-masing adalah 2883, 2007, 2319, 4031, 4948 dan 3802 μmol TE/g .

Page 8: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

vi

ACKNOWLEDGEMENTS

In the name of Allah, the most Gracious and the most Merciful

First and foremost, I would like to express my deepest appreciation to my supervisor, Prof. Dr.

Mawardi Rahmani for his excellent supervision, intellectual advice and very kind attentions

throughtout the course of the project. It has been a great pleasure and wonderful learning

experience. My sincere thanks is also extended to Prof. Dr. Amin Ismail for his invaluable

assistance and guidance particularly in antioxidant research. I would also like to express my

thanks to Prof. Dr. Mohd Aspollah Sukari for his assistance and cooperation.

My special appreciation to all my laboratory mates, Faiqah, Nazil, Nadiah, Kamilah, Maizatul,

Aizat and Winda for their contribution and encouragement in carrying out my research work. My

thanks also extended to technical staff, En. Mohd Johadi, En.Fadli, Cik Sharina, En. Zainal dan

Pn. Rusnani from Chemistry Dept. UPM for their assistance. I would like to also record my

appreciation to Prof Dr. Mahiran Basri, Director of Centre of Foundation for Agricultural Science

and the staff for the encouragement and enjoyable social academic environment. My thanks also

goes to Prof. Dr. Aminah Abdullah and Dr. Khalid Musa of UKM for the kind reception in their

antioxidant laboratory.

Lastly, a very special thanks to my dearest husband and four children, Dr. Iskandar Mohd Zain,

Maryam Shuhada, Luqman Hadi, Nur Ain Safiyah and Muaz Hakim for their patience,

encouragement, understanding and love. My sincere gratitude goes to my parents; Tn Hj. Kassim

and Pn. Hjh Siti Nor, parent-in-law and siblings for their constant prayers and moral support.

Page 9: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

vii

Approval

Page 10: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

viii

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as

fulfilment of the requirement for the degree of Doctor of . The members of the Supervisory

Committee were as follows:

Mawardi Rahmani, PhD

Professor

Faculty of Science

Universiti Putra Malaysia

(Chairman)

Amin Ismail, PhD

Professor

Faculty of Medicine and Health Science

Universiti Putra Malaysia

(Member)

Mohd Aspollah Sukari, PhD

Professor

Faculty of Science

Universiti Putra Malaysia

(Member)

Page 11: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

ix

Declaration Form

Declaration by graduate student

I hereby confirm that:

• this thesis is my original work;

• quotations, illustrations and citations have been duly referenced;

• this thesis has not been submitted previously or concurrently for any other

degree at any other institutions;

• intellectual property from the thesis and copyright of thesis are fully-owned

by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia

(Research) Rules 2012;

• written permission must be obtained from supervisor and the office of Deputy

Vice-Chancellor (Research and Innovation) before thesis is published (in the

form of written, printed or in electronic form) including books, journals,

modules, proceedings, popular writings, seminar papers, manuscripts,

posters, reports, lecture notes, learning modules or any other materials as

stated in the Universiti Putra Malaysia (Research) Rules 2012;

• there is no plagiarism or data falsification/fabrication in the thesis, and

scholarly integrity is upheld as according to the Universiti Putra Malaysia

(Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra

Malaysia (Research) Rules 2012. The thesis has undergone plagiarism

detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: _________________________________________

Page 12: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

x

Declaration by Members of Supervisory Committee

This is to confirm that:

the research conducted and the writing of this thesis was under our

supervision;

supervision responsibilities as stated in the Universiti Putra Malaysia

(Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: Signature:

Name of Chairman of Name of Member of

Supervisory Supervisory

Committee: Committe

Signature: Signature:

Name of Member of Name of Member of

Supervisory Supervisory

Committee: Committee:

Page 13: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

xi

TABLE OF CONTENTS

Page

ABSTRACT ii

ABSTRAK iv

ACKNOWLEDGEMENTS vi

APPROVAL vii

DECLARATION ix

LIST OF TABLES xiv

LIST OF FIGURES xvi

LIST OF ABBREVIATIONS xxv

CHAPTER

1 INTRODUCTION 1

Objectives of Study 3

2 LITERATURE REVIEW

2.1 The Rutacae plants 4

2.2 Coumarins and Lignans 4

2.3 Biosynthesis Pathways of Coumarins and Lignans 5

2.4 Genus of Melicope 8

2.4.1 Melicope in traditional medicine 10

2.4.2. Phytochemical studies in Melicope 11

2.4.3. Biological activities of Melicope 16

2.5 Genus of Micromelum

2.5.1 Micromelum in tradition medicine

2.5.2 Phytochemical studies in Micromelum.

2.5.3 Biological activities of Micromelum

17

17

20

22

2.6 Free radicals and antioxidant 24

2.7 Antioxidant assay 27

2.7.1 Assays associated with electron and radical scavenging 28

2.7.1.1 2,2-Diphenyl-1-picryhydrazyl (DPPH) Assay. 28

2.7.1.2. Oxgen radical absorbance capacity (ORAC) 29

2.7.2. Assays associated with lipid peroxidation 31

3 MATERIALS AND METHODS

3.1 Instruments 34

3.2 Chemicals and reagents 34

3.3 Chromatographic Methods 35

Page 14: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

xii

3.3.1 Column chromatography 35

3.3.2 Planar Chromatography 35

3.3.3 Preparative Thin Layer Chromatography (PTLC) 35

3.3.4 Analytical Thin Layer Chromatography (TLC) 35

3.4 Assay guided isolation and characterization of the chemical

constituents from Melicope glabra

36

3.4.1 Plant materials

3.4.2 Preparation of the crude extracts

36

36

3.4.3 DPPH-assay guided fractionation and isolation

of compounds from ethyl acetate extract

Isolation of sesamin (36)

Isolation of umbelliferone (37)

Isolation of 3-(β-D-galactopyranosyl)

-O-(2-hydroxy-4-methylenedioxy) cinammate (38)

Isolation of 22-hydroxyfurost-5-ene -(6→O)-α-methylalanyl

-3 O-β- glucopyranoside (39)

36

37

37

38

38

3.4.4 DPPH-assay guided fractionation and isolation

of compounds from methanol extract

39

Isolation of scopoletin (40)

Isolation of glabranin (41)

Isolation of scoparone (42)

Isolation of 6, 7, 8 trimethoxycoumarin (43)

Isolation of marmesin (44)

39

40

40

40

41

3.5 Assay guided isolation and characterization of the chemical

constituents from Micromelum minutum

41

3.5.1 Plant material 41

3.5.2 Preparation of the crude extracts 42

3.5.3 Isolation of chemical constituents from methanol extract of

Micromelum minutum

42

Isolation of hydromicromelinin (46) 42

Isolation of micromelinin (47) 43

Isolation of marmesin glycoside (48) 43

Isolation of 4-O-α-D-glucopyranosyl-D-glucose (maltose) (49) 44

Isolation of sucrose (50) 44

3.6 In vitro assesment of antioxidant activities 44

3.6.1 TLC-DPPH antioxidant screening 45

3.6.2 DPPH radical-scavenging assay and antioxidant activity

index determination

45

3.6.3 Linoleic acid/ β-Carotene bleaching assay 45

3.6.4 Determination of oxgen radical absorbance capacity (ORAC) 46

3.6.5. Determination of total phenolic content 41

3.6.6 Statistical Analysis

47

Page 15: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

xiii

4 RESULTS AND DISCUSSION

4.1 Structure elucidation of compounds from Melicope glabra

4.1.1 Structure of 3-(β-D-galactopyranosyl)-O-

(2-hydroxy-4-methylenedioxy) cinammate (38)

48

50

4.1.2 Structure of 22-hydroxyfurost-5-ene-(6→O)-α-

methylalanyl-3-O-β-glucopyranoside (39)

64

4.1.3 Structure of glabranin (41) 80

4.1.4 Structure of sesamin (36) 94

4.1.5 Structure of umbelliferone (37) 104

4.1.6 Structure of scopoletin (40) 111

4.1.7 Structure of scoparone (42) and 6, 7, 8-trimethoxy coumarin (43) 118

4.1.8 Structure of marmesin (44) 131

4.2 Structure elucidation of compounds from Micromelum minutum 140

4.2.1 Structure of hydramicromelinin (46) 142

4.2.2 Structure of micromelinin (47) 153

4.2.3 Structure of marmesin glycosides (48) 162

4.2.4 Structure of 4-O-α-D-glucopyranosyl-D-glucose (maltose) (49) 174

4.2.5 Structure of sucrose (50) 185

4.2.6 Structure of sesamin (45) 197

4.3 Antioxidant capacity of Melicope glabra and its chemical constituents 197

4.3.1 Radical scavenging activities of the Melicope glabra extracts

and its fractions

197

4.3.2 Antioxidant activity by β-carotene bleaching method and total

phenolic content (TPC) on the Melicope glabra extracts and fractions

199

4.3.3 Oxygen radical capacity (ORAC) on Melicope glabra extracts 201

4.3.4.Antioxidant capacity of the isolated compounds from Melicope glabra. 203

4.4 Antioxidant capacity of Micromelum minutum and their respective chemical

constituents

210

4.5 The relationship between the structure of molecules and antioxidant capacity

217

5 CONCLUSIONS

218

BIBLIOGRAPHY

APPENDICES

BIODATA OF STUDENT

LIST OF PUBLICATIONS

220

240

242

243

Page 16: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

xiv

LIST OF TABLES

Table Page

2.1 Chemical compounds identified from varoius Melicope species

15

2.2 Biological activities of selected Melicope species

16

2.3 Micromelun species in traditional medicine

19

2.4 Chemical constituents identified from various Micromelum species

22

2.5 Biological activities of selected Micromelum species

23

2.6 Several antioxidants and their mechanisms of action

27

2.7 Selected studies on natural antioxidants

29

4.1 1H-NMR (400 MHz, CDCl3) and

13C-NMR (400 MHz, CDCl3) spectral data of

3-(β-D-galactopyranosil)-O-(2-hydroxy-4-methylenedeoxy) cinammate (38)

53

4.2 1H-NMR (600 MHz, CDCl3,) and

13C-NMR (150 MHz, CDCl3,) spectral data of

22-hydroxyfurost-5-ene-(6→O)-α-methylalanyl-3-O-β-glucopyranoside (39)

68

4.3 1H-NMR (500 MHz, CDCl3) and

13C-NMR (125 MHz, CDCl3)

spectral data of glabranin (41)

83

4.4 1H-NMR (400 MHz, CD3COCD3) and

13C-NMR (100 MHz, CD3COCD3 )

of sesamin (36)

97

4.5 1H-NMR (400 MHz, CD3COCD3) and

13C-NMR (100 MHz, CD3COCD3)

spectral data of umbelliferone (37)

106

4.6 1H-NMR (500 MHz, CDCl3) and

13C-NMR (125 MHz, CDCl3)

spectral data of scopoletin (40)

113

4.7 1H-NMR (600 MHz, CD3COCD3) and

13C-NMR (150 MHz, CD3COCD3)

spectral data of scoparone (42) and 6, 7, 8-trimethoxy coumarin (43)

121

4.8 1H-NMR (500 MHz, CDCl3) and

13C-NMR (125 MHz, CDCl3)

spectral data of marmesin (44)

133

4.9 1H-NMR (500 MHz, CD3OD) and

13C-NMR (125 MHz, CD3OD)

spectral data of hydramicromelinin (46)

145

Page 17: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

xv

4.10 1H-NMR (500 MHz, CD3OD) and

13C-NMR (125 MHz, CD3OD)

spectral data of micromelinin (47)

156

4.11 1H-NMR (500 MHz, CD3OD) and

13C-NMR (125 MHz, CD3OD)

spectral data of marmesin glycoside (48)

165

4.12 1H-NMR (500 MHz, CDCl3) and

13C-NMR (125 MHz, CDCl3)

spectral data of maltose (49)

177

4.13 1H-NMR (500 MHz, CD3OD) and

13C-NMR (125 MHz, CD3OD)

spectral data of sucrose (50)

187

4.14 DPPH scavenging activities of the Melicope glabra extracts

at different assay-guided separation stages

198

4.15 Total phenolic contents and antioxidant activities of extracts

and fractions, glabranin as assessed with β-carotene bleaching and ORAC assays.

