51
Phymhmisrry. Vol. 31. No. 1. pp. 2199 2249. 1992 Primed I” Grem Bntam. 0031-9422192 ss.oo+o.oo C 1992 PergamonPmss Ltd REVIEW ARTICLE NUMBER 67 TRITERPENOIDS SHASHI B. MAHATO, ASHOKE K. NANDY and GITA ROY Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Calcutta 700032, India (Received 19 June 1991) Key Word Index--Triterpenoids; newer skeleton triterpenes; isolation; structure elucidation; natural distribution; chemical modification; synthesis:biological activity. Abehnct-Ttiterpenoids isolated and characterized from various sources are reviewed. The newer techniques used in their isolation and structure elucidation, the newer skeleton triterpenoids characterized, chemical modifications and synthetic studies reported are discussed. A compilation of the triterpenoids isolated during the period 1982-1989 along with their occurrence. available physical data, spectroscopy and X-ray analysis used for their characterization, is included. The biological activities of the triterpenoids are also described. INTRODIJfflON Triterpenoids are the most ubiquitous non-steroidal secondary metabolites in terrestrial and marine flora and fauna. Their presence, even in non-photosynthetic bac- teria, has created interest from both evolutionary and functional aspects. Although medicinal uses of this class of compounds are rather limited, considerable recent work in this regard strongly indicates their great potential as drugs. Moreover, despite the remarkable diversity that is already known to exist among the carbon skeletons of triterpenes, new variants continue to emerge. The purpose of this review is to present an overview of triterpenoids in relation to their occurrence, the newer methodology used for their isolation and structure elu- cidation and the biological activities of these compounds reported during the period 1982-1989. Our previous review on triterpenoids [I] covered the literature for the period 1977-1981. Earlier comprehensive reviews [24] are available on the subject covering the literature up to 1976. In recent years reviews of specific and general interest have appeared. Besides the continuing general reviews on triterpenoids [7-93, a few specific reviews have been published, e.g. on pentacyclic triterpenoids [IO], on cycloartane compounds detected in 43 species belonging to 34 genera and 32 families [ 111, and on the constituents of Azadirachta indica [ 123. An excellent review on bac- terial triterpenoids giving an account on triterpenoid occurrence as well as function in bacteria has also been published [ 133. ISOLATION AND PURIFICATION 2199 The general methods of solvent extraction and column chromatography of the extract followed by preparative TLC are effective in most cases for the isolation of the triterpenoids. However, in the cases of complex mixtures of closely related isomeric products special techniques, such as HPLC, GC-MS and capillary CC [ 143, are found to be helpful. Twenty lupane triterpenoids including five (ZOR.S)-epimeric pairs have been isolated from the chloro- form extractives of the lichen Pseudocyphehria rubella using GC-MS procedures [IS]. Twenty-four oxygenated lanostanoid acids, including eight pairs of stereoisomers and five pairs of positional isomers in Ganoderma lucidum were separated by reversed-phase HPLC [ 163. The capa- city factors obtained in MeOH-H,O and MeCN-H,O solvent systems were useful for the correlation of the molecular polarities due to the presence of multiple oxygenated functional groups in the products. The num- ber and position of functional groups, as well as their stereochemistry, played important roles in governing the polarity of these compounds. The unique stereochemical character and eluting sequences of these lanostanoid acids provided information to generate emperical rules for predicting the role of individual polar functional groups in the chromatographic behaviour during re- versed-phase HPLC. A method for the separation of substituted olean-12-en-28-oic acids from the corres- ponding urs- l2-en-28-oic acid isomers has been reported by Lewis et al. [ 173.The method involves the treatment of the mixture with bromine in acetic acid. Members of the ursene family were inert under the conditions used. Thus, a mixture of ursolic acid and oleanolic acid was dissolved in 90% HOAc-EtOH and treated with bromine in acetic acid to give a mixture of the bromolactone of oleanolic acid and unreacted ursolic acid. This mixture was separ- ated by solvent extraction or chromatography. The au- thors of this work have also suggested that a similar separation is possible with the l2-en-28-01 systems [ 173. Kawanishi et 01. [ 181 have reported the separation of the pentacyclic triterpenes. tylolupenols A and B from Tylophora kerrii, by automatic recycling HPLC. It is noteworthy that triterpenoids, like many other secondary metabolites. occur in nature either in the free state or as glycosides. In the latter case cleavage of the sugar moiety by acid or enzymic hydrolysis, or by other techniques, is sometimes necessary before isolation and

Trite r Pen Oids

Embed Size (px)

Citation preview

Page 1: Trite r Pen Oids

Phymhmisrry. Vol. 31. No. 1. pp. 2199 2249. 1992 Primed I” Grem Bntam.

0031-9422192 ss.oo+o.oo C 1992 Pergamon Pmss Ltd

REVIEW ARTICLE NUMBER 67

TRITERPENOIDS

SHASHI B. MAHATO, ASHOKE K. NANDY and GITA ROY

Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Calcutta 700032, India

(Received 19 June 1991)

Key Word Index--Triterpenoids; newer skeleton triterpenes; isolation; structure elucidation; natural distribution; chemical modification; synthesis: biological activity.

Abehnct-Ttiterpenoids isolated and characterized from various sources are reviewed. The newer techniques used in their isolation and structure elucidation, the newer skeleton triterpenoids characterized, chemical modifications and synthetic studies reported are discussed. A compilation of the triterpenoids isolated during the period 1982-1989 along with their occurrence. available physical data, spectroscopy and X-ray analysis used for their characterization, is included. The biological activities of the triterpenoids are also described.

INTRODIJfflON

Triterpenoids are the most ubiquitous non-steroidal secondary metabolites in terrestrial and marine flora and fauna. Their presence, even in non-photosynthetic bac- teria, has created interest from both evolutionary and functional aspects. Although medicinal uses of this class of compounds are rather limited, considerable recent work in this regard strongly indicates their great potential as drugs. Moreover, despite the remarkable diversity that is already known to exist among the carbon skeletons of triterpenes, new variants continue to emerge.

The purpose of this review is to present an overview of triterpenoids in relation to their occurrence, the newer methodology used for their isolation and structure elu- cidation and the biological activities of these compounds reported during the period 1982-1989. Our previous review on triterpenoids [I] covered the literature for the period 1977-1981. Earlier comprehensive reviews [24] are available on the subject covering the literature up to 1976. In recent years reviews of specific and general interest have appeared. Besides the continuing general reviews on triterpenoids [7-93, a few specific reviews have been published, e.g. on pentacyclic triterpenoids [IO], on cycloartane compounds detected in 43 species belonging to 34 genera and 32 families [ 111, and on the constituents of Azadirachta indica [ 123. An excellent review on bac- terial triterpenoids giving an account on triterpenoid occurrence as well as function in bacteria has also been published [ 133.

ISOLATION AND PURIFICATION

2199

The general methods of solvent extraction and column chromatography of the extract followed by preparative TLC are effective in most cases for the isolation of the triterpenoids. However, in the cases of complex mixtures of closely related isomeric products special techniques, such as HPLC, GC-MS and capillary CC [ 143, are found

to be helpful. Twenty lupane triterpenoids including five (ZOR.S)-epimeric pairs have been isolated from the chloro- form extractives of the lichen Pseudocyphehria rubella using GC-MS procedures [IS]. Twenty-four oxygenated lanostanoid acids, including eight pairs of stereoisomers and five pairs of positional isomers in Ganoderma lucidum were separated by reversed-phase HPLC [ 163. The capa- city factors obtained in MeOH-H,O and MeCN-H,O solvent systems were useful for the correlation of the molecular polarities due to the presence of multiple oxygenated functional groups in the products. The num- ber and position of functional groups, as well as their stereochemistry, played important roles in governing the polarity of these compounds. The unique stereochemical character and eluting sequences of these lanostanoid acids provided information to generate emperical rules for predicting the role of individual polar functional groups in the chromatographic behaviour during re- versed-phase HPLC. A method for the separation of substituted olean-12-en-28-oic acids from the corres- ponding urs- l2-en-28-oic acid isomers has been reported by Lewis et al. [ 173. The method involves the treatment of the mixture with bromine in acetic acid. Members of the ursene family were inert under the conditions used. Thus, a mixture of ursolic acid and oleanolic acid was dissolved in 90% HOAc-EtOH and treated with bromine in acetic acid to give a mixture of the bromolactone of oleanolic acid and unreacted ursolic acid. This mixture was separ- ated by solvent extraction or chromatography. The au- thors of this work have also suggested that a similar separation is possible with the l2-en-28-01 systems [ 173. Kawanishi et 01. [ 181 have reported the separation of the pentacyclic triterpenes. tylolupenols A and B from Tylophora kerrii, by automatic recycling HPLC.

It is noteworthy that triterpenoids, like many other secondary metabolites. occur in nature either in the free state or as glycosides. In the latter case cleavage of the sugar moiety by acid or enzymic hydrolysis, or by other techniques, is sometimes necessary before isolation and

Page 2: Trite r Pen Oids

2200 S. B. MAHATO er 01.

purification of the triterpenoid moiety. The usual method of acid hydrolysis ofglycosides often leads to artifacts and many of the triterpenoids known today are artifacts. For

example, panaxadiol, panaxatriol [ I9 3 careyagenol D [20]. aescigenin [Zl], soyasapogenols C. D. and F [22, 231, saikogenin A and saikogenin C [24]. are acid rearranged triterpenoids formed during acid hydrolysis of the parent glycosides. Alternative newer techniques of

splitting the carbohydrate moiety are sometimes adopted for the isolation of genuine aglycones. A few such tech- niques have been reported previously [l, 25, 261. The newer technique of hydrolysis using alcoholic-alkali metal solution containing a trace of water has proved to be useful for isolation of acid labile aglycones [27. 283.

The USC of n-BuOH -Na-metal at water bath temperature (95%) for 48 hours afforded the genuine triterpenoid anagalligenin B [29] as the major product which, how- ever, could not be isolated by the usual acid hydrolysis.

STRUCTURE ELUCIDATIOY

The application of the newer spectroscopic techniques has tremendously eased the problem of structure elucida- tion of natural products which. in most cases, is now successfully achieved without resorting to the convcn- tional chemical degradative procedures. Although the widespread adoption of these techniques in structure elucidation studies may appear to have created a limita- tion on the generation of new chemical knowledge, these methodologies have nevertheless opened up new vistas and research activities can now move forward into areas which were otherwise inaccessible.

