51
Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik, Garching EURATOM Association IAEA, Vienna 29-31 July 2015

Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

Uncertainty Quantification forPlasma- and PWI- models

U. von Toussaint, R. Preuss, D. CosterMax-Planck-Institut für Plasmaphysik, Garching

EURATOM Association

IAEA, Vienna 29-31 July 2015

Page 2: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

Overview

Motivation

Approaches to Uncertainty Quantification

Example: Vlasov-Poisson-system

Sensitivity Analysis

Emulators: Gaussian Processes

Example: SOLPS-data

Challenges

Page 3: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

Preliminaries

Two types of uncertainties (lack of knowledge) are to be distinguished:

Isolatable uncertainties eg.

- electron mass

- cross-sections from first principles

- ...

non-isolatable uncertainties

- most non-trivial simulations eg. climate- or plasma-simulation output

- complex/integrated data analysis

Page 4: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

Verification, Validation and Uncertainty Quantification in a scientific software/modeling context:

Simulations provide approximate solutions to problems for which we do not know the exact solution.

This leads to three more questions:• How good are the approximations?• How do you test the software?• 'Predictive' power?

Motivation

Page 5: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

Different Assessment Techniques for Different Sources of Uncertainty or Error

Problem:

• Model(s) not good enough• Numerics not good enough

• Algorithm is not implemented correctly

• Algorithm is flawed• Problem definition not good enough

5

Assessment:

• Validation

• Code verification

• Code verification• Uncertainty

quantification

Motivation

Page 6: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

6

Motivation

Recognized in many other (engineering) fieldsExample: V&V process flowchart from the ASME Solid Mechanics V&V guide (2006).

May be to simplistic...

Page 7: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

7

Motivation: Design Cycle

physical model of system

mathematical model

numerical model

computer simulation

validation

Simulation-based decision making e.g. design, control, operations,

material selection, planning

scalable algorithms & solvers

data/observations

(multiscale) models

advanced geometry &discretization schemesparameter inversion

data assimilationmodel/data error controluncertainty quantification

visualizationdata mining/science optimization

stochastic modelsuncertainty quantification

verificationapproximation / error control

Page 8: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

8

Motivation

• Systematic Uncertainty Quantification in Plasma Physics

• Often still at the very beginning (parameter scans)

• Importance increasingly realized ('shortfall'): V&V&UQ

• connection with 'surrogate' models

Setting up a reference case based on relevant, non-trivial and

well understood system in plasma physics:

Vlasov-Poisson-Model

Page 9: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

9

UQ-Model System: Vlasov-Poisson

• Phase-space distribution function f(x,v) of collisionless plasma:

q

Page 10: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

10

UQ-Model System: Vlasov-Poisson

• Phase-space distribution function f(x,v,t) of collisioness plasma:

System details:• 1+1-dimensional (x,v-space)• Solver: Semi-Lagrangian-solver• Boundary conditions: periodic• Negligible B-field contributions• Static ion-background• External random E-field contribution E

0(x)

Effect of the random E-field?

Page 11: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

11

Methods in Uncertainty Quantification

Methods applied in Uncertainty Quantification

➢ Sampling

➢ Spectral Expansion

➢ Galerkin Approach

➢ Stochastic Collocation

➢ Discrete Projection

➢ Surrogate models (eg. Gaussian processes)

Page 12: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

12

➢ Sampling approach

Use random sample S={x(i), i=1,...,N}

to compute distribution p(y) and moments :

Methods in Uncertainty Quantification

⟨ y j⟩=1N∑i=1

N

M (x i) j

var ( y )=⟨ y2⟩−⟨ y ⟩2

+ higher order terms….

Advantages: - Includes all correlations (→ verification)- Parallel & straightforward

Downside: - sample point density: curse of dimensions: ρ~ρ0

-Dim

Page 13: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

13

➢ Sampling approach

Example: Vlasov-Poisson, random external field E=E0+N(μ=0,σ=0.1E

0)

t=0.4 s t=2.8 s

Results

Page 14: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

14

➢ Sampling approach

Example: Vlasov-Poisson, random external field E=E0+N(μ=0,σ=0.1E

0)

t=0.4 s t=2.8 s

Results

Page 15: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

15

➢ Spectral Expansion (Polynomial chaos expansion)

Methods in Uncertainty Quantification

Page 16: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

16

➢ Spectral Expansion

Two different approaches:

➢ Intrusive methods depend on the formulation and

solution of a stochastic version of the original model

➢ Nonintrusive methods require multiple solutions of the

original (deterministic) model only

Methods in Uncertainty Quantification

Page 17: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

17

➢ Spectral Expansion – Non-intrusive I

Methods in Uncertainty Quantification

Stochastic Collocation

Page 18: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

18

➢ Spectral Expansion – Non-intrusive I

➢ Computation of multi-dim integrals:

- exploit structure (Gaussian p(ξ)): Gauss-Hermite quadrature

Methods in Uncertainty Quantification

with

Mean <Y>=a0 and variance σ2:

Page 19: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

19

➢ Spectral Expansion – Non-intrusive I

Methods in Uncertainty Quantification

Example: Vlasov-Poisson, random external field E=E0+N(μ=0,σ=0.1E

0)

t=0.4 s t=2.8 s

4-th order expansion in excellent agreement with MC in fraction of computing time

Page 20: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

20

➢ Spectral Expansion – Non-intrusive II

Methods in Uncertainty Quantification

Now: Random field M(x,t) instead of random variable(s)

Infinite number of random variables ??

Example: E-field fluctuation

Page 21: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

21

➢ Covariance matrix: correlation length essential:

no white noise!