200

4.16 Antioxidant activity of glabranin, umbelliferone,scopoletin,

sesamin, 3-O-(Z)-3-(1,3 benzodioxol-5-yl) acryl-β-D-galactopyranose

and 22-hydroxyfurost-5-ene-(6→O)-α-methylalanyl-3-O-β-glucopyranoside

205

4.17 Antioxidant activity (%) of extract, fraction and pure compounds

of Micromelum minutum (100µg/mL)

211

Page 18: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

xvi

LIST OF FIGURES

Figure Page

2.1 Possible biosynthetic route towards coumarins

6

2.2 Biosynthesis pathway of linear and angular furanocoumarins

7

2.3 Biosynthesis pathway of pyranocoumarins

8

2.4 Biosynthesis pathway of lignan

9

2.5 Leafy twig of Melicope glabra

10

2.6 Micromelum minutum

18

2.7 Alkaloids derivatives from Micromelum species

21

2.8 Structure of micromolide (35)

23

2.9 Major sources of free radicals in the body and the consequences of

free radical damage

24

2.10 Natural antioxidants

26

2.11 The mechanisms of DPPH• radical accept hydrogen from an antioxidant

.

29

2.12 The AAPH reaction in ORAC assay

30

2.13 Schematic diagram of antioxidant reaction in ORAC assay

31

2.14 The free radical mechanism of lipid peroxidation

33

4.1 DPPH- assay directed isolation of compounds from M. glabra. 49

4.2 UV spectrum of (3-( β-D-galactopyranosyl)-O-(2-hydroxy-4-methylenedioxy)

cinammate (38)

50

4.3 IR spectrum of (3-( β-D-galactopyranosyl)-O-( 2-hydroxy-4-methylenedioxy)

cinammate (38)

51

4.4 EIMS spectrum of 3-(β-D-galactopyranosyl)-O-(2-hydroxy-4-methylenedioxy)

cinammate (38)

51

Page 19: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

xvii

4.5 HRESIMS of 3-(β-D-galactopyranosyl)-O-(2-hydroxy-4-methylenedeoxy)

cinammate (38)

52

4.6a The tautomeric interconversion of 3-(β-D-galactopyranosyl)-O-

(2-hydroxy-4-methylenedioxy) cinammate (38)

54

4.6b Selected HMBC and NOESY correlations 3-(β-D-galactopyranosyl)-O-

(2-hydroxy-4-methylenedioxy) cinammate (38)

54

4.7 1H-NMR spectrum of 3-(β-D-galactopyranosyl)-O-

(2-hydroxy-4-methylenedioxy) cinammate (38)

55

4.8 Expanded 1H-NMR spectrum of 3-(β-D-galactopyranosyl)-O-

(2-hydroxy-4-methylenedioxy) cinammate (38)

56

4.9 13

C-NMR spectrum of 3-(β-D-galactopyranosyl)-O-

(2-hydroxy-4-methylenedioxy) cinammate (38)

57

4.10 HMQC spectrum of 3-(β-D-galactopyranosyl)-O-

(2-hydroxy-4-methylenedioxy) cinammate (38)

58

4.11 HMBC spectrum 3-(β-D-galactopyranosyl)-O-

(2-hydroxy-4-methylenedioxy) cinammate (38)

59

4.12 COSY spectrum 3-(β-D-galactopyranosyl)-O-

(2-hydroxy-4-methylenedioxy) cinammate (38)

60

4.13 NOESY spectrum of 3-(β-D-galactopyranosyl)-O-

(2-hydroxy-4-methylenedioxy) cinammate (38)

61

4.14 Expanded NOESY spectrum of 3-(β-D-galactopyranosyl)

-O-(2-hydroxy-4-methylenedioxy) cinammate (38)

62

4.15 Mass spectrum fragmentation pattern of 3-(β-D-galactopyranosyl)

-O-( 2-hydroxy-4-methylenedioxy) cinammate(38)

63

4.16 UV spectrum 22-hydroxyfurost-5-ene-(6→O)-α-methylalanyl-3-O-β-

glucopyranoside (39)

64

4.17 IR spectrum 22-hydroxyfurost-5-ene-(6→O)-α-methylalanyl-3-O-β

-glucopyranoside (39)

65

4.18 EIMS spectrum of 22-hydroxyfurost-5-ene-(6→O)-α-methylalanyl-3-O-β-

glucopyranoside (39)

65

Page 20: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

xviii

4.19 HRESIMS spectrum of 22-hydroxyfurost-5-ene-(6→O)

-α-methylalanyl-3-O-β-glucopyranoside (39)

66

4.20 Selected HMBC correlations of 22-hydroxyfurost-5-ene-(6→O)

-α-methylalanyl-3-O-β-glucopyranoside (39)

67

4.21 1H-NMR spectrum of 22-hydroxyfurost-5-ene-(6→O)

-α-methylalanyl-3-O-β-glucopyranoside (39)

70

4.22 Expanded 1H-NMR spectrum of 22-hydroxyfurost-5-ene-(6→O)

-α-methylalanyl-3-O-β-glucopyranoside (39)(steroidal part)

71

4.23 Expanded APT NMR spectrum of 22-hydroxyfurost-5-ene-(6→O)

-α-methylalanyl-3-O-β-glucopyranoside (39)

72

4.24 Expanded HSQC spectrum of 22-hydroxyfurost-5-ene-(6→O)

-α-methylalanyl-3-O-β-glucopyranoside (39)

73

4.25 Expanded COSY spectrum of 22-hydroxyfurost-5-ene-(6→O)

-α-methylalanyl-3-O-β-glucopyranoside (39)

74

4.26 Expanded HSQC spectrum of 22-hydroxyfurost-5-ene-(6→O)

-α-methylalanyl-3-O-β-glucopyranoside (39)

75

4.27 HMBC spectrum of 22-hydroxyfurost-5-ene-(6→O)

-α-methylalanyl-3-O-β-glucopyranoside (39)

76

4.28 Expanded HMBC spectrum of 22-hydroxyfurost-5-ene-(6→O)

-α-methylalanyl-3-O-β-glucopyranoside (sugar part) (39)

77

4.28a Expanded HMBC spectrum of 22-hydroxyfurost-5-ene-(6→O)

-α-methylalanyl-3-O-β-glucopyranoside (steroidal part) (39)

78

4.29 Mass fragmentation pattern of 22-hydroxyfurost-5-ene-(6→O)

-α-methylalanyl-3 O-β-glucopyranoside (39)

79

4.30 UV spectrum of glabranin (41)

80

4.31 IR spectrum of glabranin (41)

81

4.32 EIMS spectrum of glabranin (41)

81

4.33 HRESIMS spectrum of glabranin (41) 82

4.34 Selected HMBC correlations in glabranin (41)

83

Page 21: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

xix

4.35 1H-NMR spectrum of glabranin (41)

84

4.35a Expanded 1H-NMR spectrum of glabranin (41)

85

4.35b Expanded 1H-NMR spectrum of glabranin (41)

86

4.36 13

C-NMR spectrum of glabranin (41)

87

4.37 DEPT spectrum of glabranin (41)

88

4.38 HMQC spectrum of glabranin (41)

89

4.39 HMBC spectrum of glabranin (41)

90

4.39a Expanded HMBC spectrum of glabranin (41)

91

4.40 COSY spectrum of glabranin (41)

92

4.41 Mass spectrum fragmentation pattern of glabranin (41)

93

4.42 UV spectrum of sesamin (36)

95

4.42a Infrared spectrum of sesamin (36)

95

4.43 EIMS spectrum of sesamin (36)

96

4.44 1H-NMR spectrum of sesamin (36)

98

4.45 13

C-NMR spectrum of sesamin (36)

99

4.46 DEPT spectrum of sesamin (36)

100

4.47 HMQC spectrum of sesamin (36)

101

4.47 a COSY spectrum of sesamin (36)

102

4.48 HMBC spectrum of sesamin (36)

103

4.49 UV spectrum of umbelliferone (37)

104

4.50 IR spectrum of umbelliferone (37)

105

4.51 EIMS spectrum of umbelliferone (37)

105

4.52 1H-NMR spectrum of umbelliferone (37) 107

Page 22: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

xx

4.53 13

C-NMR spectrum of umbelliferone (37)

108

4.54 COSY spectrum of umbelliferone (37)

109

4.55 HMQC spectrum of umbelliferone (37)

110

4.56 UV spectrum of scopoletin (40)

111

4.57 Infrared spectrum of scopoletin (40)

112

4.58 EIMS spectrum of scopoletin (40)

112

4.59 1H-NMR spectrum of scopoletin (40)

114

4.60 13

C-NMR spectrum of scopoletin (40)

115

4.61 HMQC spectrum of scopoletin (40)

116

4.62 COSY spectrum of scopoletin (40)

117

4.63 UV of spectrum of scoparone (42) and 6,7,8-trimethoxy coumarin (43)

118

4.64 IR of spectrum of scoparone (42) and 6,7,8-trimethoxy coumarin (43)

119

4.65 EIMS spectrum of scoparone (42)

119

4.66 EIMS spectrum of 6,7,8-trimethoxy coumarin (43)

120

4.67 1H-NMR spectrum of scoparone (42) and 6,7,8-trimethoxy coumarin (43)

122

4.68 Expanded 1H-NMR spectrum of scoparone (42) and 6,7,8-trimethoxy coumarin (43)

123

4.69 13

C-NMR spectrum of scoparone (42) and 6,7,8-trimethoxy coumarin (43)

124

4.70 COSY spectrum of scoparone (42) and 6,7,8-trimethoxy coumarin (43)

125

4.71 HMQC spectrum of scoparone (42) and 6,7,8-trimethoxy coumarin (43)

126

4.72 Expanded HMQCspectrum of scoparone (42) and 6,7,8-trimethoxy coumarin (43)

127

4.73 HMBC spectrum of scoparone (42) and 6,7,8-trimethoxy coumarin (43)

128

4.74 Expanded HMBC spectrum of scoparone (42) and 6,7,8-trimethoxy coumarin (43)

129

4.75 Expanded HMB spectrum of scoparone (42) and 6,7,8-trimethoxy coumarin (43) 130

Page 23: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

xxi

4.76 UV spectrum of marmesin (44)

131

4.77 IR spectrum of marmesin (44)

132

4.78 EIMS of marmesin (44)

133

4.79 Selected HMBC correlations of marmesin (44)

133

4.80 1H-NMR spectrum of marmesin (44)

134

4.81 13

C-NMR of spectrum of marmesin (44)

135

4.82 DEPT spectrum of marmesin (44)

136

4.83 COSY spectrum of marmesin (44)

137

4.84 HMQC spectrum of marmesin (44)

138

4.85 HMBC spectrum of marmesin (44)

139

4.86 Fragmentation pattern of marmesin (44)

140

4.87 Flow chart of DPPH guided isolation of antioxidant compounds

from Micromelum minutum.