N hI R sprctrosc~op)

The developments in NMR spectroscopy for structure elucidation are very remarkable. “C NMR spectroscopy

is now very frequently employed for the structural ana- lysis of triterpenoids using various methods of signal

assignment, e.g. attached proton test (APT), insensitive nucleus enhancement by polarization transfer (INEPT).

distortionless enhancement by polarization transfer (DEPT), ZD-spectroscopy and single frequency off-reson- ante decoupling. The recent development of ZD-NMR spectroscopy has provided a number of signal assignment techniques which are very useful in the area of natural products chemistry, including triterpenoids. Total assign- ment of 13C and ‘H NMR spectra of three isomerlc

triterpenoids, taraxasterol, pseudotaraxasterol and lupeol by ZD-NMR has been reported by Reynolds et 01. [30]. They have demonstrated that the indirect “C-‘H shift-correlated pulse sequence, XCORFE (X-nucleus

correlation with fixed evolution time) 1313 was very

useful for unambiguously assigning 13C NMR spectra of these products without resorting to the use of shift

reagents as an aid to assignment [32]. These authors have

also pointed out that XCORFE has advantages over Kessler’s COLOC sequence [33]. The ability of XCORFE to distinguish two-and three-bond connectivi- ties was particularly useful in completing the assignment of carbons which show no methyl ‘H cross peaks. The sensitivity of this sequence is particularly impressive. The spectra were obtained for 50 mg of each sample with a total measuring time of two hours using a spectrometer operating at 400 MHz.

The new triterpenoid carbon skeleton of the pouoside

aglycones which parallels that of the C,,-carotenoids was determined by spectroscopic data, especially extensive ‘H and “C NMR data and ZD-NMR experiments [34]. Information gleaned from a COSY plot and dttierence double resonance (DDR) experiments led to the formula- tion of partial structures. Proton carbon correlation experiments, optimized separately for detecting one-and two-/three-bond couplings, confirmed the partial struc-

tures and unambiguously identified thechemical shifts for the three pairs of geminal protons whose shifts could not

be confidently assigned from ‘HNMR data alone be- cause of inadequate dtspersion in the upfield region of the spectrum. The vicinally coupled sequence of protons was also confirmed by COSY and relayed coherence transfer

(RCT) [35] I!D-spectra. The authors have demonstrated the usefulness of a long-range COSY spectrum 1353 for confirming the presence of geminal dimethyl groups on a carbon next to the methine carbon. The utility of a NOESY spectrum for structure elucidation has also been demonstrated. The structure of two triterpenes possessing novel side chains isolated from the fungus Pisolithus tinctoriu, were elucidated by chemical correlation with known compounds coupled with spectroscopic methods involving nuclear Overhauser effect (NOE) difference spectroscopy [36]. The structures of two new nortriter-

penes. glycinocclcpins B and C isolated from the aqueous extracts of roots of Phasc~du.s rdquris [373 have been determined from their 13CNMR spectra taken under completely decoupled and off-resonance conditions, com- bined with INEPT studies and their ‘HNMR spectra. The COSY spectra and extensive decoupling studies. as well as the measurement of the NOE differcncc spectra. were of much help in the determination of the structures.

The structures ofseveral neu Ianastane-type tetracyclic trlterpenes isolated from the surface part of the gills of Gwwdrrmcr lucidurn [M. 3YJ were elucidated by detailed analysts of ‘H and ‘“C NMR spectra using two-dimen- sional ‘H -‘H and ‘H-‘“C shift correlation techniques. For example. ‘H- ‘H shift correlated spectra allowed in

some cases the assignments of most of the proton signals. In particular. the signals due to methyl groups, except the

C-30(4%)-and C-3114/1)-methyl groups. were precisely assigned on the basis of the presence of long range coupling between Cl,-19 and H-12. H,-I8 and H-121 and

H,-21 and H-22. The assignments of the C-30 and C-31 methyl signals were achieved by measurement of the NOE difference spectra. Irradiation of the methyl signal

at (5 I. I2 gave appreciable NOE rncreascs of the H-5 and H-62 signals, while irradiation at ci I .I0 gave a small NOE

increase of the H-6fi signal. The ‘H -“C shift correlation spectra led readily to precise assignments of the “C signals, except for the quaternary carbon signals, which

were assigned by comparison of the “CNMR spectral

patterns of the known compounds.

The molecular skeletons of two of the less common triterpenes. moretenone (hop- 22-ene-3-one) and 3-acetyl-

alcuritolic acid (3/3-acetoxy-taraxer-l4-ene-28-oic acid) were elucidated by ‘H “C shift correlated two dimen- sional spectra obtained for polarization transfer via two- bond and three-bond ‘.‘C ‘H coupling correlation, in conjunction with related experiments [40].

The ‘“CNMR spectra offive pairs of IX/I- and 182-l I- oxo-oleanolic acid derivatives were recorded and the signals were assigned by Wrreciono et al. [4l]. The chemical shafts of C- 12, C- 13, C- 17. C- 18 and C-28 are of diagnostic value for the determination of the D/E-junc-

Page 3: Trite r Pen Oids

Triterpenoids 2201

bon stereochemistry. The stereochemistry of D/E-ring fusion of some pentacyclic triterpenoid derivatives was also determined by Grahn et al. [42] from the 13C NMR spectral analyses. It was shown that the analyses of the 13C chemical shifts of variously substituted 18~/18/3- pentacyclic triterpenes could be significantly simplified by the use of a multivariate data-analytical approach. The authors claimed that the present approach minimizes the risk from incorrect assignments or other errors which are associated with large data tables.

The conformation of cycloartenol, a possible mem- brane component, was investigated by Milon et al. [43] by NMR spectroscopy and molecular mechanics. Molecular modelling suggested that two conformations of nearly equal energy coexist, differing mainly at the level of ring C and each having rings A, B in a chair and half chair conformation, respectively, with ring C being 1,3- diplanar in one and in the chair conformation in the other. A complete assignment of the ‘H and “CNMR spectra of the triterpene and the entire coupling network in rings A and B were determined by various NMR techniques. Low temperature NMR experiments showed a fast equilibrium between the two conformations. It was concluded that the cyclopropane ring produces a flexibil- ity at the level of ring C which may be important for the membrane properties of the triterpene.

CD spectroscopy

The circular dicroism spectra of C-8 and C-14 substitu- ted onocerane-3,21-diones was interpreted [44] by assuming ring A (and ring D) of the compounds in equilibrium between chair and twist forms with variable ratios. This equilibrium was affected by minor structural changes at remote positions and by the polarity of the solvent. An increase of the steric bulkiness of the 8p- substituent increases the proportion of the twist form. The A-ring conformation of compounds which carry an oxygenated function at 8/l was greatly affected by changes of the solvent polarity. The conformation of the com- pounds without an 8fi-oxygenated substituent was al- most solvent independent. These conclusions were sup- ported by measurements of solvent shift in the ‘H NMR spectra of the compounds. The authors proposed the presence of a new kind of steric effect which they called the ‘8/I-substituent effect’. Klinot et al. 1453 reported that the A-ring of 3-oxotriterpenoids allobetulone and 3-0x0- lupane-28-nitrile exists 40% in the boat form from com- parison of their dipole moments to those of 2x-methyl derivatives (chair model) and 2b-methyl compounds (boat model). The same result was obtained from the CD spectra of these two compounds and of other 3-oxotriter- penoids and from isomerization of 2a- and 2fl-substituted ketones.

NEW SKELETONS OF TRITERPENOIDS

During the period covered by this review a number of triterpenoids possessing novel carbon frameworks have been isolated from various sources. The structures of these triterpenoids are of much interest from the point of view of their formation biogenetically.

Sipholane

The sipholane skeleton (21) consists of a cis-octa- hydroazulene linked via an ethylene bridge to a trans-

decahydrobenzoxepine. The structure of the sipholane skeleton was established by an X-ray diffraction analysis of one of the natural compound derivatives [46]. Eight new triterpenes possessing this skeleton have been isol- ated from the Red Sea sponge Siphonochulina siphonella [47]. The X-ray derived structure of the major triterpene, sipholenol-A made possible the NMR and mass spectral interpretations and the structure elucidation of the addi- tional seven new compounds. Of special interest is the suggested biogenesis of the sipholanes starting from 2,3:6, 7: 18, 19-triepoxysqualene. In contrast to the single cyclization process that takes place in the biogenesis of tetra- and pentacyclic triterpenes, the suggested route leading to the sipholanes involves two consecutive cycliz- ations.

Siphonellane

Siphonellinol, a triterpene, possessing the new car- bocyclic skeleton, siphonellane (22) was also isolated from the marine sponge Siphonochulina siphonella by Carmely er 01. [48]. The proposed biogenesis of this triterpene shows a close relationship to that of the squalene-derived sipholanes and differs only in cycliz- ation of one half of the molecule.

Polypodane

A new oily triterpene hydrocarbon having a novel bicyclic carbon skeleton, polypodane (26) and named a-polypodatetraene was isolated from the fresh leaves of Polypodium jauriei and Lemmaphyllum microphyllum [49]. A related new triterpene, y-polypodatetraene, was isolated from leaves of Polysrichum ouato-poleaceum and P. polyblephatum [49]. A bicyclic diol possessing this polypodane skeleton has also been isolated by Boar er al. [SO] from gum mastic, the abundantly available resin obtained from the Mediterranean shrub Pistacia lentis-

cus. The structure and absolute stereochemistry of the bicyclic diol are fully consistent with its formation by interception of the bicyclic carbocation postulated as an intermediate in the cyclization of the chair-chair-boat conformation of (3Sksqualene-2,3-epoxide. This bicyclic triterpenoid retains all of the regio- and stereochemical features necessary for continued cyclization. The isola- tion of these bicyclic triterpenoids supports the postul- ation of van Tamelen and his co-workers [Sl], that the cyclization of squalene proceeds via a series of discrete conformationally rigid carbocationic intermediates.

Spirosupinane

The structure of spirosupinanonediol, a new triter- penoid isolated from Euphorbia supina has been estab- lished by spectral and X-ray analyses as 7(8+9)abeo-9S-

D:C-friedo-B’:A’-neogammaceran-8-one-3S,7S-diol with a novel skeletal system for which the name spirosu- pinane (27) has been proposed [52]. This is the first example of a triterpene possessing a Spiro-skeleton. The probable biogenesis of spirosupinanonediol involving an 8,9-dihydroxyfernane derivative has been rationalized c521.