Methods in Uncertainty Quantification

Page 22: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

22

➢ I) Polynomial chaos expansion – Galerkin approach:

Methods in Uncertainty Quantification

Page 23: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

23

➢ I) Covariance matrix:

Methods in Uncertainty Quantification

Eigenvectors Eigenvalues

Page 24: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

24

➢ Expansion of random field in KL-representation

Methods in Uncertainty Quantification

Page 25: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

25

➢ Expansion of random field in KL-representation

Methods in Uncertainty Quantification

Page 26: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

26

➢ Expansion of random field in KL-representation

Methods in Uncertainty Quantification

Page 27: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

27

➢ Expansion of random field in KL-representation

Methods in Uncertainty Quantification

Page 28: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

28

➢ Expansion of random field in KL-representation

Methods in Uncertainty Quantification

Page 29: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

29

➢ Random samples of random field in KL-representation

Methods in Uncertainty Quantification

Page 30: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

30

➢ Vlasov-Poisson with fluctuating external E-field: Uncertainty?

➢ Now multivariate Gauss-Hermite integration:

Result

Example: M=2, P=3

Page 31: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

31

Sensitivity Assessment

➢ I) Polynomial chaos expansion

Page 32: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

32

Sensitivity Assessment: Example

➢ I) Polynomial chaos expansion

Page 33: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

33

➢ Vlasov-Poisson with fluctuating external E-field: all gentle...

➢ Initial E-field amplitude more important than E-field variation

Result

Page 34: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

34

➢ Vlasov-Poisson with fluctuating external E-field

Result

Page 35: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

35

Conclusion I

➢ Spectral expansion approach

- intrusive methods: best (only?) suited for new codes

- non-intrusive methods: general purpose approach

- selection of collocation points

- sparse methods for larger problems possible

- influence of input parameter combinations as

byproduct: Sobol decomposition

➢ Proof of principle for 1+1 Vlasov-Poisson Equation

➢ Validated against MC-approach (and other test cases)

➢ Some implementations: eg. DAKOTA

• Best suited for medium number of dimensions (O(10)) and

moderately expensive simulators (forward models)

Page 36: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

36

Emulators

x Code y( x)

A simulator is a model of a real process Typically implemented as a computer code Think of it as a function taking inputs x and giving

outputs y:

An emulator is a statistical representation of this function Expressing knowledge/beliefs about what the output

will be at any given input(s) Built using prior information and a training set of

model runs

What if conditions for Spectral expansion do not hold? Use of emulators as surrogate for simulators

Focus on Gaussian Processes

Page 37: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

37

Page 38: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

38

Page 39: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

39

Page 40: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

40

Page 41: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

41

SOLPS-Application

SOLPS-Data base: - 1500 parameters- collected by D. Coster

Idea: exploit for initialization, scans

Page 42: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

42

SOLPS-Data

• Result of GP-interpolation• Color code: normalized variance

Page 43: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

43

SOLPS-Application

Input-space locations with largest information gain:

Page 44: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

44

SOLPS-Application

• GP-algorithm established

- Mid size problems: 1000 data points, ~50 dimensions- many areas of application, ie. fitting of MD-potentials to

DFT-data

but...

Page 45: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

45

SOLPS-Application

• Present data base “insufficient” …• Physic based line-scans (power, density, temperature...)• Does not cover space (eg. approx. Latin hypercube)

Page 46: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

46

SOLPS-Application

• GP-algorithm now in routine application• Present data base insufficient

Semi-automated data base generation (eg. Bayesian Experimental Design):

• Design Cycle:

- Determine best location(s) for next simulation(s): Utility

- Recompute uncertainty estimates

- Check for design criteria: exit?

Page 47: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

47

SOLPS-Application

• GP-algorithm now in routine application• Present data base insufficient

Semi-automated data base generation (eg. Bayesian Experimental Design):

• Design Cycle:

- Determine best location(s) for next simulation(s): Utility

- Recompute uncertainty estimates

- Check for design criteria: exit?• Challenges: - adequate coverage of relevant input space

- code convergence

Page 48: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

48

Gaussian Processes: Challenges

• Scaling: N3 : not yet prohibitive

• Correlated output

- Standard approach: independent scalar response variablesDrawback: Prediction not satisfactory: co-variance

- Difficulty: design of pos. def. cross-correlation matrices

• Phase transitions: 'global' scale of covariance matrix

Page 49: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

49

Conclusion II

• Gaussian Processes are powerful tool for high-dimensional interpolation → fast emulators → UQ

• Analytical formulas for mean and variance → exp. Design• Best suited for scalar output

• Automated experimental design cycle: - works on test cases- At present: too much human intervention needed for

plasma codes- Problems appear solvable

• Correlated output: research and tests ongoing

Page 50: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

50

The End

Thank you!

Page 51: Uncertainty Quantification for Plasma- and PWI- models · Uncertainty Quantification for Plasma- and PWI- models U. von Toussaint, R. Preuss, D. Coster Max-Planck-Institut für Plasmaphysik,

GEM-SA course - session 2 51

References1. O'Hagan, A. (2006). Bayesian analysis of computer code

outputs: a tutorial. Reliability Engineering and System Safety 91, 1290-1300.

2. Santner, T. J., Williams, B. J. and Notz, W. I. (2003). The Design and Analysis of Computer Experiments. New York: Springer.

3. Rasmussen, C. E., and Williams, C. K. I. (2006). Gaussian

Processes for Machine Learning. Cambridge, MA: MIT Press.

Acknowledgement: Many thanks to C.E. Rasmussen, Y. Marzouk and B. Sudret from which some of the conceptual slides have been adapted or inspired.