141

4.88 UV spectrum of hydramicromelinin (46) 142

4.89 IR spectrum of hydramicromelinin (46) 143

4.90 EIMS of hydramicromelinin (46)

143

4.91 HRESIMS spectrum of hydramicromelinin (46)

144

4.92 Selected HMBC correlations of hydramicromelinin (46) and

structure of hydramicromelin A (55)

145

4.93 1H-NMR spectrum of hydramicromelinin (46)

146

4.94 13

C-NMR spectrum of hydramicromelinin (46)

147

4.95 DEPT spectrum of hydramicromelinin (46)

148 170

4.96 HMQC spectrum of hydramicromelinin (46)

149

4.97 HMBC spectrum of hydramicromelinin (46) 150

Page 24: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

xxii

4.98 COSY spectrum of micromelinin (47)

151

4.99 Mass pectrum fragmentation pattern of hydramicromelinin (46)

152

4.100 UV spectrum of micromelinin (47)

153

4.101 IR spectrum of micromlinin (47)

154

4.102 EIMS spectrum of micromelinin (47)

154

4.103 HRESIMS spectrum of micromelinin (47)

155

4.103a Selected HMBC correlations of micromelinin (47) and

structure of micromelin (25)

156

4.104 1H-NMR spectrum of micromelinin (47)

157

4.105 13

C and APT NMR spectrum of micromelinin (47)

158

4.106 HMQC spectrum of micromelinin (47)

159

4.107 HMBC spectrum of micromelinin (47)

160

4.108 COSY spectrum of micromelinin (47)

161

4.109 IR spectrum of marmesin glycoside (48)

162

4.110 UV spectrum of marmesin glycoside (48)

163

4.111 EIMS spectrum of marmesin glycoside (48)

163

4.112 HRESIMS spectrum of marmesin glycoside (48)

164

4.113 Selected HMBC correlations of marmesin glycoside (48)

165

4.114 1H-NMR spectrum of marmesin glycoside (48)

166

4.115 Expanded 1H NMR spectrum of marmesin glycoside (48)

167

4.116 13

C- NMR spectrum of marmesin glycoside (48)

168

4.117 DEPT spectrum of marmesin glycoside (48)

169

4.118 DQFCOSY spectrum of marmesin glycoside (48)

170

Page 25: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

xxiii

4.119 Expanded DQFCOSY-NMR spectrum of marmesin glycoside (48)

171

4.120 HMQC spectrum of marmesin glycoside (48)

172

4.121 HMBC spectrum of marmesin glycoside (48)

173

4.122 IR spectrum of 4-O-α-D-glucopyranosyl-D-glucose(maltose) (49)

174

4.123 HRESIMS spectrum of 4-O-α-D-glucopyranosyl-D-glucose (maltose) (49)

175

4.124 EIMS spectrum of 4-O-α-D-glucopyranosyl-D glucose(maltose) (49)

175

4.125 Selected HMBC correlations of 4-O-α-D-glucopyranosyl-D-glucose (maltose) (49)

176

4.126 1H NMR spectrum of 4-O-α-D-glucopyranosyl-D-glucose(maltose) (49)

178

4.127 13

C-NMR spectrum of 4-O-α-D-glucopyranosyl-D-glucose (maltose) (49)

179

4.128 DEPT spectrum of 4-O-α-D-glucopyranosyl-D-glucose (maltose) (49)

180

4.129 COSY spectrum Of (4-O-α-D-glucopyranosyl-D-glucose (maltose) (49)

181

4.130 HMQC spectrum of 4-O-α-D-glucopyranosyl-D-glucose (maltose) (49)

182

4.131 HMBC spectrum of 4-O-α-D-glucopyranosyl-D-glucose (maltose) (49)

183

4.132 Fragmentation of 4-O-α-D-glucopyranosyl-D-glucose(maltose) (48)

184

4.133 IR spectrum of sucrose (50)

185

4.134 EIMS spectrum of sucrose (50)

186

4.135 Selected HMBC and NOESY correlations of sucrose (50)

187

4.136 1H-NMR spectrum of sucrose (50)

188

4.137 Expanded 1H-NMR spectrum of sucrose (50)

189

4.138 APT NMR spectrum of sucrose (50)

190

4.139 COSY spectrum of sucrose (50)

191

4.140 HMQC spectrum of sucrose (50)

192

4.141 Expanded HMQC spectrum of sucrose (50) 193

Page 26: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

xxiv

4.142 HMBC spectrum of sucrose (50)

194

4.143 Expanded HMBC spectrum of sucrose (50)

195

4.144 NOESY spectrum of sucrose (50)

196

4.145 Scavenging effect of M. glabra extracts on DPPH radical

198

4.146 TLC paper stained with 800 mM DPPH solution in methanol

199

4.147 Rapid evaluation of β-carotene bleaching on TLC paper under visible light.

201

4.148 Fluorescence decay curves of fluorescein induced by AAPH

203

4.149 TLC paper stained with 800 µM DPPH solution in methanol

206

4.150 Fluorescence decay curves of fluorescein induced by AAPH in the presence of

umbelliferone, glabranin, sesamin and scopoletin

208

4.151 Antioxidant activity of 3-(β-D-galactopyranosil)-O-( 2-hydroxy-4-methylenedeoxy)

cinammate (38) , 22-hydroxyfurost-5-ene-(6→O)-α-methylalanyl-3-O-β-

glucopyranoside (39) , fractions (ME 24 and ME 31), ethyl acetate extract (EtOAc),

ascorbic acid, α-tocopherol and BHT as assessed with β-carotene bleaching method at

different incubation period

209

4.152 Comparison of antioxidant strength between compounds (38),(39) and

ethyl acetate extract with ascorbic acid in β-carotene bleaching assay

209

4.153 Scavenging effect of M.minutum methanol extract and its fraction.

210

4.154 Antioxidant activity of M.minutum methanol extract and its fraction

211

4.155 The ORAC measurement of hydramicromelinin (46),

marmesin glycoside (48), methanol extract and ascorbic acid

212

4.156 Structure of sesamin (36) and oxygenated coumarins isolated from

stem bark of Melicope glabra and Micromelum minutum (Rutacae)

213

4.157 Structure of glycosides isolated from stem bark of Melicope glabra and

Micromelum minutum

214

4.158 Schematic diagram of umbelliferone (37) free radical formation

215

4.159 Schematic diagram of ascorbic acid free radical formation 216

Page 27: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

xxv

LIST OF ABBREVIATIONS

α alpha

β beta

δ chemical shift in ppm

λmax maximum wavelength in mm

ε molar absorptivity

13C carbon -13

AAPH 2,2-Azobis(2-amidino-propane)

APT Attached Proton Test

CDCl3 deuterated chloroform

CD3OD deuterated methanol-d4

CD3COCD deuterated acetone-d6

COSY Correlated Spectroscopy

DQF COSY Double Quantum Filtered COSY

DEPT Distortionless Enhancement by Polarization Transf

DPPH 1,1’-diphenyl-2-picrylhydrazyl

EtOAC ethyl acetate

EIMS Electron Impact Mass Spectrometry

GC-MS Gas Chromatography-mass spectroscopy

1H proton

HMBC Heteronuclear Multiple Bond Connectivity

HMQC Heteronuclear Multiple Quantum Coherence

HREIMS High resolution electron ionization mass spectral

Page 28: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

xxvi

IC50 Inhibition Concentration at 50 percent

t triplet

s singlet

m multiplet

bd broad doublet

bs broad singlet

MeOH methanol

m.p melting point

MS Mass Spectrum

m/z mass per charge

NMR Nuclear Magnetic Resonance

OD Optical density

ORAC Oxygen Radical Capacity

ROS reaction oxygen species

SD standard deviation

TLC Thin Layer Chromatography

IR Infrared

UV Ultraviolet

Page 29: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

1

1

CHAPTER I

INTRODUCTION

The used of plants as medicines in health care have been recognised for thousands of years

(Samuelsson, 2004). Among the traditional medicinal systems are Ayurvedic, Unani and

Chinese. These systems have contributed to some important drug discoveries and led to the

isolation of active compounds. Drug discovery from medicinal plants such as the isolation of

morphine from opium had already begun as early as 19th century (Kinghorn, 2001;

Samuelsson, 2004). Some of the early drugs for instance cocaine, codeine, digitoxin, and

quinine are still in use today (Newman et al., 2000; Butler, 2004; Samuelsson, 2004). The

strategies for drug discovery research from natural products which include plants, animals or

microorganisms have evolved quite significantly over the last few decades. The older

strategies focus on the chemistry of the compounds from natural sources, but not on the

activity. However, the present stratergies are more focused on the biological activities of the

plants and on isolation of target compound(s) rather than trying to isolate all compounds

presence in extracts. Thus, the application of appropriate chemical, biological or physical

assays are necessary to be incorporated in the extraction and isolation protocol in order to

pinpoint the target compound(s) from complex mixtures in natural product extracts.

Collection may involve species with known biological activity (e.g., traditionally used herbal

remedies) for which active compound(s) have not been isolated and identified.

In a natural products drug discovery program, bioassay plays an important role. A bioassay

will be used to guide fractionation of a crude material towards isolation of the pure bioactive

compounds. The ability of assay activity-guided fractionation and isolation techniques to give

high throughput screening for biological activities of the plants helped the phytochemists to

renew its interest in plants as potential sources of new drugs. For these purposes, bioassay

tests must be simple, rapid, reliable, reproducible, sensitive, meaningful and, most

importantly, predictive. To date, bioassays available are more robust, specific and sensitive to

even as low as nanogram amounts of test samples. Most of the modern bioassays are using

miroplate readers which require only small amounts of extracts, fractions or compounds.

Among the typical assays used in natural product screening are 2,2-diphenyl-1-picryhydrazyl

(DPPH) and antibacterial serial dilution assays. Previous studies on ten Chinese medicinal

plants extracts with traditional reputations for CNS (Central Nervous System) activities were

tested in a series of radio-ligand receptor binding assays, including adrenoceptor (α1, α2, β), 5-

HT (1,1A, 1C, 2), opiate, benzodiazepine, ion channels (Ca++

, K+), dopamine (1, 2), adenosine

1, muscarinic, Na+/K

+ ATPase and GABA (A, B) receptors. Bioactivity-guided fractionation

resulted in the isolation of individual active compounds including indole alkaloids,

proanthocyanins, flavonoids and triterpenes (Phillipson, 1995; Phillipson,1999b).

The continual development of chromatographic and spectroscopic techiques had facilitated

the separation, isolation and identification of the biological active compounds. The

Phytochemical Society of Europe (PSE) symposium held at Lausanne, Switzerland in 1994

showed that these analytical techniques were becoming more and more sophisticated

Page 30: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

2

2

(Hostettmann et al., 1995). The NMR techniques like COSY, DQF-COSY and TOCSY were

available for establishing connectivities between neighbouring protons. HETCOR, HMQC,

HSQC revealed the link between 1H and

13C. HMBC is used for long range heteronuclear

correlations over 2–3 bonds. The interaction of 1H-

1H through space can be evaluated through

NOESY, ROESY and TOCSY(HOHAHA). The 1997 PSE symposium at Uppsala, Sweden

also highlighted the application of TLC, HPLC hyphenated techniques (e.g. HPLC-PDA, LC-

MS, LC-NMR, LC-MS-NMR) for the separation and structure determination of antifungal

and antibacterial plant compounds (Bohlin and Bruhn, 1999).

Plants have many phytochemicals with various bioactivities such as antioxidant, anti-

inflammatory and anticancer. The study of plants as source of natural antioxidant compounds

with free radical scavenging activity have received great interest from many researchers in the

last few years. Previous studies have reported that extracts from natural products, such as

fruits, vegetables and medicinal herbs, have positive effects against cancer, compared with

chemotheraphy or recent hormonal treatments (Wu et al., 2002). Natural antioxidant derived

from plant especially phenolics are considerably important as dietary supplement or food

preservatives” ( Halliwell et al, 1995). The natural antioxidant particularly the polyphenol

compounds are reported to be found in plant foods (e.g grapes, berries,olives,soy), herbs (e.g

oregano) and spices (e.g cinnamon,cumin,turmeric). The important and commomn

antioxidants for example ascorbic acid (vitamin C), tocopherol (vitamin E) and tocotrienols

and beta carotene (precursor of vitamin A) were derived from plant extracts. They play an

important role in oxidative defence mechanisms in biological systems and acting as free

radical scavenging agents. Many other plant based dietary polyphenolic constituents are

found to be more effective antioxidants in vitro than α-tocopherols (vitamins E) or ascorbic

acid (vitamin C), and thus might contribute significantly to protective effects in vivo (Rice-

Evans et al., 1997; Jayasri et al., 2009).

In our search for bioactive natural products as antioxidant agent, two genus from Rutacea

family namely Melicope glabra and Micromelum minutum were chosen for investigation.

They were among the richest sources of natural products and have been traditionally used in

treating various of illnesses such as cough, fever, pain and infected wound. However, to date,

not many reports on the bioactive compounds responsible for their medicinal properties.