Radermasinin

Radermasinin, a novel cytotoxic triterpene lactone isolated from Radermachia sinica was shown to have

Page 4: Trite r Pen Oids

2202 S. B. MAnAT er al.

23 24 Olcanonc ( I)

Urosonc (2) 30

23 24 Toroxastonc (3)

Frrcdelone (4)

23 24

Gornmocerone (5)

structure 31 by spectral data and single-crystal X-ray analysis of its monohydrate. It possesses a yem-dimethyl- vinyl group at C-18 in addition to a spiro y-hydroxy-y- lactone moiety at C-17 and its possible biogenetic path- way involving 21-hydroxy-l8z-olean-28-oic acid derivat- ive as precursor has been suggested [S3].

23 24 Serratone (6)

30-&g

Lupone (7)

23 24 Hopone (8)

23 24

Fernone (9)

. 22

Y2g 30

26 29

Dammorone (IO)

Baccharane

The structure of hosenkol-A. the first example of the natural baccharane (23) triterpenoid of the missing inter- mediate shionane (25) and lupane (7). has been deter- mined [54] by spectroscopic methods as well as by X-ray crystallographic analysis. The isolation of hosenkol-A

Page 5: Trite r Pen Oids

28 2e Lanortone (II) (30) (31)

26

27

Cucurbitonc (12)

_ 2i) is 23 24

Euphonc (13) Toroxeronc (I@)

21

Tirucollnc (14)

26

27

Protortonc (IS)

which has a unique Spiro-ring strongly supports the postulated biogenesis of lupane and shionane via baccharane.

Rearranged lanostanes

17,13-friedolanostane (36) and 8 (14+13R)abeo-17,13- friedolanostane (37), have been isolated from seeds of Abies mariesii [SS, 563, A.jrma [56] and A. sibirica [S-I]. The new rearranged lanostane skeletons (35-37) have been considered to be biosynthesized from the lanostane skeleton by enzymic dehydrogenation of H-17 or dehy- droxylation of OH-17 followed by successive l.tshifts of Some new rearranged lanostanoids having novel

carbon skeletons, such as 17.14-friedolanostane (35), methyl group(s) and a ring bond.

Triterpenoids 2203

. Apotlrucollone (b)

Glutonc (I71

26 27 Moloborlcone (19)

23 24 Onocerone (20)

Page 6: Trite r Pen Oids

S. B. MAHATO er al.

Slpholone (21) Polypodone (26)

3 2 Spiroruplnonc (27)

2Fi is Bocchorane (23)

Swcrtanc (261

Lcmmophyllane (24) Pfoffone (29)

Stuonone (251 Corotenold - IIke skeleton (30)

A few triterpenoids possessing the novel 14(13-+12)- ubeo lanostane skeleton (34) have been isolated from Kadsura longipedunculata [.58] and K. hereroclita [59].

Degraded and teurrawed lanosranes

Glycinoeclepin A, a natural hatching stimulus for soybean cyst nematode, has been isolated from the aque- ous extract of roots of kidney bean (Phuseoiur oulgaris). Its novel structure (41) was elucidated by spectroscopic and X-ray crystallographic analyses [6oJ. The structure 41 is characterized by migration of two methyl groups

involved in the C and D rings and oxidative cleavage of the B-ring with loss of one carbon atom, compared with those of cycloartanes (9&19-cyclolanostane), and is re- garded as a pentanortriterpene. Two other new nortriter- penes. glycinoeclepins B (42) and C (43) possessing a similar ring system to that of glycinoeclep~n A. but with a non-degraded side chain. have also been isolated from the same source [37].

Javeroic acid (44) and phellinic acid (45) having a novel degraded and rearranged Ianostane skeleton were isol- ated from Pheffinus pomaceus [61] and their structures were determined by a combination of chemical and

Page 7: Trite r Pen Oids

Trtterpcnotds 2205

AcO-

Radtrmor~n~n (31) Rearranged bnortanr (36)

26

27

” 24 Sorghumot (32) Rearranged Ianostone (St)

Rcarraflgcd fcrnanr (33)

Rearranged Ianostane (34)

27

Rearranged Ianostanr (35)

26

27

l-4 :, 4-hgwmonol (30)

f - Ir~gcrmanal (39)

Y (CH2)2CH=CM~(CH2)2CH-CM~CH~H(OHJCH-CM~2

HO

spectral analyses. The new carbon skeleton of these two

triterpenes was confirmed by X.ray crystallographtc ana. and monocychc carbon skeletons. have btcn isolated

lysib of the dimethyl ester of Jareroic acid. from rhizome5 of Iris yermanica [62]. The compounds are closely related to ambrcinc.

Carotenoid-like triterpenes

Ksebati and his co-workers [34] have isolated five new

triterpene galactosides named pouosides A-E from

Asteropus sp.. d Pacific marine ,ponge. The carbon

skeleton 30 of the pouoside aglycones is new and parallels

that ofthe C,,-carotenoids, with it\ terminal cyclohexane rings linked by a symmetrical. acyclic chain.

Swertane

New tkeleton monocyc lit. and bit v( lit triterpenoidc

Three new triterpenoids. a-irigermanal (38). ;-irigerma-

nal (39) and iridogermanal (40). possessing novel bicyclic

The structure and stereochemistry of swertanone, a triterpene ketone with a novel skeleton. swertane (28) isolated from Swertia c&rata [63]. have been established

from spectroscopic data and X-ray crystallographic ana-

lysis. A plausible biogenetrc pathway for the formation of the swertane skeleton has been envisaged involving cychzation of squalcnc-2.3-cpoxide in the usual manner leading to the nonclassical carbocation followed by a l.3-hydride shift from C.17 to C-21. a series of 1.2~shifts and elimination of a proton from C-7.

Mr

Page 8: Trite r Pen Oids

2206 S. B. MAHATO er al.

Glyctnocctcpin A (41)

Glyctnoccleptn 3 (42)

Glyclnoecleptn C (43)

H02C

Joverolc acid (44)

Phellmc ocld (45)

Extended hopone (48)

Pfaffanes

Pfaffic acid [64], a novel hexacyclic nortriterpene possessing the pfaffane skeleton (29) was isolated from Pfaf/;a panicdata and its structure was established by X-ray crystallographic analysis of its methyl ester. Sub- sequently, four new pfatfane-type nortriterpenes were isolated from P. puherulenra [65] together with pfaffic acid and its fi-D-glucuronopyranosidc.

CHEMICAL MODIFICATION AND SYNTHESIS

The structure elucidation of a natural product is no longer, or only rarely, an end in itself. While much of our

basic knowledge was in the past derived from degradative studies its extension today rests primarily on the synthesis of natural products and their analogues and their chem- ical modifications for a variety of purposes.

Skeletal rearrangemenrs

There have been considerable activities during the years on the studies of skeletal rearrangements of triter- penoids which have made valuable contributions to our knowledge of triterpcnoid chemistry. A detailed discus- sion on this aspect is beyond the scope of this review. However. some interesting transformations are described briefly.

Page 9: Trite r Pen Oids

Triterpenoids 2207

Edwards and Paryzek [66] first successfully intro- duced the Westphalen rearrangement for the trans- formation of lanostane to cucurbitane. 3/l-Acetoxy-9a- hydroxy-lanosta-1 l-one (I) derived from lanosterol yielded two 19(10+9/?)abeo lanostanoids, II and III when subjected to the rearrangement conditions.

Borontrifluoride etherate (BF,-Et,O)-catalysed re- arrangement [67, 683 of the ketoepoxide IV in acetic anhydride resulted in the formation of two 19(10+9&obeo compounds V and VI in addition to the unexpected 18( 13 -. 12fi)abeo compound VII as the major product.

Transformation of 3,7,9,1 I-tetraoxygenated lanostane derivatives, e.g. VIII (R = H, AC) into 3,7,1 I-trioxygenated cucurbit-l(lO)-enes such as IX (R’=H, R2 =H, AC; R’ = AC, R2 = H, AC) and cucurbit-5( IO)-enes such as X was achieved [69]. The steric and electronic factors influ- encing the course of dehydration under Westphalen conditions of 9a-hydroxylanostane derivatives were dis- cussed. Unusual autooxidation and dehydrogenation

AcO

AcO

AcO

AcO

promoted by RhCI, and Fe(CO), were also described. Wagner-Meerwein rearrangements in the taraxastane

type of triterpenoid derivatives were studied by Anjaneyulu et al. [70]. Taraxasterol (XI, R=H) and pseudotaraxasterol (XII, R = H) on heating with PCI, in hexane gave the corresponding ring A-nor-3,4-dichloro derivatives XIII, whereas with POCI, in pyridine gave the same rearranged product XIV without ring contraction. Solvolysis of XI (R =p-MeC,H,SO,) and XII (R=p- MeC,H,SO,) gave the same ring contraction product XV. The Wagner-Meerwein rearrangement of these two compounds (XI. XII) was rationalized mechanistically.

Acid catalysed rearrangement [7l] of trevoagenins A (XVI, R = z-Me) and B (XVI, R =/?-Me), two dammarane triterpenoids isolated from Treuoa rrineruis, in refluxing ethanol containing HCI for five hours gave lactones XVII (40%). XVIII (13%) and cyclodammaranone XIX (2%). The formation of XVII and XVIII was explained by a heterolytic fragmentation mechanism.

3B,28-Diacetoxy-l8~,19B-epoxylupane (XX) on treat-

XI XII

Page 10: Trite r Pen Oids

S. B. MAHATO er al.

I? 4 o --f0l-l

@

0

HO Cl+OH

,’

XVI

Me2CH -CO- CHZ- CH2

7f

Me

XVIII

ment with non-aqueous HF in anhydrous chloroform gave a novel skeletally rearranged triterpenoid (XXI). possessing the baccharane skeleton as the major product (53%) along with lupadiene (XXII. 13%) [72].

A novel skeletal rearrangement of marsformoxide-A (XXIII), an 1 Ir, 12z-epoxide prepared from z-amyrin, was observed 1731 when the epoxide was treated with HBr in acetic acid to give rearranged products XXIV-XXVI.

A new method [74] for opening the cyclopropane ring of cycloartane derivatives was described. Cycloartanone (XXVII) (prepared from cycloartenol) was converted to XXVIII, which rearranged in ethanolic H,SO, to give XXIX. This experiment was an attempt to establish the biogenetic origin of the 9/j-hydroxymethyl in cucurbita- tins.

An intramolecular carbonyl-mediated electrochemical oxidation was shown to occur during the anodic oxida- tion [75] of methyl 30acetylglycyrrhetate (XXX) to provide the skeletally rearranged triterpene (XxX1). This rearrangement is also applicable to glycosides as the sugars remain unchanged during the oxidation.

Partid synthesis

Although the structure elucidation ofa natural product using modern instrumentation has become a routine affair. the partial syntheses of novel triterpenoids from easily available compounds are sometimes adopted as a

xv

Me CH2-CH2-CO - CHMe2

-K . H

% L (0 0

XVII

-.

.o:F

-_ f

OH

OO

XIX

confirmative step for establishment of the structure. Thus the structure of marformosanone (XxX11). isolated from Diospyros peregrina [76]. was confirmed by its partial synthesis from z-amyrin.

Starting from 3/?.7/?,18-trihydroxylanastane. the agly- cone (XxX111, R = H) of bivittoside C. was synthesized in a six step sequence in 6Yb overall yield [77]. A key step was the treatment of hydroxylactone (XXXIV) with

EtO,CN-SO,NEt, to give unsaturated lactone (XxX111. R = AC).

Lansiolic acid (XXXV) was prepared [78] from a.;‘- onoceradiene dione (XXXVI) via regioselective reduction with NaBH, in isopropanol. conversion to oxime by NH,OH, Beckmann rearrangement and hydrolysis by KOH in ethanol.

The structures of zeylasterol (XXXVII. R=H. R’ = CHO. R2 = Me) and desmethylzeylastcronc (XXXVII. R = R’ = H. R’ = CO,H) isolated from E;okoo~~ :er/uri- ica were confirmed [79] by chemical correlation with trimethylzeylasterone (XXXVII. R = R2 = Me. RI =CO,Me). synthetically prepared in four steps from pristimerin (XXXVIII).

The partial synthesis of isomultiflorenol (XxX1X. R = H) from alnus-5( IO-en-3P-yl-acetate (XL) was described [80]. The acetate (XL) on epoxidation with MCPBA gave the epoxide (XL]). which underwent back- bone rearrangement in the presence of borontrifluride etherate to gave multiflora-5,8-diene-3/j-yl-acetate (XLII). The latter compound on hydrogenation then gave the

Page 11: Trite r Pen Oids

Tritcrpcnoids 2209

AcO

Br /

I & \

AcO , ,

XXIV

AcO 0

XXVI XXVII

monoacetate (XXXIX, R=Ac), hydrolysis of which fi- nally yielded isomultiflorenol.

The dihydro derivative (XLIII) of the novel triterpen- oid thysanolactone (XLIV) was synthesized [Sl] from the readily available pentacyclic triterpenoid, hydroxy- hopanone (XLV).

Some 29-norlanostane derivatives, e.g. 29-norlanostan- 24one and -23-one, 29-norlanost-9( 1 l)-en-24-one, -23- one and 3-one, 29-norlanost-7-en-3-one, and 29-nor- lanostan-3-one, were synthesized from commercial lanosterol containing dihydrolanosterol for their use in the identification of 29-norlanostane derivatives isolated from a plant fossil [82].

Approaches to total synthesis

Total synthesis of a triterpene molecule is a formidable task and elegant synthetic methods in this direction are yet to be established. However, there are reports on the synthesis of triterpenoid precursors which may conveni- ently be used as intermediates for the synthesis of target compounds.

A model for tetracyclic triterpene side chain synthesis has been reported [83] which has also been further developed by Reusch et al. [84]. Although many methods

2\ / 0

@ , x XVIII XXIX

have been developed for the side chain construction starting from l7-keto steroids [85, 861, very few of them have been applied to equivalent l4-methyl analogues. Bycylononanone (XLVI) was used as a model for the sparingly available 17-0~0 triterpenoid derivatives to explore the synthesis since this bicyclic ketone (XLVI) incorporated both of the angular methyl groups found at the C/D-ring juncture in triterpenes of the lanostane, euphane and cucurbitane families. Wittig olefination of the ketone (XLVI) gave the alkene (XLVII), which (XLVII, R= Me) on diborane reduction, followed by oxidation with PCC (pyridinium chlorochromate), yielded the ketone (XLVIII). This on further Wittig reaction with appropriate alkylidenephosphorane (e.g. Me,CHCH,CH,CN=PPh,) afforded a mixture of the potential triterpene synthons (XLIX) epimeric at C-20. The authors have further developed [84] the synthesis by introduction of an oxygen function at C-8 of XLVI (C-16 of triterpene) concurrently with the side chain elabor- ation. It is of interest to note here that many naturally occurring triterpenoids possess hydroxyl or carbonyl functions at this position. Since these functions were shown to be easily removed or transformed, their pre- sence enhanced the scope and flexibility of procedures that made use of their directional influence to achieve

Page 12: Trite r Pen Oids

S. B. MAHATO CI d.

XXX(R=Horsugor) XXX1 (R=H or sugar)

CO H I *

XXXVI XXXVII XXXVIII

selective configurational control at C-20. Two alternative methods were described for stereoselective preparation of intermediate enones (L, E and Z). Finally the synthesis of LI was accomplished by a facial selective conjugate addition of lithum bis-4-methyl-3-pentenyl-cuprate to Z-L, whereas the E-isomer gave only an unresolved mixture.

A stereoselective synthesis of the A, B, C-ring system of pollinastanol (LII). a triterpene bearing 9fl,lO/?- cyclopropane ring with a cis B/C-ring fusion was described by Kametani er al. [87]. The key intermediate, the /?.y-unsaturated ketone (LIII), was prepared from benzocyclobutene carbonitrite (LIV) by a series of reac- tions of which stereoselective thermal cycloaddition of the benzocyclobutene derivative (LV) was an important step to control the stereochemistry of B,/C-ring juncture. The /l,T-enone (LIII) was then subjected to intra- molecular y-alkylation to give the cyclopropane derivat- ive (LVI), which on reduction with NaBH, afforded the desired product (LVII).

Most of the triterpenes are hydrophobic m nature but the sugar moieties of the triterpene glycosides render them hydrophilic, leading to their easy absorption in the body tissues. Moreover. because the receptors for differ- cnt sugars arc present in various body organs. the syn- thetic glycosides might be expected to be more effective as therapeutic agents. Attempts have been made by some workers to synthesize triterpene glycosides of potential therapeutic interest. Thus, glycosylation of triterpenes of the dammarane series was described by Atopkina et al. [8X-90]. Glycosidation of 3-epiocotillol (LVIII, R’ = R’ = RJ = H) and betulafolienetriol oxide (LVIII, R’ = R’ = H: R’ = OAc) by acetobromoglucose catalysed by Ag- zeolite or Hg(CN), in various solvents gave the mixture containing the 3-O-. 25O-mono- and diglucosides. The yield of the products was found to be dependent on the nature of the solvents. Kocnigs-Knorr glycosidation of betulafolienetriol (LIX) gave 3-. 12-. 20-mono- and 3.12-.

Page 13: Trite r Pen Oids

AcO

Triterpenoids

XLlll R= CHMc2

XLIV R- C<$

XLVI XLVII XLVIII

2211

AcO

l-4

XLIX

Me6

LI

3,2@di-0-/?-D-glucopyranosides. However, glycosidation by the Hellerich reaction was accompanied by a dehydra- tion in the side chain which led to the corresponding 20- dehydroxy derivatives.

Miscellaneous

A general method for functionalization of the C-4 methyl group in triterpenes, leading finally to 4ararboxyl or 4x-hydroxymethyl derivatives of triterpenes was de- scribed by Dev et al. [913. The method was illustrated by conversion of cyclolaudanone (LX) into methyl 3-0x0- cyclolaudan-29-oate (LXI). The latter was transformed into a known nortriterpene, cycloeucalanone (LXII) by a simple sequence of reactions. The key step was the selective oxygenation of4a-methyl group by photolysis of

LII

LXIII in cyclohexane containing iodine and Pb(OAc), followed by oxidation with CrO, and aq. H,SO, to give lactone (LXIV).

A method for side chain degradation of euphol. a tetracyclic triterpene, has been reported [92]. Euphol (LXV, R=H) was converted into androsterone (LXVI, R=Me). The key step was the photochemical degrada- tion of ketones LXVII (R = Me; R’ =CHMe, or Ph) to yield pregnadiene LXVIII (R = Me).

The transformation of a triterpenoid ring A into a steroidal enone by a new short route was studied [93]. Exhaustive Baeyer-Villiger oxidation of 4,4-dimethyl- cholestan-3-one gave the lactone (LXIX), which on methylation by MeLi gave hemiacetal (LXX). Oxidation of this hemiacetal by pyridinium dichromate or pyridin- ium chlorochromate yielded the secocholestanedione

Page 14: Trite r Pen Oids

2212 S. B. MAHATO er al

LXIl,R’-H, f?‘.Me L

-Y -. \

l-i

-A e H _b,-# ; 0 *.

\

HOW2 \ O-4 0 RO {fi

, r’

LXlll LXIV LXV LXVI

LXVII LXVlll

(LXXI), which could be cyclized by known methods to cholest-4~ene-3-one (LXXII).

Oxidative transformations of some 12-oleanenes and 12-ursenes were studied by Majumder and Bagchi [943. For example, 38-acetoxy-olean-l2-en-28-oic acid (LXXIII) on treatment with H,O, in boiling AcOH gave the corresponding 1 la,l2a-epoxy 28+ 13glactone (LXXIV) and 12a-hydroxy 28+ 13/&lactone (LXXV). Ac- cording to the authors the CO,H-28 group was first converted into C(O)O,H, which epoxidized the A”- double bond. H,O,-Se02 in Me,C-OH was found to be a good reagent for the preparation of I la,l2a- oxidotriterpenoids with the oleanane and ursane skeletons [95].

Anodic oxidation as the key reaction converted olean- 12-ene sapogenols into olean- I 1 -en-28.13/I-olide,

LXIX LXX

1 la, 12z-epoxyoleanan-28,13/I-olide and 13/3,28_epoxy- olean-11-ene derivatives in high yields [96]. Since protection of hydroxyl groups in the starting compounds was not required, this conversion was directly applied to hederagenin oligoglycosides to obtain oligoglycosides of olean-1 l-ene sapogenols. The phase transfer catalysed sodium periodate oxidation of olean-12-en-28-01 derivat- ives gave expected 13/?,28-epoxyolean- 11 -ene derivatives c971.