Presence of a number of rutaceous compounds such as coumarins, lignans and alkaloid in the

stem and root bark extracts of the rutacaea family may be the answer. It is undisputable that

medicinal plants with wide range of biological activities attributed to plant secondary

metabolites are an indication that plants can serve as an excellent pool of bioactive

compounds with useful therapeutic properties. Prior knowledge about the indigenous use of

certain plants of known chemical composition and biological activities of the various plants

constituents and an awareness of compounds that have previously been isolated from them,

can be used as a directive in the selection process of potential sources (Cordell, 2000). The

search to identify new botanical sources for natural antioxidants from these unexplored plants

are considered important as minimum studies on the antioxidative properties of both plants

have been reported. Natural antioxidants are believed to have minimum health risks to

consumers. Synthetic antioxidants such as butylated hydroxyanisole (BHA), butylated

hydroxytoluene (BHT), and tert-butylhydroquinone (TBHQ) which are widely used to prevent

oxidation in food products (Shahidi, 2000) were reported to give adverse effects including

Page 31: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

3

3

enzymatic and lipid alterations in the in vivo test with rodents and monkeys (Branen, 1975).

Therefore a part of discussing the characteristic of the isolated compounds, this study also

highlighted the antioxidant capacity of the Melicope glabara and Micromelum minutum

extracts as well as the isolated compounds. Phytochemical studies on various Melicope

species had revealed the occurrence. of alkaloids, flavonoids (Komala et al., 2006),

acetophenones (Anderson et al., 2007), coumarins, lignans (Latip et al., 1999), dipeptides and

terpenoids (Simonsen et al., 2003). Some of these compounds have been demostrated

antibacterial, antifungal, anti-inflammatory and cytotoxic activities (Barrows et al., 2007; Hou

et al.,1994; Simonsen et al., 2004.)

In our attempt to isolate antioxidant compounds, bioassay guided method was incorporated

into the isolation procedures. Only extracts showing significant biological activity in the

bioassays, were subjected to the activity-guided fractionation and each fraction then tested for

activities. Various chromatographic techniques were applied for the purification of the active

fractions in order to isolate the agents which may be responsible for the bioactivities. The

structural elucidation of the isolates were determined by various spectroscopic methods (UV,

MS, IR and NMR) and were compared to the literature values. The antioxidant activity of the

crudes as well as the isolates were evaluated by measuring the free radical scavenging activity

by DPPH rapid dot blot staining and spectrophotometric assay, antioxidant activity by

coupled oxidation of β-carotene and linoleic assay, β-carotene bleaching on TLC, oxygen

radical absorbance capacity (ORAC) assay and total phenolic contents (TPC) of the active

crudes were estimated as gallic acid equivalent using a Folin-Ciocalteau assay.

Objectives of Study

The objectives of this study are:

1. To extract and isolate bioactive compounds from Melicopa glabra and Micromelum

minutum by assay guided isolation techniques.

2. To elucidate and identify the structures of the compounds by using modern spectroscopic

methods.

3. To investigate the free radical scavenging and antioxidant capacity of the extracts and the

isolated compounds.

Page 32: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

220

BIBLIOGRAPHY

Ab. Karim, M.S., Nasouddin, S.S., Othman, M., Mohd Adzahan, N., Hussin, S.R. and

Khozirah, S. 2011. Consumers’ knowledge and perception towards Melicope ptelefolia

(Daun Tenggek Burung): A preliminary qualitative study. International Food Research

Journal 18(4): 1481-1488

Abdille, M.H., Singh, R.P., Jayaprakash, G.K. and Jena, B.S. 2005. Antioxidant activity of the

extracts from Dillenia indica fruits. Food Chemistry 90:891-896.

Ali, N.A.M., Rahmani, M., Shaari, K., Ismail, H.B.M., Sukari, M.A., Ali, A.M., and Julip, K.

2006. Chemical constituents of leaves and barks of Melicope hookeri T.G. Hartley.

Pertanika Journal Science & Technology 14: 75-80.

Aman. 2006. Tumbuhan Liar Berkhasiat Ubatan, p. 12-14 Dewan Bahasa dan Pustaka Kuala

Lumpur

Amarowicz, R., Estrella, I., Hernández, T., Dueñas, M., Troszyńska, A., Agnieszka, K. and

Pegg, R.B. 2009. Antioxidant activity of a red lentil extract and its fractions.

International Journal of Molecular Sciences 10(12):5513-2.

Anderson, A., Smitt, U.W., Simonsen, H. T., Christensen, S.B. and Jaroszewski, J.W. 2007.

Prenylated acetophenones from Melicope obscura and Melicope obtusifolia ssp.

obtusifolia var. arborea and their distribution in Rutaceae. Biochemical Systematics and

Ecology 35: 447-453.

Andueza, S., Manzocco, L., Paz de Peña, M., Cid, C. and Nicoli, C. 2009. Caffeic acid

decomposition products: Antioxidants or pro-oxidants?. Food Research International

42: 51–55.

Angelo, A.J. 1996. Lipid oxidation in food. Critical Reviews in Food Science and Nutrition

36: 175–224.

Arnao, M.B., Cano, A. and Acosta, M. 2001. The hydrophilic and lipophilic contribution to

total antioxidant activity. Food Chemistry 73(2): 239–244.

Anonymous (2003) http://digitalmuseum.zju.edu.cn/. Accessed on 20th July 2013.

Anonymous (2009). http://chm-malaysia.org. Accessed on 12th April 2012

Anonymous (2009). http://www.ymdb.ca/spectras/. Accessed on 5th April 2013

Asgarpanah, Amin, J., G. and. Parviz, M. 2011. In vitro antiglycation activityof Eremurus

persicus (Jaub. Et Sp.) Boiss. African Journal of Biotechnology 54:11287–11289.

Page 33: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

221

Bailly, F., Maurin, C., Teissier, E., Vezin, H. and Cotelle, P. 2004. Antioxidant properties of

3-hydroxycoumarin derivatives. Bioorganic and Medicinal Chemistry 12: 5611-5618.

Balgir, B.S., Mander, L.N., Mander, S.T.K. 1973. A revision of the structures proposed for

the Melicope extractives, melicopol and methylmelicopol. Australia Journal of

Chemistry 26 : 2459–2472.

Banerji J., Das A. K., Das B., Heterocycles, 26, 2871—2875 (1987).

Barrows, L.R., Powan, E., Pond, C.D., and Matainaho, T. 2007. Anti-TB activity of Evodia

elleryana bark extract. Fitoterapia 45 : 250-252.

Beal, M.F. 2003. Mitochondria, oxidative damage, and inflammation in Parkinson's disease

Annual New York Academic Science. 991: 120-31

Blois, M.S. 1958. Antioxidant determinations by the use of a stable free. Nature 181: 1199–

1200.

Bohlin, L. and Bruhn, J.G. 1999. Bioassay methods in natural product research and drug

development. Proceedings of the Phytochemical Society of Europe. Kluwer Academic,

Dordrecht 43: 288-356.

Bohm, A.B. 1998. Introduction and historical perspective. In: Introduction to Flavonoids, 1st

ed. Harwood Academic Publisher, Amsterdam, pp. 3–25.

Bomser, J., Madhavi, D.L., Singletary, K., and Smith, M.A.L. 1996. In vitro anticancer

activity of fruit extracts from Vaccinium species. Planta Medica 62: 212–216.

Bors, W. 1996. Flavonoids and polyphenols, chemistry and biology In: Cadenas E, Packer L,

eds., Handbook of Antioxidants. New York, Marcel Decker, pp. 409–460.

Bourgaud, F., Hehn, A., Larbat, R., Doerper, S., Gontier, E., Kellner,S., and Matern, U. 2006.

Biosynthesis of coumarins in plants: a major pathway still to be unravelled for

cytochrome P450 enzymes. Phytochem Reviews 5: 293–308

Bowen, I.H. and Perera, K. 1982. Alkaloids, coumarins and flavonoids of Micromelum

zeylanicum. Phytochemistry 21(2): 433-437

Bradshaw, M.P., Cheynier, V., Scollary, G.R. and Prenzler P.D. 2003. Defining the ascorbic

acid crossover from anti-oxidant to pro-oxidant in a model wine matrix containing (+)-

catechin. Journal of Agricultural and Food Chemistry 51(14): 4126-32

Branen, A.L. 1975.Toxicology and biochemistry of butylated hydroxyanisole and butylated

hydroxytoluene. Journal of the American Oil Chemists' Society 52: 59-63

Page 34: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

222

Brewer, M.S. 2011. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and

Potential Applications. Comprehensive Reviews in Food Science and Food Safety

10(40): 221–247

Brown, S.A. 1981. Coumarins. In The biochemistry of plants—A comprehensive treatise, eds

P.K. Stumpf, and E.E. Conn, vol 7, pp 269–300. New York : Academic Press.

Brown, S.A., Towers, G.H. and Wright, D. 1960. Biosynthesis of the coumarins. Tracer

studies on coumarin formation in Hierochloe odorata and Melilotus officinalis.

Canadian Journal of Biochemistry and Physioliogy 38:143–156

Brown, M. S. and Goldstein, J. L. 1983. Lipoprotein receptors in the liver: control signals for

plasma cholesterol traffic. Journal of Clinical Investigation 72: 743-747.

Brown, S.A. 1978. Biochemistry of the coumarins. Pages 249-285 in: Recent advances in

Phytochemistry. T.Swain, J.B. Harborne, and C.H. Van Sumerre, eds. Plenum Press,

New York

Burkill, I.H. 1935. Economic Products of Malay Peninsula. 2 vols. Crown Agent for the

Colonies, London.

Burkill, I. H., Birtwistle, W., Foxworthy, F.W., Scrivenor, J.B. and Watson, G.W. 1966.

Dictionary of the economic products of the Malay Peninsula . Volume II (I–Z)

Ministry of Agriculture and Cooperatives, Kuala Lumpur.

Butler, M.S. 2004. The role of natural products chemistry in drug discovery. Journal of

Natural Product 67(12): 2141-2153.

Cassady, J.M., Ojima, N., Chang, C. And McLaughlin, J.L. 1979. An investigation of the

antitumor activity of Micromelum integerrimum (Rutaceae). Journal of Natural

Product 42(3):274-8.

Cˇízˇ, M., Cízová, H., Denev, P., Kratchanova, M., Slavov, A. and Lojek, A. 2010. Different

methods for control and comparison of the antioxidant properties. Food Control 21

:518–523.

Cambie, R. C. and Ash, J. 1994. Fijian Medicinal Plants CSIRO Publishing

Cao, G., Alessio, H.M. and Cutler, R.G. 1993. Oxygen radical absorbance capacity assay for

antioxidants. Free Radicals in Biology and Medicine 14: 303-311.

Cao, G., Verdon, C., Wu, A., Wang, H., and Prior, R. 1995. Automated Assay of Oxygen

Radical Absorbance Capacity with the COBRAS FARA II. Clinical Chemitry 41:1738-

1744.

Chan, J.A., Shultis, E.A., Carr, S.A., Debrosse, C.W., Eggleston, D.S., Francis, T.A., Hyland,

L.J., Johnson, W.P., Killmer, L.B., Staiger, D.B. and Westley, J.W. 1989. Novel

Page 35: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

223

phloroglucinols from the plant Melicope sessiflora (Rutaceae). Journal of Organic

Chemistry 54: 2098-2103.

Chen, J.J., Cho, J.Y., Hwang, T.L. and Chen, I.S. 2008. Benzoic acid derivatives,

acetophenones, and anti-inflammatory constituents from Melicope semecarpifolia.

Journal of natural products 71(1):71-75

Chen, J.H. and Ho, C.T. 1997. Antioxidant activities of caffeic acid and its related

hydroxycinnamic acid compounds. Journal of Agricultural and Food Chemistry 45:

469-471.

Chisholm, G.M. and Steinberg, D. 2000. The oxidative modification hypothesis of

atherogenesis: An overview. Free Radical Biology and Medicine 28: 1815–1826.

Chou, H.C., Chen, J.J., Duh, C.Y., Huang, T.F. and Chen I.S. 2005. Cytotoxic and anti-

platelet aggregation constituents from the root wood of Melicope semecarpifolia.

Planta Medica 71 (11): 1078-81

Čolak, E., Dimitrijević-Srećković, V., Djordjević, P.B., Stanković, S., Glišić, B., Srećković,

B., and Majkić-Singh, N. Biomarkers of enzymatic and non-enzimatic antioxidant

defense in type 2 diabetes mellitus-comparative analysis. Biochemia Medica 18: 42–

51.

Cordell, G.A., 2000. Biodiversity and drug discovery-a symbiotic relationship.

Phytochemistry, 55: 463-480.