Epimerization ofsome pentacyclic triterpene acid agly- cones during acid hydrolysis of their glycosides has also been reported [98]. For example, arjunglucoside-1 (LXXVI) and its aglycone, arjungenin (LXXVII) on boiling with 5% methanolic hydrochloric acid afforded tomentosic acid (LXXVIII). the 19b-isomer of arjun- genin. The mechanism of this transformation involving

Page 15: Trite r Pen Oids

Tritcqxnoids 2213

L-XI 0

LXX1

oJx~co&2H@j LXXII

,’

LXXIV

LXXVII ,R = R’=H, R’= OH LXXX, R’=OH, R’= H

LXXVIII, R l R’ =H,R’-OH

formation of the 28+ 19jNactone has been rationalized. The epimerization of the 16j-hydroxyl group of cochalic acid (LXXIX) to its 16~~isomer (LXXX) has also been described by this lactonization and declactonization mechanism.

BlOLOGlCAL ACTIVITY

The wide occurrence and the structural diversity of triterpenoids have always attracted attention for evalu- ation of their biological activities. Although applications of these secondary metabolites as successful therapeutical agents is very limited, extensive exploratory activities in this area have been underway during recent years. Some interesting results are mentioned below.

Anritumour and anticancer activity

The relation between chemical structure and anti- cancer activity of some pentacyclic and tetracyclic tri- terpenoids was studied by Ling et a/. [99]. The anticancer effects were tested against human cancer cell lines ME- 180, u-87MG, SK-HEP-1, CAL&l, CAMA-1, SK-OV-3 and HEC-1-A. Among the pentacyclic triterpenoids, epi- manidiol (3/?,16a-dihydroxy-olean- 12-ene) was found to be cytotoxic at 100 pgml- l against HEC-l-A, CAMA-1, ME-180, u-87MG, CALAU-1 and SK-OV-3. The re- quired concentration producing 50% inhibition against HEC-1-A was approximately 10 pgml- ‘. Maniladiol, the 16/?-epimer, exhibited cytotoxicity against ME-180 and CAM A-l at 100 pg ml- I, whereas sophoradiol (3/?,22fi- dihydroxyolean-12-ene) was cytotoxic only against ME- 180 at IOO~gml~‘. This result suggested that the pre- sence of a 16a-hydroxy group is important for the

appearance of cytotoxicity of 12-oleanenes. Glycyrrhe- tinic acid (3/?-hydroxy-1 I-oxo-olean-12cn-30-oic acid) and 1 I-oxo-/?-amyrin, both with a free 3/3-hydroxyl group, were active at 100 pgml- ’ against SK-OV-3 and CAMA-1, respectively, while disodium glycyrrhetinic acid succinate, with the esterified 3/?-hydroxyl group, was found to be inactive. Among the tetracyclic triterpenoids, (f )-I I-oxotrinortirucall-8-enoic acid was cytotoxic against SK-OV-3 at 100 pgml- ‘. ( f )-7,11-Dioxotri- nortirucall-&enoic acid and ( k )-3fl,7-dihydroxy- ll- oxotrinortirucall-8-enoic acid were inactive. Several oleanane-type triterpenoids which were chemically de- rived from oleanolic acid and hederagenin were tested [lOO] in virro and in viuo against the tumour promotor 12-0-tetradecanoyl-phorbol 13-acetate (TPA). The in vitro experiment was monitored by TPA-induced stimu- lation of 32Pi-incorporation into phospholipids. The in vivo test on skin tumour formation in mice was initiated with 7,12-dimethyl-benz[a]anthracene DMBA and promoted with TPA, 18fl-olean-12-ene-3j3, 1 (’ 8diol eryth- rodiol), 18~-olean-l2tne-3~,23,28-triol, 18a-olean-12- enc-3fl-28-diol and 18a-olean-12-ene-3/?,23,28-trio& showed remarkable suppressive effects. In particular, 18~ oleanane derivatives having a -CH20H group at C-17 were found to be lOO-fold more effective than glycyrrhetic acid, an usual suppressor both in vitro and in vivo. Bioassay-directed fractionation of the cytotoxic antileuk- emit extracts of Prunella vulgaris, Psychotria serpens and Hyptis capitata led to the isolation of ursolic acid as one of the active principles [loll. Ursolic acid showed signi- ficant cytotoxicity in the lymphocytic leukemia cells P- 388 and L-1210 as well as the human lung carcinoma cell A-549. It also demonstrated marginal cytotoxicity in the KB and human colon (HCT-8) and mammary (MCF-7)

Page 16: Trite r Pen Oids

2214 S. B. MAHATO cr al.

tumour cells. Esterification of the hydroxyl group at C-3 and -COOH group at C-17 led to compounds with decreased cytotoxicity in human tumour cell lines. but with equivalent or slightly increased activity against the growth of L-1210 and P-388 leukemic cells. Further investigation [IO21 on the cytotoxic polar triterpene fraction of the plant Hypris capirara led to isolation of two new triterpenoids. hyptatic acids A and B as well as three known triterpenoids, Za-hydroxyursolic acid, tormentic acid and maslinic acid. Hyptatic acid A and 2x-hydrox- yursolic acid demonstrated significant in cirro cytoto- xicity in human colon HCT-8 tumour cells. The effects of glycyrrhizin and its aglycone. glycyrrhetinic acid on the growth and differentiation of mouse melanoma (B-16) cells in culture were studied) [103]. Glycyrrhetinic acid inhibited the growth of B-16 melanoma cells, caused morphol alteration and stimulated melanogenesis. Gly- cyrrhizin also resulted in the same change but only when the concentration was 20 times more than that needed for its aglycone. When glycyrrhetinic acid was removed after 84 hours of treatment, the growth rate recovered slightly but the doubling time was about twice that of control. Cytofluometric analysis showed that the growth inhibi- tion of glycyrrhetinic acid is the result of inhibition of transfer from G, to S phase. Olean-I 1.13( l8)-diene-3b,30- diol and its derivatives were found [104] to inhibit tumour-promoting agents such as TPA. These com- pounds have greater inhibiting activities on tumours than glycyrrhetinic acid and have less side effects. Thus, the increases in phospholipid synthesis in various tumours by TPA were inhibited in vifro by the title compound and five of its analogues. Plumeric acid, a nortriterpene acid and its methyl ester isolated from the leaves of Plumeru~ acutifolia showed antitumour activity [ IOS]. The free acid at a concentration 25 lcgml _ ’ was 100% effective in inhibi- ting Yoshida sarcoma cells in vitro. An injection formula- tion containing 10 mg of plumeric acid and 5 mg of glucose was prepared. The anticancer activity of anwu- weizonic acid, a new lanostane. triterpene, and manwu- weizic acid, a new ring-A-srco-lanostane triterpene isol- ated from Schisandra propinqua [ 1061. was tested. Man- wuweizic acid showed significant inhibitory activity against Lewis lung cancer, brain tumour-22 and solid hepatoma in mice but exhibited no cytotoxic action in virro. Isoiridogermanal. zeorin and missourin, a new hopane-type triterpene isolated from Iris missouriensis [107], were studied for their anticancer action. They demonstrated cytotoxic activity towards cultured P-388 cells (ED,,=O.l, 1.1 and 8.5 pgrnl- ‘, respectively). Wilfortrine isolated from Tripferyyium wiljordii inhibited leukemia cell growth in mice at a dose 4 mg kg ’ [ 1083. Radermasinin, possessing a new carbocyclic skeleton isolated from Radermachia sinica and its acetate derivat- ive showed significant cytotoxicity (ED,o = 3.3 pg ml _ ’ and 3.5 pg ml _ ‘, respectively) in the KB cell culture in vitro [53]. 7P-Hydroxymaptounic acid, a new ursane- type triterpene from Maprounea a/ricana [ 1091 exhibited in viva P-388 activity. Betulinic acid, a common triterpene was shown to be an inhibitor for growth of the leukemia cell line P-388 [I IO]. Oral administration of 18/%olean- l2-ene-3&23,28-trio1 tri-0-hemiphthalate sodium and olean-ll,l3(18)-dien-3/I-ol-30-oic acid-3-O-/Y-D-glucuro- nopyranosyl-(l+2)-/?-D-glucuronopyranoside sodium suppressed [l 1 I] carcinogenesis in mouse skin induced by DMBA and TPA. This is the first report of an effective oral administration of triterpenoid compounds supp-

ressing skin tumour promotion in mice. Arjunolic acid, an oleanene triterpene (2cc,3/?,23-trihydroxy-olean-l2-en-28- oic acid) isolated from the rhizome of Cochlospermum tincrorium and its derivatives (triacetate and methyl ester triacetate) were tested using the short-term in uirro assay [ 1123. Their inhibitory effects on skin tumour promoter were found to be greater than those of previously studied natural products. Pfaffic acid. a new hexacyclic nortriter- pene isolated from PjobFa peniculara also showed high inhibitory effects on the growth of cultured tumour cells, such as melanova (B-16). Hela (S-3) and Lewis lung carcinoma cells at 4-6 pg ml- ’ [64]. The antitumour and antibacterial activities of 1 I triterpene quinones isolated from Maytenus horrida and Rzedowskia rolantonguensis

were studied in cultures of Hela cells and several bacteria, respectively [I 133. Among the tested compounds, netza- hualcoyone was found to be most active antitumour agent.

Action on metabolism

The mechanism of mineralocorticoid action of car- benoxolone ( I I -oxo-olean-I 2-en-30-oic acid 3/?-succin- ate) was studied by Armanini et al. [ 1143. In cirro and in cit:o studies showed that carbenoxolone has demon- strable affinity for rat renal mineralocorticoid receptors, intrinsic mineralocorticoid activity in the adrenalectom- izcd rats at doses consistent with its receptor affinity and a powerful amplifying action on the urinary response to near-maximal doses of aldosterone administered to ad- renalectomized rats. The influence of oral carbenoxolone on prostaglandin E2 release mto gastric juice was exam- ined [ 1151 in peptic ulcer patients during modified sham feeding and following bolus stimulation of acid secretion by pentagastrin (6 pg kg I). Carbenoxolone increased the overall mean of prostaglandin E, concentrations in gastric juice following modified sham feeding by 329; and decreased the acidity slightly but significantly. Changes in lipid metabolism indexes under the influence of gly- cyrrhetinic acid in experimental hyperlipemia were studied [ 1161. The acid decreased the blood cholesterol, ,%lipoprotein. /?-lipoprotein cholesterol and triglyceride levels in rats with hyperlipemia (Tween-80 or vitamin D, and cholesterol) and rabbits with experimental atheros- clerosis (cholesterol). Cholesterol and /?-lipoprotein levels were decreased in the aorta and the former was decreased in liver tissue. Glycyrrhetinic acid has hypolipemic and antiatherosclerotic activity greater than the established antiatherosclerotic polysponin. Administration of IR- dehydroglycyrrhetic acid orally (50 mg kg- ’ day _ ’ for six days) to rats with experimental gastric ulcers stimu- lated catabolism of fatty acid in hepatic mitochondria and increased ATP production necessary for repair processes in mucora [ 1173. 3,7-Dioxo-lanost-8-ene and 7/?-hydroxy-3-oxo-lanost-8-ene were found to be anti- cholesteremics [ 1181. In I;irro experiments with rat liver homogenates indicated that both the compounds inhib- ited the formation of cholesterol by the liver. The inhibi- tion rates were 98% for the former and 47% for the latter compound. A pharmacological study on the antihepatitis effect of cucurbitacins B and E has been reported [ 1193. In rats with experimental fatty liver (Ccl,-induced), the serum glutamate-pyruvate transaminase and hepatic col- lagen levels were significantly decreased, whereas the serum /I-lipoprotein level was increased by administra- tion of cucurbitacin B. The hepatic damages, including

Page 17: Trite r Pen Oids

Trircrpenoids 2215

fibrosis and cirrhosis, were also markedly reduced by this triterpene. The serum CAMP to cGMP ratio was in- creased following intravenous injection of cucurbitacin B or cucurbitacin E, suggesting that the changes in cyclic nucleotide balance might be refated to the therapeutic mechanism of action of cucurbitacins in hepatitis. Gano- deric acid and its derivatives isolated from Ganoderma lucidurn were shown to be inhibitors of cholesterol bio- synthesis [ 1203. These compounds were tested for their effect on cholesterol biosynthesis from 24,25-dihydro- lanosterol by rat hepatic subcellular IOOOOy supernatant fraction. The lanosterol (4OpM) with 7-0~0 and 15a- hydroxy groups potently inhibited the biosynthesis of cholesterol. In a similar study [ 121),27-nor-24-dihydro- lanosterol was found to be markedly active in depressing cholesterol biosynthesis from lanosterol.

The anti-inflammatory activity of some triterpenoid derivatives of the oleanane series were examined on arachidonic acid (AA)-induced ear edema in mice [122]. Of the compounds examined, dihemiphthalate derivat- ives of 18&olean- 12-ene-3~,30-dial, 18/j’-olean-9( II), 12- diene-3/?,30-diol and olean- I 1,13( 18)-diene-3/3,30-diol showed a strong inhibition of ear edema on both topical (ID,, = I .9, 2.8 and 1.7 mg per ear, resp.) and oral (ID,, =90,130 and 88 mg kg- *, resp.) administration. Topical ID,, values were approximately the same as nordihy- droguaiaretic acid (ID,, = 2.1 mg per ear). Given topically these compounds were also capable of inhibiting PGE, and LTC, formation at an early stage of AA-induced ear edema. The most effective time for the topical administra- tion of the compounds against ear edema was found to be O-30 minutes before AA application. This is different from dexamethasone which requires a time lag for reac- tion. Glycyrrhetinic acid and deoxoglycyrrhetol, the parent compounds of the derivatives, showed no detect- able inhibition on edema at I mg per ear (topical) or 200 mg kg‘ ’ (oral). The same result was also obtained from the similar study on TPA-induced mouse ear edema [ 1231. 1 I-Oxooleanolic acid and 1 I-oxohederagenin in- hibited corticoid S/?-reductase [ 1241 and the inhibitory effect of the former was found to be higher than the latter. To study the corticoid-like activities, 1 l-keto-triterpen- oids were prepared and their anti-inflammatory activities were tested in ~rrag~nin-induced hind paw edema in rats [ 125). Corticoid-5/?-reductase inhibition was also evaluated. All the 1 l-oxo-triterpenes tested inhibited corticoid-5fi-reductase and 11.19-diketo-18,19-seco- ursolic acid was found to have the highest inhibitory potency. Gly~yrrhetinic acid inhibited carragenin-in- duced edema in the rat paw and inhibited leukocyte migration in the pleural space induced by dextran injec- tions [126]. The acid did not prevent prostaglandin release by phag~ytosing leukocytes or slowing the con- traction of isolated ileum strips induced by PGE*. The mechanism of the anti-inflammatory action of papyriog- enins A and C. two triterpenoids isolated from Tena- panax papyri$erum was studied by Sugishita ef al. [ 1271. The cotton-pellet granuloma test in normal and ad- renalectomized rats, the blockade by antiglucocorticoids of vascular permeability caused by serotonin, and the competition on S/&reduction of steroidal compounds were followed for the investigation. Papyriogenin A was found to be more potent than papy~ogenin C as an

infl~mation inhibitor of carrag~nin-induced paw edema in mice. Pretreatment with progesterone (SO, 100 and 200 mg kg- ’ ) completely blocked the anti-inflam- matory effects of papyriogenin A or C (10 and 50 mg kg _ ’ ) against ~rotonin-indu~d paw edema. Ac- tinomycin D (1 and 2 mgkg- ‘) or cycloheximide (6 mg kg- ‘), given twice during the latent period, com- pletely blocked the anti-inflammatory effects of both papyriogenins. The effects of papyriogenin A or C, 30 mg kg- I, orally, on the cotton-pellet granuloma test in adrenaiectomized rats were similar to those of normal rats. On the other hand, the competitive effects of papyr- iogenin A and C on S/&reduction of testosterone and cortisol were recognized to be significant. These activities of papyriogenin A and C were explained by their steroidal actions in the target cell and their competitive effects in endogenous corticoid metabolism in the liver. Pyracrenic acid, isolated from the bark of Pyracantha crenukza and characterized as 3~-3’,~-dihydroxycinnamoyloxylup- 20(29)-en-28-oic acid was tested for its anti-inflam- matory activity by the cotton method and was shown to be a potential inhibitor of the formation of granulation tissue [ 1281. The fruit juice of Ecballium elaterium, known to be used in Turkey for the treatment of sinusitis was investigated for its anti-inflammatory activity in mice [129]. Various fractions obtained from this juice were also tested for their effects on increased vascular per- meability, as induced by intra peritoneal injection of acetic acid. The active principle thus isolated was charac- terized as cucurbitacin B. This is the first report that cucurbitacin B has a significant anti-inflammatory activ- ity. Triptotriterpenic acid A, a new oleanane triterpene isolated from the roots of Trjpferyg~um wi~ford~j was found to be an effective anti-inflammatory agent [130]. Stearyl glycyrrhetinate and glycyrrhetinyl stearate, two glycyrrhetinic acid derivatives were shown to possess significant anti-inflammatory properties as detected by the rat foot test and the cotton-pellet test [131]. An ointment containing glycyrrhetinic acid was also found to be effective in the treatment of carrageenin-induced edema in rats and UV light-induced erythema in guinea- pigs in a dose-related manner. In patch tests in human subjects, dipotassium glycyrrhizinate or disodium gly- cyrrhetinylsuccinate added to the lotion of a cold hair- waving preparation, reduced the skin irritation induced by the lotion. Olean-12-ene-3/?,30-diol showed anti-ulcer, anti-inflammatory and anti-allergeic activities in rats without undesirable side effects as those observed in the case of glycyrrhetinic acid [132]. The activities were manifested by the administration of the diol at 320, 200 (orally) and 200 mg kg‘ ’ (intraperitoneally), respectively. The aglycone part of the glycoside fraction isolated from Maesa chisia var. angustifolia also showed anti-inflam- matory, analgesic and anti-pyretic activities in various pharmacological test in experimental animals [133]. It was shown that the activities were due to the presence of two 12-oleanene derivatives.

Miscellaneous

Oleanolic acid was effective in the prevention of experi- mental liver injury induced by injection of Ccl, in rats [ 1343. The results suggested that oleanolic acid possesses a potent protective action on C&-induced liver injury. Carbenoxolone was shown to provide a protective effect to ex~rimentaily-indu~d lower urinary tract infections

Page 18: Trite r Pen Oids

2216 S. B. MAHATO et 01.

Table 1. Tritcrpenoids isolated from the plant kingdom and other sources

Source

Triterpenotd

mp. [alo spectra: X-ray analysis reported

Basic

skeleton

Structure

Groups Refs

1 2 3 4 5

Abies /inna (Pinaccae)

A. mariesii

A. sibirica

Firmanoic acid; Me ester,

110-I 1 I’. + 23’. UV. IR, ‘H,

“C NMR. HRMS

lsofirmanoic acid; Me ester.

163-164”. +24”. IR. ‘H.

“C NMR. MS

Firmanolide 193-195’ -

IR ‘H “CNMR. HdMS*” , .

23-Epifirmanohdc, 193-195”, +24”. IR. ‘H, 13C NMR. MS

23-Oxomariesiic actd. A.

UV, IR. ‘H, “C NMR

23-Oxomanesiic actd. B.

UV. IR. ‘H. “CNMR

Mariesiic acid A. UV. IR,

‘H. “C NMR. X-ray analysis.

Manesitc acid B. UV. IR.

‘H. “C NMR

Mariesiic actd C; MC ester,

- 33.6’. UV, IR. ‘H. “C NMR, HRMS

Isomariesiic aad C: Me ester, - 154”. UV. IR. ‘H. “CNMR.

HRMS

Abtesolidoic acid, X-ray

analysis

Abiesonic actd. X-ray analysis

Tnterpene acid. IR. NMR. MS

Triterpene acid. IR. NMR. MS

Triterpenoid

Triterpenoid

Triferpenoid

Triterpenoid

Triterpenoid

Triterpenoid

Abrotanella forsterioides

(Compositac)

Abrus canroniensis

(Lcguminosae)

Seco-dammaradiene, IR.

‘H NMR. MS

Abrisapogenol B, 278 -280’.

+26.1”. “C NMR

Abrisapogenol D. 29&291’. + 76.7”

11

II

II

11

35

36

35

36

37

31

11

37

II

II

I1

I1

11

35

35

35

IO

1

I

3,23-0x0; 26COrH;

(24E)A’,‘.; 961-H

3 23-0x0; 26C0,H: A’=‘*“;

9;1-H

3-0x0: A’.‘.; 17.23-epoxy:

26-+23-lactone; 98-H; 17% 23s

3-0x0: A’.2’; 17.23-epoxy;

26-23-lactonc; Y/?-H; 17s; 23R

3a-OH; 23-0x0; 26COrH; A7.1.2.: 9,3H

3x-OH; 23-0x0; 26-CO,H; A’.!z.z.: 98-H

3x,23/LOH: 26-CO,H; A-.1..>.; 90H

3s,238-OH; 26-CO,H; AT.1l.r.. 91-H

3.23-0x0; 26C0,H; A,.i.(,O,.~.. 98-H

3.23-0~0; 26-CO>H; A7.1..>.: 9fi_H

3.4~&co: 26-23-lactonc; A’.irs1: 3_CO,H

3.4Sew 23-0~0; 3,26CO,H: A.,~1(1.:.,.,~~,.r.