Corner, E. J. H. 1952. Wayside Trees of Malaya, Vol. II. Second edn. p. 656-671.Government

Printing Office, Singapore.

Croft, K.D. and Toia, R.F. 1989. Coumarins from micromelum minutum. Planta Medica

55(4): 401.

Cuendet, M., Hostettmann, K. and Potterat, O. 1997. Iridoid glucosides with free radical

scavenging properties from Fragrea blumei. Helvetica Chimica Acta 80: 1144–1151.

Davies, K. J. A. 2000. Oxidative stress, antioxidant defenses, and damage removal, repair, and

replacement systems. IUBM Life 50(4–5): 279–289.

Deba, F., Xuan, T. D., Yasuda, M. and Tawata, S. 2008. Chemical composition and

antioxidant, antibacterial and antifungal activities of the essential oils from Bidens

pilosa Linn. var. Radiata. Food Control 19(4), 346–352.

Decker, E. A. 1997. Phenolics: prooxidants or antioxidants? Nutrition Reviews 55: 396–407.

Demmig-Adams, B. and Adams, W.W. 2002. Antioxidants in photosynthesis and human

nutrition. Science 298: 2149-2153.

Page 36: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

224

Dewick , P. M. 2002. Medicinal Natural Products. A Biosynthetic Approach Second Edition

John Wiley & Sons, Ltd., Baffins Lane, Chichester, England.

Dicko, M.H, Hilhorst, R., Gruppen, H., Traore, A.S., Berkel, W.J.H. and Voragen, A.G.J.

2002. Comparison of Content in Phenolic Compounds, Polyphenol Oxidase, and

Peroxidase in Grains of Fifty Sorghum Varieties from Burkina Faso. Journal of

Agricultural and Food Chemistry 50: 3780−3788.

Egan, D., O’Kennedy, R., Moran, E., Cox, D., Prosser, E. and Thornes, R.D. 1990. The

pharmacology, metabolism, analysis and application of coumarin, and coumarin

related compounds. Drug Metabolism Reviews 22: 503-529.

Esterbauer, H., Dieber-Rotheneder, M., Striegl, G. and Waeg, G. 1991. Role of vitamin E in

preventing the oxidation of low-density lipoprotein. The American Journal of Clinical

Nutrition 53: 314-321.

Esterhuizen, L. L., Meyer, R. and Dubery, I.A. 2000. Antioxidant Activity of Metabolites

from Coleonema album (Rutaceae). Natural Product Communications 5: 367-375.

Feng, S.B., Song, L.X., Lee,Y.K. and Huang, D.J. 2010. The effects of fungal stress on the

antioxidant contents of black soybeans under germination. Journal of Agricultural and

Food Chemistry 58: 12491-12496

Finkel, T. and Holbrook, N.J. 2000. Oxidants, oxidative stress and the biology of Oxidants,

oxidative stress and the biology of ageing. Nature 408: 239-247.

Floss, H.G. Biosynthesis of Furanocoumarins. In Recent Advances in Phytochemistry,

Proceedings of the 9th Annual Symposium of the Phytochemical Society of North

America, V. C. Runeckles and J. E. Watkins, Ed., Appelton–Century–Crofts, New

York, Vol. 4, 1972, pp. 143-164.

Frankel, E. N., Kanner, J., German, J. B., Parks, E. and Kinsella, J. E. 1993. Inhibition of

oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet

341: 454-457.

Franzblau, S.G., Soejarto, D.D. and Fong, H.H.S. 2005. Anti-tuberculosis constituents from

the stem bark of Micromelum hirsutum. Planta Medica 71: 261–267.

Fraser, A.W. and Lewis, J.R. 1973. Two flavanols From Euodia Glabra. Phytochemistry 12 :

1787-1789.

Fukumoto, L. R. and Mazza, G. 2000. Assessing Antioxidant and Prooxidant Activities of

Phenolic Compounds. The Journal of Agricultural and Food Chemistry 48 (8): 3597-

3604

Gardner, S., Sidisunthorn, P. and Anusarnsunthorn, V. 2000. A field guide to forest trees of

Northern Thailand. Kobfai Publishing Project. Bangkok. Thailand.

Page 37: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

225

Glazer, A. N. 1990. Phycoerythrin Fluorescence-Based Assay for Reactive Oxygen Species.

Methods Enzymology 186:161-168.

Goh,S.H., Chung,V.C., Sha,K. and Mak, T.C.W. 1990. Monoterpenoid Phloroacetophenones

From Euodia Latifolia. Phytochemistry 29 (5): 1704-1706.

Gomes, A., Fernandes, E. and Lima, J. L. F. C. 2005. Fluorescence probes used for detection

of reactive oxygen species. Journal of Biochemical and Biophysical Methods 65 (2–3):

45–80.

Gottlieb O.R., 1978. Neolignans. Fortschr. Chem. Org. Naturstoff 35: 1-72

Gordaliza, M.P. A., Garcia, J. M. del Corral; M. A. Castro; M. A. Gomez-Zurita. 2004.

Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon,

44, (4): 441-459

Halliwell, B. and Gutteridge, J.M.C. 1995. The definition and measurement of antioxidants in

biological systems. Free Radical Biology and Medicine 18:125–126

Hamburger, M. and Hostettmann, K. 1991. Bioactivity in plants: the link between

phytochemistry and medicine. Phytochemistry 30 (12): 3864–3874.

Harborne, J.B. 1999. Classes and functions of secondary products from plants. In Chemicals

from plants ed. N.J. Walton and D.E. Brown pp. 1–25. London : Imperial College

Press.

Hartley, T. G. 1981. A revision of the genus Tetradium (Rutaceae). Gardens’ Bulletin,

Singapore 34: 91–131

Hartley,T. G . 1994. The genus Melicope (Rutaceae) in Borneo Sandakan. Sandakanian 4 :

47-74.

Hartley,T.G. 2001. On the taxonomy and biogeographyn of Euodia and Melicope (Rutaceae).

Allertonia 8: 1–319

Hassimotto, N. M. A., Genovese, M.I. and Lajolo, F. M. 2005. Antioxidant activity of dietary

fruits, vegetables and commercial frozen fruit pulps. Journal of Agricultural and Food

Chemistry 53: 2928–2935.

He, H.P., Zou, Y., Shen, Y.M., Hao, X.Y., Zuo, G.Y. and Hao, X.J. 2001. Three New

Coumarins from Micromelum integerrimum. Chinese Chemical Letters 12 (7): 603 –

606.

Heim, K.E., Tagliaferro, A.R. and Bobilya, D.J. 2002. Flavonoid antioxidants: chemistry,

metabolism and structure-activity relationships. Journal of Nutritional Biochemistry 13:

572-584.

Page 38: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

226

Heinecke, J.W. 1997. Mechanisms of oxidative damage of low density lipoprotein in human

atherosclerosis. Current Opinion in Lipidology 8: 268-274.

Higa, M., Imamura, M., Ogihara, K. and Suzuka, T. 2013. Isolation of five new flavonoids

from Melicope triphylla. Chemical and Pharmaceutical Bulletin (Tokyo) 61(4): 384-9

Higa, M., Imamura, M., Shimoji, K., Ogihara, K. and Suzuka, T. 2012. Isolation of six new

flavonoids from Melicope triphylla. Chemical and Pharmaceutical Bulletin (Tokyo)

60(9):1112-1117

Higa, M., Nakadomari, E., Imamura, M., Ogihara, K., and Suzuka, T. 2010. Isolation of four

new flavonoids from Melicope triphylla. Chemical and Pharmaceutical Bulletin

(Tokyo) 58(10):1339-1342

Hisatomi, E., Matsui, M., Kobayahi, A. and Kubota, K. 2000. Antioxidative activity in the

pericarp and seed of Japanese pepper (Xanthoxylum piperitum DC). Journal of

Agricultural and Food Chemistry 48: 4924-4928

Hostettmann, K., Marston, A. And Wolfender, J.L. 1995. Strategy in the search for new

biologically active plant constitutents, in Phytochemistry of Plants Used in Traditional

Medicine ed. K. Hostettmann, A. Marston, M, Maillard and M. Hamburger, pp. 18–45

Proceedings of the Phytochemical Society of Europe. Oxford: Oxford Science

Publications

Hou, R,S., Duh, C.Y., Wang, S.K., and Chang, T.T. 1994. Cytotoxic flavonoids from the

leaves of Melicope triphylla. Phytochemistry 35: 271-272.

Hoult, J.R.S. and Paya, M. 1996. Pharmacological and biochemical actions of

simple coumarins: natural products with therapeutic potential. Gen. Pharmacol. 27:

713-722.

Haworth R.D., 1936. Natural resins. Annu. Rep. Prog. Chem., 33, 266-279

Howell, A. B., Vorsa, N., Der Marderosian, A. and Foo, L. Y. 1998. Inhibition of adherence

of P-fimbriated Escherichia coli to uroepithelial-cell surfaces by proanthocyanidin

extracts from cranberries. New England Journal of Medicine 339: 1085-1086.

Huang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J.A. and Prior, R.L. 2002. High-

throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel

liquid handling system coupled with a microplate fluorescence reader in 96-well

format. Journal of Agriculture and Food Chemistry 50: 4437-4444.

Huang, D., Ou, B. and Prior, R.L. 2005. The chemistry behind antioxidant capacity assays.

Journal of Agricultural and Food Chemistry 53 : 1841-1856.

Iannitti, T. and Palmieri, B. 2009. Antioxidant therapy effectiveness: an up to date. European

Review for Medical and Pharmacological Sciences. 13(4):245-78

Page 39: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

227

Ito, C., Otsuka, T., Ruangrungsi, N. and Furukawa, H. 2000. Chemical Constituents of

Micromelum minutum. Isolation and Structural Elucidation of New Coumarins.

Chemical and Pharmaceutical Bulletin 48(3) 334-338.

Ito, C. and Furukawa, H. 1987. Constituents of murraya exotica l structure elucidation of new

coumarins. Chemical and Pharmaceutical Bulletin 35: 4277–4285.

Ito, C., Furukawa, H., Ishii, H., Ishikawa, T. and Haginiwa, J. 1990. The chemical

composition of Murraya paniculata. The structure of five new coumarins and one new

alkaloid and the stereochemistry of murrangatin and related coumarins. Journal of the

Chemical Society, Perkin Transactions 1: 2047-2055

Jacobsen, N.E. 2007. NMR spectroscopy explained: simplified theory and applications and

examples for organic chemistry and structural biology. Hoboken, New Jersey: John

Wiley & Sons, Inc.

Jadhav, S.J., Nimbalkar, S.S., Kulkarni, A.D. and Madhavi, D.L. 1996. Lipid oxidation in

biological and food system. In Food Antioxidants Technological, Toxicological and

Health Perspectives, ed. D.L. Madhavi, S.S. Deshpande, and D.K. Salunkhe, pp. 5-63.

New York: Marcel Dekker.

Jain, S.K. 2006. Superoxide dismutase overexpression and cellular oxidative damage in

diabetes. A commentary overexpression of mitochondria superoxide dismutase in mice

protects the retina from diabetes. Free radical Biology Medicine 41:1187-1190.

Jang, H.D., Chang, K.S., Huang, Y.S., Hsu, C.L. and Lee, S.H. 2007. Principal phenolic

phytochemicals and antioxidant activities of three Chinese medicinal plants. Food

Chemistry 103: 749–756.

Jayasri, M.A., Mathew, L. and Radha, A. 2009. A report on the antioxidant activities of leaves

and rhizomes of Costus pictus D. Don. International Journal of Integrated Biology

5(1): 20-26.

Johns, S.R., Lamberton, J.A. and Sioumis, A.A. 1968. Furoquinoline alkaloids from Evodia

elleryana F. Muell. The structure of evellerine. Australian Journal of Chemistry 21:

1897–1901

Johnson, L.F. 1983. Microminutin: a Novel Cyto Toxic Coumarin from Micromelum-

Minutum Rutaceae. Journal of Organic Chemistry 48: 268-270.

Johnson, A.J., Kumar, R.A., Rasheed, S.A., Chandrika, S.P., Chandrasekhar, A., Baby, S., and

Subramoniam, A. 2010. Antipyretic, analgesic, anti-inflammatory and antioxidant

activities of two major chromenes from Melicope lunu-ankenda. Journal of

Ethnopharmacology 130: 267-271.

Page 40: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

228

Jones, D.T. 1995. Rutaceae in tree flora of Sabah and Sarawak. In FRIM, FD Sabah and FD

Sarawak, ed. E. Soepadmo and K.M. Wong, 1: 351-419. Kuala Lumpur: Ampang

Press.

Kalt, W., Lawand, C., Ryan, D. A. J., McDonald, J. E., Donner, H. and Forney, C. F. 2003.

Oxygen radical absorbing capacity, anthocyanin and phenolic content of highbush

blueberries (Vaccinium corymbosum L.) during ripening and storage. Journal of

the American Society for Horticultural Science 128: 917–923.

Kalt, W., Forney, C. F., Martin, A. and Prior, R. L. 1999. Antioxidant capacity, vitamin C,

phenolics, and anthocyanins after fresh storage of small fruits. Journal of Agricultural

Food Chemistry 47: 4638–4644.

Kirkiacharian S, Thuy DT, Sicsic S, Bakhchinian R, Kurkjian R, Tonnaire T 2002. Structure-

activity relationships of some 3-substituted-4-hydroxycoumarins as HIV-1 protease

inhibitors. Farmaco 57: 703-708.

Kamperdick, C., Van, N. H., Sung T.V. and Adam, G. 1999. Bisquinolinone alkaloids

from Melicope ptelefolia Phytochemistry 50 (1): 177-181

Kamperdick, C., . H. Van, T.V. Su G And C. Adam. 1997. Benzopyrans from Melicope

ptelefolia. Phytochemistry 45: 1049-1056.

Kamperdick, C., Phuong, N.M., Sung, T.V., Schmidt, J.and Adam, G. 1999. Coumarins and

dihydrocinnamic acid derivatives from micromelum falcatum. Phytochemistry 52,

1671–1676.

Kassim, N.K., Rahmani, M., Ismail, A., Sukari, M.A., Ee, G.C.L., Nasir, N. and Awang, K.

2013. Antioxidant activity-guided separation of coumarins and lignan from Melicope

glabra (Rutaceae). Food Chemistry 139(1-4): 87-92

Kayano, S., Yamada, N.K., Suzuki,T., Ikami,T., Shioaki, K., Kikuzaki, H., Mitani, T. and

Nakatani, N. 2003. Quantitative Evaluation of Antioxidant Components in Prunes

(Prunus domestica L.). Journal of Agricultural Food Chemistry 51: 1480–1485.

Khoo, H.E., Azlan, A., Ismail, A. and Abas, F. 2012. Influence of different extraction media

on phenolic contents and antioxidant capacity of defatted Dabai (Canarium

odontophyllum) fruit. Food Analytical Method 5: 339-350.

Khoo, H.E., Prasad, N., Ismail, A. and Mohd-Esa, N. 2010. Carotenoids from Mangifera

Panjang and Their Antioxidant Capacity. Molecules 15: 6699-6712

Kim, J.E., Lee, D.E., Lee, K.W., Son, J.E., Seo, S.K., Li, J., Jung, S.K., Heo, Y.S., Mottamal,

M., Bode, A.M., Dong, Z. and Lee, H.J. 2011. Isorhamnetin suppresses skin cancer

through direct inhibition of MEK1 and PI3-K. Cancer Prevention Research 4(4): 582-

91

Page 41: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

229

K ing ho r n, A. D. 2001 . P har ma co g no s y in t he 21s t

ce nt u r y. J ou rna l o f

Pharmacy and Pharmacology 53 (2): 135–148.

Komala, I., Rahmani, M., Sukari, M.A., Ismail, H.B.M., Ee, G.C.L. and Rahmat, A. 2006

Furoquinoline alkaloids from Melicope bonwickii (F. Muell.) T. Hartley. Natural

Product Research 20: 355-360.

Komala, I., 2000. Isolation and Biological Activity of naturally Occuring Compounds From

Melicope Luna Ankenda (Gaertn) T. Hartley, Melicope Bonwickii (Full-Muell) T.

Hartley and Tetradium Sambucinum (BL) Hartley, Master Thesis, Universiti Putra

Malaysia.

Kong, Y.C., But, P.P.H., Ng, K.H., Li, Q., Cheng, K.F. and Waterman, P.G. 1988.

Micromelum—a key genus in the chemosystematics of the clauseneae. Biochemical

Systematics and Ecology 16: 485–489.

Kostova, I. 2005. Synthetic and natural coumarins as cytotoxic agent. Current Medicinal

Chemistry - Anti-Cancer Agent 5: 29-46.

Kulisic, T., Radonic, A., Katalinic, V. and Milos, M. 2004. Use of different methods for

testing antioxidative activity of oregano essential oil. Food Chemistry 85, 633–640.

Kumar,V., Karunaratne,V., Sanath, M.R., Meegalle, K. and Macleod, J.K. 1990. Two

fungicidal phenylethanones from euodia lunu-ankenda root bark. Phytochemistry 29

(1): 243-245

Lalitha, K.G., Sathish, R., Regupathi, T., Natarajan, K., Kalaiselvi, P. and Venkatachalam, T.

2011. Anti-inflammatory activity of barks of Evodia lunu-ankenda (Geartn) Merr.

Pharmaceutical Research 4: 639-640

Lalitha, K.G., Venkatachalam, T., Rathinavel, G., Kishor Kumar, V. and Kalaiselvi, P. 2010.

Evaluation of analgesic activity of Evodia lunu-ankenda (Gaertn) Merr. Bark. Der

Pharmacia Sinica 1: 7-10

Lamberton, J.A., Price, J.R. and Redcliffe, A.H. 1967. Micromelin, a new coumarin from

Micromelum minutum pubescens (Forst. f.) Seem (Family Rutaceae) structure.

Australia Journal of Chemistry 20: 973-979.

Latip, J., Hartley, T.G., and Waterman, P.G. 1999. Lignans and coumarins metabolites from

Melicope hayesii. Phytochemistry 51: 107-110.

Lee, R.E, Bykadi, G. and Ritschel, W.A. 1981. Inhibition of prostaglandin biosynthesis by

coumarin, 4-hydroxy coumarin and 7-hydroxycoumarin. Arzneimittelforsch 31: 640-

642.

Page 42: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

230

Lee, S.K., Zakaria, H.M., Cheng, H.S.,Luyengi, L., Gamez, E.J., Mehta, R., Kinghorn, A.D.,

and Pezzuto, J.M. 1998. Evaluation of the antioxidant potential of natural products.

Combinatorial Chemistry & High Throughput Screening 1: 35-46

Lekphrom, R., Kanokmedhakul, S., Kukongviriyapan, V. And Kanokmedhakul, K. 2011. C-7

oxygenated coumarins from the fruits of micromelum minutum. Archives of Pharmacal

Research 34(4): 527-31

Li, S.G., Tian, H.Y., Ye, W.C. and Jiang, R.W. 2011. Benzopyrans and furoquinoline

alkaloids from Melicope pteleifolia Biochemical Systematics and Ecology 39 (1): 64-67

Lida, T., Nakano, M. and Ito, K. 1982. Hydroperoxysesquiterpene and lignan constituents of

Magnolia kobus. Phytochemistry 21: 673–675.

Liu, T., Liao, H., Yuan, K. and Zhang, Y. 2012. A new flavone from the Melicope

patulinervia (Merr. & Chun) Huang. Journal of Chemical Research 36 (1): 31

López, M., Martínez, F., Del Valle, C., Ferrit, M. and Luque, R. 2003. Study of phenolic

compounds as natural antioxidants by a fluorescence method. Talanta 60: 609-616.

Luo, X., He, W., Yin, H., Li, Q., Liu, Q., Huang, Y. and Zhang, S. 2012. Two New

Coumarins from Micromelum falcatum with Cytotoxicity and Brine Shrimp Larvae

Toxicity. Molecules. 17(6): 6944-6952.

Luo, X., Qi, S., Yin, H., Xiao, Z., and Zhang, S. 2009. Micromelosides A–D, four new

coumarins from the stem bark of Micromelum falcatum. Magnetic Resonance in

Chemistry 47 (12): 1110-1114.

Ma, C. H., Ke, W., Sun, Z. L., Peng, J. Y., Li, Z.X., Zhou, X., Fan, G. R. and Huang, C. G.

2006. Large-scale isolation and purification of scoparone from Herba artemisiae

scopariae by high-speed counter-current chromatography. Chromatographia 64: 83-87

Ma, C.Y., Case, R.J., Wang, Y.H., Zhang, H.J., Tan, G.T., Van Hung, N., Cuong, N.M.,

Franzblau, S.G., Soejarto, D.D. and Fong, H.H.S. 2005. Anti-tuberculosis constituents

from the stem bark of Micromelum hirsutum. Planta Medica 71: 261–267.

MacDonald-Wicks, L. K., Wood, L. G. and Garg, M. L. 2006. Methodology for the

determination of biological antioxidant capacity in vitro: a review. Journal of the

Science of Food and Agriculture 86 (13): 2046-2056.

Manandhar, M.D., Hussaini, F.A. Kapil, R.S. and Shoeb, A. 1985. Bacteriostatic heterocycles

from Euodia lunu-ankenda. Phytochemistry 24: 199-200.

Marco, G.J. 1968. A rapid method evaluation of antioxidants. Journal of the American Oil

Chemists' Society 45: 594-598.

Page 43: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

231

Matkowski, A. and Wolniak, D. 2005. Plant phenolic metabolites as the free radical

scavengers and mutagenesis inhibitors BMC Plant Biology 5(1): S23

Meyer, A.S., Yi, O.S., Pearson, D.A., Waterhouse, A.L. and Frankel, E.N. 1997. Inhibition of

human low-density lipoprotein oxidation in relation to composition of phenolic

antioxidants in grapes (Vitis vinifera). Journal of Agricultural and Food Chemistry 45:

1638–1643.

McCormick, J.L., McKee, T.C., Cardellina, H.J. and Boyd, M.R. 1996. Inhibitory natural

products. 26 quinoline alkaloids from Evodia roxburghiana. Journal of Natural

Product 59: 469-471.

Miller, H.E., Rigelhof, F., Marquart, L., Prakash, A. and Kanter, M. 2000. Antioxidant

content of whole grains breakfast cereals, fruits and vegetables. Journal of the

American College of Nutrition 19: 312-319.

Miyawaki ,T., Aono, H., Toyoda-Ono, Y., Maeda, H., Kiso, Y. and Moriyama, K. 2009.

Antihypertensive effects of sesamin in humans. Journal of Nutrition Science Vitaminol

(Tokyo) 55: 87-91.

Mokbel, M.S. and Hashinaga, F. 2006. Evaluation of the antioxidant activity of extracts from

buntan (Citrus garandis Osbeck) fruit tissues. Food Chemistry 94: 529-534.

Moon, J.K. and Sibamoto, T. 2009. Antioxidant assays for plant and food components.

Journal of Agricultural and Food Chemistry 57:1655-1666.

Moure, A., Cruz, J.M., Franco, D., Domíngueza, J.M., Sineiro, J., Domíngueza, H.,Nùñez,

M.J. and Parajo, J.C. 2001. Natural antioxidants from residual sources. Food Chemistry

72: 145-171.

Moreira, P.I., Zhu, X., Liu, Q., Honda, K., Siedlak, S.L., Harris, P.L., Smith, M.A. and Perry,

G. 2006. Compensatory responses induced by oxidative stress in Alzheimer disease

Biological Research 39: 7-13.

Muhamad Zakaria and Mustafa Ali Mohd. 2010. Traditional Malay medicinal Plants Institut

Terjemahan Negara Malaysia Berhad, Kuala Lumpur: 104.

Murray, R. D. H., Mendez, J. And Brown, S. A. 1982. The Natural Coumarins-Occurrence,

Chemistry and Biochemistry, Chichester: John Wiley & Sons Ltd.

Murray, R.D.H., Sutcliffe, M. and Mcabe, P.H. 1971. Claisen rearrangements-IV. Oxidative

cyclization of two coumarin o-isoprenylphenols. Tetrahedron 27: 4901-4906.