3.23-0x0; 26-CO,H;

(24E)A’,‘.

3.23-0~0; 26-CO,H; (24Z)A’.r.

3-0x0; 26-23~lactone; (222) A’.z’.2.; 9jl-H

3-0x0; 26--23~lactone; (22z)A”.>‘.‘.

3a-OMe; 26-23~lactone; A’

3z-OMe; 23-0x0; 26-COaMe; A~.‘..‘.

3,4-Seco; 23-0x0; 3,26CO,Me; A.,~s,&s,,.,.s.

3.4~Seco; 3-CO,Me;

26-+23-lactonc; A.,‘“,.6.8”“.“.‘.

3 4-Seco. 3-OAc; A..z. * *

38,228,24.29-OH; A’*

3&22fi.3O-OH; A”

Cl451

[1451

[1451

r1451

[561

[561

[551

[561

1561

1561

[1461

r1471

[14*1

[14*1

[1491

r1491

c15tJ

[571

c571

c571

[1511

[1521

v521

Page 19: Trite r Pen Oids

Triterpenoids

Table I. (Continued)

2217

1 2 3 4 5

A. precarorius

Acanthopanax trijoliatus

(Araliaceac)

Actinidia erianrha

Aesculus hippocasranum Hippocaesculin 254-256”, (Hippocastanaceac) + 25”, IR. ‘H, “C NMR, MS

Aglaia roxburghiana Roxburghiadiol A

Agrimonia pilosa (Rosaceae)

Ailanthus malabarica (Simarubaceae)

Akebia quinara

(Lardizabalaceae)

Alisma plantago-aquatica

(Alismataceae)

Alnasterfruticosus

Abrisapogenol E. 249-252”. +67.7”. MS

1 3&22/l.24.3O-OH; A’*

Abrisapogenol F, 66-67”, + 15.4”, IR, “CNMR

Abrisapogenol G. 231-233”. -5.3”. ‘H, “C NMR, X-ray analysis

1 3jl-OH; 22-0x0; A”

1 38.228-OH; A”“a’

Abrusgenic acid, X-ray analysis

Abruslactone A

Triterpenoid acid, 2 15-2 18”, -27.2’ ‘H “CNMR, MS , , Eriantic acid A, IR. ‘H. “C NMR, MS

Eriantic acid B, IR, *H, “C NMR, MS

2

2

1

11

Roxburghiadiol B 11

Triterpenoid 11

Triterpenoid 11

Triterpcnoid acid; Me ester, +32.2”, IR. ‘H, “CNMR, MS

Triterpenoid acid; Me ester, + 30.0”. IR. ‘H. “C NMR, MS

Ailanthol, +165”. -28”. UV. IR. ‘H NMR, ‘%NMR MS

Akebonic acid; Me ester, 152-155”. + 127.7”. IR, ‘H, “CNMR, MS

3-Epiakebonic acid; Me ester, 200-202”. + 118.1”, IR, ‘H, “C NMR, MS

Triterpene acid; Me ester, +21.2”, IR, ‘H NMR, MS

Quinatic acid, 269-272”, +66 6” ‘H “C NMR, MS . . ,

16/?-Hydroxyalisol B; 23-monoacetate, 196.>198”, +llo” IR ‘H “CNMR ., . .

16/I-Methoxyalisol B; 23-monoacetate, 164-166”, +89.4”, IR, ‘H. ‘sCNMR

Alisol D

2

2

10

1

1

1

1

15

IS

15

a-Alnincanol, 202-203” 10

b-Alnincanol, 228-229” IO

Miricolone 18

3/3,22a-OH; 29-CO,H; Ai2

3/3-OH; 29+22x-lactone; A”

3x.1 la-OH; 23-CHO; 28-CO,H; AZ01291

2a,3a-OH; 24-OAc; 28C0,H; A”

2/I,3(9,23-OH; 28C0,H; A”

3~,15~16x,28-OH; A’*; 2 I /?/22a-angcloyloxy; 222/21/?-tigloyloxy

3fi,7a-OH; 9j?,19cyclo; 24+CH,k 28.29~nor

3/3,6x-OH; 9/7,19cyclo; 24-(=CH,); 28,29-nor

3b-OH; 9/?.19cycl0; 24.2kpoxy; 29-nor

3/?,25-OH; 9/7,19-cycle; A*‘; 29-nor

1/?.2a,3/?,19a-OH; 28-CO,H; A”

I/?,2/?,3/?,19a-OH; 28-CO,H; Al2

3a.7a-OH; 13uJO-cyclo; A”; 21,23-J4.25diepoxy; 17/?-H

3fl-OH; 28C0,H; A’z~‘o”9’; 3O-nor

3a-OH; 28-CO,H; A12.2q19i; 30-nor

38-OH; 28-CO,H; A”; 29/3OCHO

3a,24-OH; 28-COsH; A12.10(19); Bnor

3.0~0; 1 ljI,l6fi-OH; 23-OAc; 24.25-epoxy; AlJo”

3-0x0; 1 l&OH; 168.OMe; 23-OAc; 24,25qoxy; A”‘t”

3-0x0; I lb-OH; 23-OAc; 13/?,17jI-. 24.25diepoxy

3a-OH; 20,24-epoxy

3/I-OH; 2424-epoxy

~1521

~1521

[I521

Cl531

Cl531

Cl541

[lSS, 1561

Cl561

Cl571

Cl581

Cl581

11591

Cl591

116tY

WtJl

Cl611

C1621

C1621

C1621

Cl631

WI

cw

Cl651

Cl661

11661

3-0x0; 28-CHxOH Cl673

Page 20: Trite r Pen Oids

2218 S. B. MAHATO er al.

Table 1. (Continued)

1 2 3 4 5

Alnus japonica (Betulaoeae)

4. maximowiczii

A. pendula

Amaracus dicromnus (Labiatac)

Amphyretygium adsrrinyens

Amsonia grandij7ora

(Apocynaceae)

Andrachne cordijolia

(Euphorbiaceae)

Androsace saxifbgijolia

(Primulaceae)

Anlidesma pentandrum

(Euphorbiaceae)

Aphanamixis polystachya

(Meliaceae)

Apocynum venerum

Aschersonia aleyrodis

Asteropus sp

Astraeus hygromerricus

(Gasteromycetes)

Astragalus glycyphyllos

(Leguminosae)

A. taschkendicus

Seco-triterpene acid, + 61.2”.

UV IR ‘H 13CNMR, MS 3 , * Seco-triterpene acid,

1685169.5”, +44.0’. UV.

IR ‘H “CNMR. MS 7 * Sew-triterpene acid, IR. ‘H,

“C NMR. MS

Seco-triterpene acid; Me ester,

+ 30.2. IR. ‘H, “C NMR. MS

Seco-triterpene acid. IR. ‘H.

“C NMR. MS

Seco-triterpene acid, IR, ‘H.

“C NMR. MS

fi-Alnincanol

Monogynol A

12-Deoxyalnustic acid, + 36.7‘. IR. ‘H. “C NMR. MS

Zla-Hydroxyursolic acid; Me

ester, 214” + 24”. ‘H. “CNMR.

MS

Cuachalahc acid

Lupeol octadecanoate, + 22.98a. IR, ‘H NMR. MS

Triterpenoid, 265-268”, IR.

‘H NMR. MS

Tr’terpenoid. 25&254’. IR,

‘H NMR. MS Androsacenol, 262-264”, + 23’. IR ‘H “CNMR, MS . . Lupeolactone. NMR. MS.

X-ray analysis

Aphananin, 151-152”. IR. ‘H,

“C NMR. MS

Triterpenoid

Triterpenoid, >305”, IR. ‘H, “C NMR. MS

Pouoside A; aglycone, IR, ‘H.

“CNMR

Pouoside B; aglycone. IR. ‘H.

“C NMR

Pouos’de C; aglycone, IR. ‘H. “C NMR

Astrahygrol, 186187”. + 18.0’.

IR ‘H “CNMR, HRMS 3 , 3-EpiastrahygroI, 193-194”.

+ 101.0’. IR. ‘H. “CNMR.

HRMS

Astrahygrone. 168-169”.

+ 58 0’. IR. ‘H. “C NMR. HRMS

Sapogcnin

Cycloasgenin C

IO

10

10

10

10

10

10

7

IO

2

14

7

17

17

1

7

14

7

8

30

30

30

11

11

II

I

II

3.4~Sew; (24E)A4’z8’~‘0~“;

3C0,Me; 26-CO,H

3.4~Seco; (24E)A”‘s’ “.“;

3.26~CO,H

[I681

11681

3.4~Seco; 20@),24(S)-OH; A*11s’.s5; 3_CO,H

3,CSeco; Zo(S),ZS-OH; (23E)A”zB’~z’; 3-CO,H

3.4~Seco; 2O(S),25,26-OH; (23E)A4”s’? 3-CO,H

3.4.Seco; 12/?.2O(S).ZS-OH:

(23E)A4”1’~‘3; 3-CO,H

3/I-OH; 20.24-epoxy

3.0~0; 20-OH

3.4~Seco: ZO(StOH: Alt2s’; 24-(=CH,): 3C0,H

3&21x-OH; 28-CO,H; A’*

11681

[1681

[I681

[I681

[I691

L1691

11701

[I711

3a-OH; 26-CO H. A’.zz.2’ 2 * 3/I-octadecanoyloxy. A’(‘iz9’

IfI-OH; A’c’O’

3-0x0; A”“”

38,16a-OH; 22/I-OAc;

3tKHO; 13fi.28-epoxy

24+3/&lactone; AzO””

3/I-OAc; 218.24.25-OH: A’;

21.23(Skpoxy

3/I-arachidoyloxy; A*o’29’

3fi.l5%22-OH

2-0x0; 8,11,22a-OAc; 19/I-OH:

(9E.13E)A4.9.‘3

2-0x0; 8, 222-OAc; 11,19/Y-OH;

(9E.13E)A4,‘.‘s

2-0x0; 11.22a-OAc; 19/I-OH;

(9E.13E)A’~“~”

3fi-OH. 26-22~lactone; As

3x-OH; 26-22.lactone; A*

~721

[I731

[I741

11751

I1761

[I771

[I783

[I791

I1801

[341

[341

[WI

ll811

[I811

3-0x0; 26-22~lactone; A* Cl811

3/?,22/?,24-OH; 19-0x0; A” [I821

Cl831

Page 21: Trite r Pen Oids

Triterpenoids

Table I. (Continued)

2219

I 2 3 4 5

Atroxima afieliana Atroxigenic acid 1

Aucoumea klaineana (Burseraceae)

Austropleuckia populnea

Azadirachta indica (Meliaceae)

Bawingtonia speciosa (Barringtoniaceae)

Betula exilis (Betulaceae) 3-Epiisofouquierol

B. maximowicriana Triterpenoid, IR, ‘H, “CNMR

B. nana

B. pendula

Boehmeria excelsa (Urticaceae)

Boswellia cartmii (Burseraceae)

B. freerana

Botryococcus braunii var. showa (Chlorophyceae)

Calendulo ojicinalis (Compositae)

Calotropis procera (Axlepiadaceae)

Atroxigenic acid lactone

Preatroxigenin; dimethyl ester

Triterpenoid, 250”, IR, ‘H NMR, MS

Flindissone, 127-130”. IR,

‘H NMR, MS

Flindissol lactone, 229-234”, -50” IR ‘H ‘%NMR. MS . . .