Musa, K.H., Abdullah, A., Jusoh, K. & Subramaniam, V. 2011. Antioxidant Activity of Pink-

Flesh Guava (Psidium guajava L.): Effect of Extraction Techniquesand Solvents . Food

Analytical Methods 4:100–107

Page 44: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

232

Muyard, F., Bissoue, A.N., Bevalot, F., Tillequin, F., Cabalion, P. and Vaquette, J. 1996.

Acetophenones and other constituents from the roots of Melicope erromangensis.

Phytochemistry 42 (4): 1175-1179

Naito, Y., Uchiyama, K., Mizushima, K., Kuroda, M., Akagiri, S., Takagi, T., Handa, O.,

Kokura, S., Yoshida, N., Ichikawa, H., Takahashi, J. and Yoshikawa, T. 2006.

Microarray profiling of gene expression patterns in glomerular cells of astaxanthin-

treated diabetic mice: a nutrigenomic approach. International Journal of Molecular

Medicine 18:685-695

Nakahara, K., Trakoontivakorn, G., Alzoreky, N., Ono, H., Onishi-Kameyama, K. & Yoshida,

M. (2002): Antimutagenicity of some edible Thai plants, and a bioactive carbazole

alkaloid, mahanine isolated from Micromelum minutum. Journal of Agricultural and

Food Chemistry 50: 4796-4802.

Nazrul Islam, S.K., Gray, A.I., Waterman, P.G. and Ahasan, M. 2002. Screening of eight

alkaloids and ten flavonoids isolated from four species of the genus Boronia (Rutaceae)

for antimicrobial activities against seventeen clinical microbial strains. Phytotheraphy

Research 16(7):672-674.

Neoh, B.T. 2006. Chemical Constituents and Biological activity of Kaempferia Angustifolia,

K. Rotunda, Spermacoce articularis and S. Exilis. PhD Thesis, Universiti Putra

Malaysia

Newman, D.J., Cragg, G.M. and Snader, K.M. 2000. The influence of natural products upon

drug discovery. Natural Product Reports 17(3): 215–234

Newman, D.J., Cragg, G.M. and Snader, K.M. 2003. Natural products as source of new drugs

over the period 1981-2002. Journal of Natural Products 66: 1022-1037.

Nishino, H. 1999. Anti-tumor-promoting effects of 8-substituted 7-methoxycoumarins on

epstein-barr virus activation assay. Cancer Letter 138: 87–92.

Niu X.M., Li, S.H., Jiang, B., Zhao, Q.S.and Sun, H.D. 2002 Constituents from the roots of

Heracleum rapula Franch. Journal of Asian Natural Products Research 4(1): 33-41

Noguchi, C., and Nikki, E. 2000. Phenolic antioxidants: A rationale for design and evaluation

of novel antioxidant drugs for atherosclerosis. Free Radical Biology & Medicine 28:

1538−1546

Noraida, A. 2005. Penyembuhan Semula Jadi dengan Herba PTS Litera Utama Kuala

Lumpur: 47

Osawa, T. 1994. Novel natural antioxidants for utilization in food and biological systems.

p241-251. In Biochemistry of Plant Food-Materials in the Tropics. ed. I. Uritani, V.V.

Page 45: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

233

Garcia and E.M. Mendoza, pp. 4113-4117. Tokyo, Japan: Postharvest Japan Scientific

Societies Press.

Ou, B., Hampsch-Woodill, M. And Prior, R.L. 2001. Development and validation of an

improved oxygen radical absorbance capacity assay using fluorescein as the

fluorescent probe. Journal of Agriculture and Food Chemistry 49: 4619-4626.

Ou, B., Hampsch-Woodill, M., Flanagan, J., Deemer, E., K., Prior, R. L. and Huang, D. 2002.

Novel fluorometric assay for hydroxyl radical prevention capacity using fluorescein as

the probe. Journal of Agricultural Food Chemistry 50: 2772–2777

Parsons, I.C., Gray, A. I., Hartley, T. G. and Waterman, P.G. 1999. Acetophenones and

coumarins from stem bark and leaves of Melicope stipitata. Phytochemistry 37 (2):

565-570

Payá, M., Halliwell, B. and Houl, J.R.S. 1992. Interactions of a series of coumarins with

reactive oxygen species: scavenging of superoxide, hypochlorous acid and hydroxyl

radicals. Biochemical Pharmacology 44: 205–214.

Paz-Elizur, T., Sevilya, Z., Leitner-Dagan, Y., Elinger, D., Roisman, L.C. and Livneh, Z.

2008. DNA repair of oxidative DNA damage in human carcinogenesis: potential

application for cancer risk assessment and prevention. Cancer letter 266: 60-72.

Phillipson, J.D. 1995. A matter of some sensitivity. Phytochemistry 38: 1319-1343.

Phillipson, J.D. 1999b. Radioligand-receptor binding assays in the search for bioactive

principles from plants. Journal of Pharmacy and Pharmacology 51: 493-503.

Pischetsrieder, M., Rinaldi, F., Gross, U. and Severin, T. 1998. Assessment of the

antioxidative and prooxidative activities of two aminoreductones formed during the

Maillard reaction: effects on the oxidation of β-carotene, N -acetylhistidine, and cis-

alkenes. Journal of Agricultural and Food Chemistry 46: 2945-2950.

Poullain,C., Girard-Valenciennes, E. and Smadja, J. 2004. Plants from reunion island:

evaluation of their free radical scavenging and antioxidant activities . Journal of

Ethnopharmacology 95: 19–26

Pongboonrod, S. 1958. "Maitet Muang Thai," Kasembunakij Press, Bangkok, 624-625.

Pradhan, D., Tripathy, G. and Patanaik, S. 2012. Anticancer Activity of Limonia acidissima

Linn (Rutaceae) Fruit Extracts on Human Breast Cancer Cell Lines. Tropical Journal

of Pharmaceutical Research 11(3): 413

Preedy, V.R., Reilly, M.E., Mantle, D. and Peters, T.J. 1998. Oxidative damage in the liver

disease. Journal of the International Federation of Clinical Chemistry 10: 16-19.

Page 46: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

234

Prior, R. L. 2003. Fruits and vegetables in the prevention of cellular oxidative damage. The

American Journal of Clinical Nutrition 78(3):570-578

Prior, R.L., Hoang, H., Gu, L., Wu, X., Bacchiocca, M., Howard, L., Hampsch-Woodill, M.,

Huang, D., Ou, B. and Jacob, R., 2003. Assays for hydrophilic and lipophilic

antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and

other biological and food samples. Journal of Agricultural and Food Chemistry 51,

3273–3279.

Prior, R.L., Cao, G., Matin, A., Sofic, E., McEwen, J., O’Brien, C., Lischner, N., Ehlenfeldt,

M., Kalt, W., Krewer, G. and Mainland, C.M. 1998. Antioxidant capacity as influenced

by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species.

Journal of Agricultural and Food Chemistry 46: 2686–2693.

Rahmani, M., Hin, T.Y.Y., Ismail, H.B.M., Sukari, M.A and Waterman, P.G. 1994. New

coumarin and dihydrocinnamic acid derivatives from two Malaysian populations of

Micromelum minutum. Phytochemistry (Oxford) 37: 561-564.

Rahmani, M., Susidarti, R.A., Ismail, H.B.M., Sukari, M.A., Hin, T.Y.Y, Lian, G.E.C, Ali,

A.M., Kulip, J. and Waterman, P.G. 2003. Coumarins from Malaysian Micromelum

minutum. Phytochemistry (Amsterdam) 64: 873-7.

Rahmani, M., Hin, T.Y.Y., Ismail, H.B.M., Sukari, M.A. and Manas, A.R. 1993.

Microminutinin: A novel coumarin from Micromelum minutum. Planta Medica 59: 93-

94

Ramsewak, R.S., Nair, M.G., Strasburg, G.M., DeWitt, D.L. and Nitiss, J.L. 1999.

Biologically active carbazole alkaloids from Murraya koenigii. Journal of Agricultural

and Food Chemistry 47(2): 444-447.

Rice-Evans, C. A., Miller, N. J. and Paganga, G. 1997. Antioxidant properties of phenolic

compounds. Trends Plant Science 2: 152-159.

Rice-Evans,C. A., Miller, N. J. and Paganga, G. 1996. Structure-antioxidant activity

relationships of flavonoids and phenolic acids. Free Radical Biology & Medicine 20:

933-956.

Rincon, S., del Rio R.E., Sandoval-Ramirez, J., Meza-Reyes S., Montiel-Smith, S.,

Fernandez, M.A., Farfan, N. and Santillan, R. 2006. A new route for the preparation of

the 22,23-dioxochlorestane side chain from diosgenin and its application to the

stereocontrolled construction of the 22R,23S-diol function. Tetrahedron 62 : 2594-

2602.

Ritchie, E., Taylor, W.C. and Vautin, S.T.K. 1965. The constituents of Melicope

broadbentiana F.M. Bail. The structures of melibentin, melicopol and

methylmelicopol. Australian. Journal of Chemistry 18: 2021–2034.

Page 47: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

235

Riyanto, S. 2000. Chemical Studies and bioactivities of some selected medicinal plants: 107-

111, Universiti Putra Malaysia.

Roy, M.K., Thalang, V.N., Trakoontivakorn, G. And Nakahara, K. 2005. Mahanine, a

carbazole alkaloid from micromelum minutum, inhibits cell growth and induces

apoptosis in u937 cells through a mitochondrial dependent pathway. British Journal of

Pharmacology 145: 145–155.

Ruch, R.J., Cheng, S.J. and Klaunig, J.E. 1989. Prevention of cytotoxicity and inhibition of

intercellular communication by antioxidant catechins isolated from Chineese green tea.

Carcinogenesis 10: 1003-1008.

Rufino, M.S.M., Alves, R.E., de Brito, E.S., Pérez-Jiménez, J., Saura-Calixto, F. and Mancini-

Filho, J. 2010. Bioactive compounds and antioxidant capacities of 18 non-traditional

tropical fruits from Brazil. Food Chemistry 121: 996-1002.

Sanchez-Medina, A., Garcia-Sosa, K., May-Pat, F. and Pena-Rodriguez, L.M. 2001

Evaluation of biological activity of crude extracts from plants used in Yacatecan

traditional medicine. Part I. Antioxidant, antimicrobial and betaglucosidase inhibition

activities. Phytomedicine 8(2):144-51.

Sakunpak, A. and Panichayupakaranant, P. 2012. Antibacterial activity of Thai edible plants

against gastrointestinal pathogenic bacteria and isolation of a new broad spectrum

antibacterial polyisoprenylated benzophenone, chamuangone. Food Chemistry 130:

826–831.

Sakunpak A., Matsunami, K., Otsuka, H. and Panichayupakaranant, P. 2013. Isolation of

new monoterpene coumarins from Micromelum minutum leaves and their cytotoxic

activity against Leishmania major and cancer cells. Food Chemistry 139(1-4):458-463.

Semple, S.J., Nobbs, S.F., Pyke, S.M., Reynolds, G.D. and Flower, R.L. 1999. Antiviral

flavonoid from Pterocaulon sphacelatum, an Australian Aboriginal medicine. Journal

of Ethnopharmacology 68 (1-3):283-8.

Saliva, J.M.R., Darmin, N., Fernandez, Y. and Mitjavila, S. 1991. Oxygen free radical

scavenger capacity in aqueous models of different procyanidins from grape seeds.

Journal of Agricultural and Food Chemistry 39:1549-1552.

Shamaun, S.S., Rahmani, M., Hashim, N.M., Ismail, H.B.M., Sukari, M.A., Ee, G.C.L. and

Go, R. 2010. Prenylated flavones from Artocarpus altilis. Journal of Natural Medicines

64: 478-481.

Samuelsson, G. 2004. Drugs of Natural Origin: a Textbook of Pharmacognosy 5th

Swedish

Stockholm: Pharmaceutical Press

Sati, S.C., Sati, N., Rawat, U. and Sati, O.P. 2010. Medicinal plants as a source of

antioxidants. Research Journal of Phytochemistry 4: 213-224

Page 48: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

236

Scherer, R. and Godoy, H.T. 2009. Antioxidant activity index (AAI) by 2,2-diphenyl-1-

picryllhydrazyl method. Food Chemistry 112: 654-658.

Shaari K., Safri S., Abas, F., Lajis N.H. and Israf, D.A. 2006. A geranylacetophenone from

the leaves of Melicope ptelefolia. Natural Product Research 20(5):415-419

Shaari, K., Suppaia, V., Wai, L.K., Stanslas, J., Tejo, T.D., Israf , A., Abas, F., Ismail, I.S.,

Shuaib, N.H. , Zareen, S. and Lajis, N.H. 2011. Bioassay-guided identification of an

anti-inflammatory prenylated acylphloroglucinol from Melicope ptelefolia and

molecular insights into its interaction with 5-lipoxygenase. Bioorganic & Medicinal

Chemistry 19 (21), 6340-6347

Shahidi, F. 2000. Antioxidant in food and food antioxidants. Nahrung – Food 44: 158-163.

Shoji, N. Umeyama, A., Iuchi, A., Saito, N. and Ariahara, S. 1989. Two novel alkaloids from

Eudia rutaceacarpa. Journal of Natural Products 52: 1160-1162.

Sies, H., Stahl, W. and Sundquist, A.R. 1992. Antioxidant functions of vitamins. Vitamins E

and C, beta-carotene and other carotenoids. Annals of the New York Academy of

Sciences 669: 7-20.

Silva, W. P. K., Deraniyagala, S.A., Wijesundera, R.L.C., Karunanayake, E. H., and Priyanka,

U.M.S. 2001. Isolation of scopoletin from leaves of Hevea brasiliensis and the effect

of scopoletin on pathogens of H. brasiliensis. Mycopathologia 153: 199–202.

Simonsen, H.T., Larsen, M.D., Nielsen, M.W., Adsersen, A., Olsen, C.E., Strasberg, D.,

Smitt, U.W. and Jaroszewski, J.W. 2002. Methylenedioxy- and methoxyflavones from

Melicope coodeana syn. Euodia simplex. Phytochemistry 60: 817-820

Simonsen, H.T, Adsersen, A., Brenner, P., Heinrich, M., Smitt, U.W. and Jaroszewski, J.W.

2004. Antifungal constituents of Melicope borbonica. Phytotheraphy Research 18:

542–545.

Simonsen, H.T., Andersen, U.W., Smitt, U.W., Strasberg, D., and Jaroszewski, J.W. 2003.

Methoxyflavones from Melicope borbonica and M. obscura (Rutaceae). Biochemical

Systematics and Ecology 31: 327-330.

Singh, R., Singh B., Singh, S., Kumar, N. and Kumar, S. 2010. Umbelliferone – An

antioxidant isolated from Acacia nilotica (L.) Willd. Ex. Del. Food Chemisty 120: 825–

83.

Singleton, V.L. and Rossi, J.A. Jr. 1965. Colorimetry of total phenolics with

phosphomolybdic-phosphotungstic acid reagents. American Journal of Ecology and

Viticulture 16: 144-158.

Smith, G., Wang, E., Bartley, J.P. and Bott, R.C. 2011. Two crystal polymorphs of a

flavonoid from Melicope ellyrana. Acta Crystallography . 57(Pt 11):1336-1337.

Page 49: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

237

Sohrab, M.H., Chowdhury, R., Hasan, C.M. and Rashid, M.A. 2004. Chemotaxonomic

significance of polyoxygenated flavonoids from the leaves of Micromelum minutum.

Biochemical Systematics and Ecology 32: 829-31.

Soler-Rivas, C., Espin, C.J. and Wichers, H.J. 2000. An easy and fast test to compare total

free radical scavenger capacity of foodstuffs. Phytochemical Analysis 11, 330–338.

Srivastava, R.P. and Srivastava, G.K. 2006. Genotypic variation in nutritional composition of

pigeonpea seeds. Indian Journal of Pulses Research 19(2): 244-245.

Staal, F.J.T. 2000. Antioxidant therapy for aids. European Journal of Clinical Investigation

30: 841-842.

Stanner, S.A., Hughes, J., Kelly, C.N. and Buttriss, J. 2004. A review of the epidemiological

evidence for the ‘antioxidant hypothesis, Public Health Nutrition 7: 407-422.

Stevens, P.F., 2001 onwards. Angiosperm Phylogeny Website. Version 8, June 2007.

Available from: <http://www.mobot.org/MOBOT/research/APweb/>.

Su, T.L., Lin, F.W., Teng, C.M. and Chen K.T. 1998. Antiplatelet aggregation principles from

the stem and root bark of Melicope triphylla. Phytotherapy Research 12: 74-S76

Susidarti, R. A., Rahmani, M., Ali, A. M., Sukari, M. A., Ismail, H. B. M., and Kulip, J. 2007.

8-Methoxycapnolactone and stigmasterol from Micromelum minutum. Indonesian

Journal of Pharmacy 18: 105–109.

Susidarti, R. A., Rahmani, M., Ismail, H. B. M., Sukari, M. A., Hin, T. Y. Y. and Lian, G. E.

C. 2009.Cytotoxic activity of coumarins from Micromelum minutum. Pharmaceutical

Biology 47: 182–185.

Susidarti, R. A., Rahmani, M., Ismail, H. B. M., Sukari, M. A., Taufiq-Yap, Y. H., Lian, G. E.

C and Ali, A.M. 2006. A new coumarin and triterpenes from Malaysian Micromelum

minutum. Natural Product Research 20: 145–151.

Sweeney, M.I., Kalt, W., MacKinnon, S.L., Ashby, J. and Gottschall-Pass, K.T. 2002.

Feeding rats diets enriched in lowbush blueberries for six weeks decreases ischemia-

induced brain damage. Nutritional Neuroscience 5: 427– 431.

Tachibana, Y., Kikuzaki, H., Lajis, N.H. and Nakatani, N. 2001. Antioxidative activity of

carbazoles from Murraya koenigii leaves. Journal of Agricultural and Food Chemistry

49 (11): 5589-5594

Tal, B., Tamir, I., Rokem, J.S. and Goldberg, I. 1984. Isolation and characterization of an

intermediate steroid metabolite in diosgenin biosynthesis in suspension cultures of

Dioscorea deltoidea cells. Biochemical Journal 219: 619-624.

Tan, B. K., Alitheen, N. B., Yeap, S. K., Ali, A. M. and Mawardi, R. 2009. Cytotoxic effect

Page 50: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

238

of 2’, 3’-epoxyisocapnolactone and 8-hydroxyisocapnolactone-2’3’-diol isolatedfrom

Micromelum minutum (G. Forst.) Wight and Arn. in human T-lymphocyte leukemia

CEM-SS cells. African Journal of Biotechnology 8: 4632–4641.

Tanaka, N., Nishikawa, K. and Ishimaru, K. 2003. Antioxidative capacity of extracts and

constituents in Cornus capitata adventitious roots. Journal Agricultural and Food

Chemistry 51: 5906–5910

Tantivatana, P., Ruangrungsi, N., Vaisiriroj, V., Lankin, D.C., Bhacca, N.S., Borris, R.P.,

Cordell, G.A. and Johnson, L.F. 1983. Microminutin, a novel cyto-toxic coumarin from

micromelum minutum (rutaceae). Journal of Organic Chemistry 48: 268–270.

Tiveron, A.P., Melo, P.S., Bergamaschi, K.B., Vieira, T.M. F.S., Regitano-d’Arce M.A.B. and

Alencar, S.M. 2012. Antioxidant Activity of Brazilian Vegetables and Its Relation with

Phenolic Composition. International Journal of Molecular Science 13: 8943-8957

Tosun, A., Ozkal, N., Baba, M. and Tokuyama, T. 2005. Pyranocoumarins from Seseli

gummiferum subsp. corymbosum growing in Turkey. Turkish Journal of Chemistry 29:

327 – 334.

Trumble, J.T. and Millar, J.G. 1996. Biological Activity of Marmesin and Demethylsuberosin

against a Generalist herbivores, Spodoptera exigua (Lepidoptera: Noctuidae). Journal

Agricultural Food Chemistry 44: 2859-2864.

Tsuda, T., Kato, Y. and Osawa, T. 2000. Mechanism for the peroxynitrite scavenging activity

by anthocyanins. FEBS Letters 484: 207-210.

Umezawa T., 2003. Diversity in lignan biosynthesis. Phytochem. Revision 2: 371-390

Van, N. H., Kamperdick, Sung, T.V. and Adam, G. 1998. Benzopyan diminers from

Melicope ptelefolia. Phytochemistry 48(6): 1055-1057.

Vaya, J., Paula, A.B. and Aviram, M. 1997. Constituents from licorice roots, isolation,

structure elucidation and antioxidative capacity toward LDC oxidation. Free Radical

Biology & Medicine 2: 302–313

Velioglu, Y.S., Mazza, G., Gao, L. and Oomah, B.D. 1998. Antioxidant Activity and Total

Phenolics in Selected Fruits, Vegetables, and Grain Products. Journal Agricultural and

Food Chemistry 46 (10): 4113–4117.

Wang, H., Cao, G. and Prior, R.L. 1997. Oxygen radical absorbing capacity of anthocyanins.

Journal of Agricultural and Food Chemistry 45 (2): 304–309

Wu, X., Gu, L., Holden, J., Haytowitz, D.B., Gebhardt, S.E., Beecher, G and Prior, R.L. 2004.

Development of a database for total antioxidant capacity in foods: a preliminary study

Journal of Food Composition and Analysis17: 407-422.

Page 51: UNIVERSITI PUTRA MALAYSIA BIOASSAY GUIDED …psasir.upm.edu.my/id/eprint/49830/1/FS 2013 43RR.pdf · alkaloid. Setakat ini, laporan mengenai sebatian bioaktif bertanggungjawab terhadap

© COPYRIG

HT UPM

239

Wu, J., Wu, Y and Yang, B.B. 2002. Anticancer activity of Hemsleya amabilis extract. Life

Sciences 71: 2161-2170.

Wu, C.C., Ko, F.N., Wu, T.S. and Teng, C.M. 1994. Antiplatelets effects of calusine-D-

isolated from Clausena exacavata. Biochimica et Biophysica Acta (BBA)-Gen.

Subjects 1201: 1-6.

Yan, X., Suzuki, M., Ohnishi-Kameyama, M., Sada, Y., Nakanishi, T. and Nagata, T. 1999.

Extraction and Identification of Antioxidants in the Roots of Yacon (Smallanthus

sonchifolius). Journal of Agricultural and Food Chemistry 47:4711-4713

Yan, X., Nagata, T. and Fan, X. 1998. Antioxidative activities in some common seaweeds.

Plant Foods for Human Nutrition 52: 253–262

Yassa, N., Sharififar, F. and Shafiee, A. 2005. Otostegia persica as a source of natural

antioxidants. Pharmaceutical Biology 43: 33–38.

Yap, Y.H.1994. Chemical Constituents of Micromelum minutum and acronychia Laurifolia

(Rutacae). Master Thesis. Universiti Malaysia.

Youdim, K.A., Martin, A. and Joseph, J.A.. 2000. Incorporation of the elderberry

anthocyanins by endothelial cells increases protection against oxidative stress. Free

Radical Biology & Medicine 29: 51–60.

Young, I.S. and Woodside, J.V. 2001. Antioxidants in health and diseases. Journal of Clinical

Pathology 54: 176-186.

Yuk, C. S., Lee, S. J., Yu, Kim, T.H., Hahn, Y.K., Lee, S. Y. Men, Y.H., Hahn, M. W. and

Lee, K. S. 1981. Korean Herbal Medicine, pp 267, Seoul: Cyechuk Publishing

Company.

Zhang, D., Yasuda, T., Yu, Y., Zheng, P., Kawabata, T., Ma, Y., and Okada, S. 1996. Ginseng

extract scavenges hydroxyl radical and protects unsaturated fatty acids from

decomposition caused by iron-mediated lipid peroxidation. Free Radical Biology and

Medicine 20: 145-150.

Zhang, P. And Omaye, S.T. 2001 Antioxidant and prooxidant roles for β-carotene, α-

tocopherol and ascorbic acid in human lung cells. Toxicology In Vitro 15:13–24

Zubia, M., Fabre, M.S., Kerjean, K.L., Stigers-Pouvreau, V., Fauchon, M. and Deslandes, E.

(2009). Antioxidant and antitumoural activities of some Phaeophyta from Brittany

coast. Food Chemistry 116: 693-701.