Flindissone lactone, 193-195”. -68, IR, ‘H NMR, MS

Triterpenoid, 186192”. + 37”, UV IR ‘H ‘%NMR, MS * * . Triterpene acid, UV, IR, ‘H, ‘sC NMR, MS

Azadirachtol

Nimbocinone, 7678”. + IO”, ‘H, i3C NMR, HRMS

Nimolinone

Anhydrobartogenic acid; dimethyl ester, 276272”,

UV. IR, ‘H NMR, MS

l9-Epibartogenic acid; dimethyl ester, 252-254”. + 100”. UV, IR, ‘H NMR, MS

Bartogenic acid

3-0-MalonylbetulaIolientriol oxide, 1688172”, - l.o”, IR, ‘H, ‘3C NMR, FABMS

Triterpenoid

Triterpenoid

Triterpenoid

Boehmerone, 176-178”. + 12.3”, IR ‘H ‘+ZNMR, MS 3 . Boehmerol,215-217’, +47”, IR, ‘H, ‘“C NMR, MS, X-ray analysis

4(23bDihydroroburic acid

Triterpene, 183-185”. + 25”, IR, ‘H NMR, MS

Tetramethylsqualene, +6”, ‘H, ‘% NMR, HRMS

Triterpene MS, of its triacetate

Calotropenyl acetate, 198”. +8.9”, IR, ‘H, ‘sCNMR, MS

1

1

14

2~,3/I,22/I-OH; 23,28-CO,H; A’s’i4’; 27-nor

28,3/&228-OH; 23-CO,H; 28+ 138~lactone; 27-nor

2/?.3/3,22/?,27-OH; 23,28CO,Me; Ai2

3-0x0; 21-CO,H; A’*14

14

14

3-0x0; 215-OH; A’.24; 215,23kpox~

3x-OH; A’.‘.; 21+23(-lactone

14 3-0x0; A’***; 21+23<-lactone

14 3.23-0x0; 22C-OH; A’.r’

4 2-0x0; 3-OH; As; 29-CO,H

16

13114

13

1

3-0x0; I Ia,2Ia-OH; ‘la-OAc; 21.23-epoxy; A’~‘4~20’*2)

3-0~0: 24.26OH; A7.zo; 21,23-epoxy

3-0x0; 21-+23-lactone; A’.‘*

2a,3fi-OH; 24.28~CO,H; A”*is

1 2&3/I,19b-OH; 24,28_CO,H; A’2

1

10

7

10

2~3/?,19z-OH; 24,2&CO,H; Al2

3%20(S)-OH; AZ3

3j?-tram-3’.4’-Dihydroxy- cinnamoyloxy; 2028-08

3a-malonyloxy; 12&25-OH; 20.24epoxy

10

10

10

33

33

3-0x0; 12/3,2O(Q25-OH; A 23 Cl971

3z,l2~,17a,2U(S),24(R)-OH; A2’ Cl971

3~12/?,17~2a(S),24(S)-OH; A2’ Cl973 3-0~0; A”“s’ Cl981

3/$OH; A”(i”) Cl981

2

10

Squalene

7

2

3,CSeco; 3C0,H; A’ 2

3/l-OAc; 16/7,20(R)-OH; A2*

3,7,18,22-Me

3/.?.16/?,28-OH; A2’tz9)

3g-OAc; A19(r9)

Cl841

Cl841

[If351

Cl863

Cl871

CWI

Cl871

ClUl

CW

Cl891

119W

P9~1

[l92, 1933

[I92 1931

Cl931

Cl941

11951

Cl961

Cl991

C2W

C2W

c2021

PO31

Page 22: Trite r Pen Oids

2220

1 2

S. B. MAHATO et al.

Table I. (Continued)

3 4 5

Caltha palustris

(Ranunculaceae)

Camellia japonica (Theaceae)

Canarium album (Burseraceae)

Cassine halae

Chionochloa bromoides

Cigarrilla Mexicana

(Rubiaceae)

Cimic@ga acerina

(Ranunculaceae)

Cirrhopetalum elatum

(Orchidaceae)

Cissus quadrangularis

(Vltaceae)

Cistrus libanotis (Rutaceae)

Cieome brachycarpa

(Capparidaceae)

Cnidosculos elasticus

(Euphorbiaceae)

Cocculus hirsutus

(Menispermaceae)

Combretum elaeagnoides

(Combretaceae)

C. imberbe

Commiphora dalzielii

(Burseraceae)

Palustrolide. 310” (dec.). IR, MS

Camelienodiol, 215-216.5‘. + 30”. IR, ‘H NMR

Camelledionol. 232-233”.

+ 49”, IR, ‘H NMR, MS

Maragenin, 228-228.5”, + 41c,

UV IR *H “CNMR, MS , > 3 Triterpenoid, 127-128’. +43”,

‘H, ‘sC NMR, HRMS

Triterpenoid, 29&292”, + 5 I”, ‘H, 13C NMR, HRMS

Baknol, 139-140”, UV, IR, ‘H, ‘sC NMR

Balaenonol, 2OS-208’, UV, IR,

‘H, ‘)C NMR

19aH-Lupeol; methyl ether,

X-ray analysis

Triterpenoid, 283-287”, UV, IR,

‘H NMR, MS

O-Methylcimiacerol; 235-236”.

+ 20.0”, IR, ‘H, “C NMR, MS,

X-ray analysis

Triterpenoid. 255”. + 28.3”,

UV IR ‘%NMR, MS . . Triterpenoid, 20&202”, IR,

‘H NMR. MS

Triterpenoid, 233-234”. IR,

‘H NMR, MS

Triterpenoid

Triterpenoid

Deacetoxybrachycarpene,

185-186”, +47”, UV, IR, ‘H,

‘)C NMR, MS

Lupeol; p-phenylpropionate,

211’. IR, ‘HNMR, MS, X-ray

analysis

Hirsudiol, 238”. -25”. UV, IR,

‘H, 13CNMR. MS

Jessie acid, 196202’, + 55.5”.

UV IR ‘H “CNMR 2 9 1 Methyl jessate, 22&223”, + 60.4’. UV. IR, ‘H. “C NMR. MS

Methyl jessate, I a, I la-oxide

Imberbic acid, 286288”.

+ 70.0”, ‘H, “C NMR. MS

Isofouquierone, + 34’. IR, ‘H,

13C NMR, MS

Cabraliadiol-3-acetate, 155”.

+ lo”, IR, ‘H NMR, MS

1

1

1

1

2

1

4

4

I

2

41

11

20

20

10

10

10

7

1

11

11

11

1

10

10

38,23-OH; 28 + 13-lactone

3fi,18/GOH; 16-0x0; A’*;

28-nor

3.16-0x0; 18/3-OH; A12; 28-nor

3/?-OH; 16-0x0; A”.“; 28-nor

3a,16/.?-OH; A’2

3a,l6/3-OH; AL2

3,21/3-OH; 2-0x0; IS-Me; As*s.7.1w’).‘4; 24,26,29_nor

3,21/?-OH; 2,22-0x0; 1 S-Me; A355.7.‘o(‘1.‘4; 24,26,29_nor

3/l-OMe; A 2”(29’; 19z_H

38,23-OH; 28-CO,H; A”

3/?-p-Coumaryloxy:

9/?,19-cyclo; 2q=CH,)

3a,ZI,%OH; A’

3/.?,21z-OH; A’

3-0x0; 248-OAc;

20(%25epoxy

3-0x0; 24j5OH; Zo(S),ZS<poxy

3.4-Seco; 3-w&, 24-+20(R)-

dilactone; 25.26.27~nor

3/3-3’-phenylpropionyloxy; ~151 A’0’29’

2zx,3a-OH; A’3c’s’

la.3/?-OH; 23-0x0; 28-COIH;

24-(=CH,); 9/?,19_cyclo

Ia.3@-OH; 23-0x0; 28-CO,Me;

24-(=CH,); 9/3,19-cycle

3p-OH; 23-0x0; 28-CO,Me;

24-(=CH,); 9/?,19-cycle;

la.1 lz-epoxy

lz,3/?-OH; 29-CO,H; A’*

3-0x0; 20.25-OH; A=

3a-OAc; ZS-OH; 20.24-epoxy

w41

~2051

PO51

PO51

w41

PW

~2071

~2071

WI

PO91

PlOl

c2111

P121

WI

~2131

~2131

~2141

C2161

P-181

~91

c.w

WOI

Page 23: Trite r Pen Oids

Triterpenoids

Table 1. (Continued)

2221

1 2 3 4 5

C. incisa Triterpenoid, ‘H NMR, MS

Corchorus capsularis (Tiliaceae)

Cordia alliodora

(Boraginaceae)

Coriandrum sativum

(Umbelliferae)

Corttulaca monacantha

(Chenopodiaceae)

Cornus capitata (Cornaceae)

Corynebacterium XG

Cunila lythrifolia (Labiatae)

Dammar resin

Desfontainia spinosa

(Loganiaceae)

Douglas fir sapwood

Enkianthus cernuus (Ericaceae)

Enterolobium contorstisiliquum

(Leguminosae)

Nortriterpenoid. +38.2”, IR, ‘H, ‘%NMR, MS

Capsugenin, 23&232”, - 7.65”.

IR ‘H 13CNMR, MS 3 3 Triterpene acid, 21 l-212”. ‘H,

‘% NMR, MS

Triterpene acid, 209”. ‘H,

‘% NMR, MS

Triterpene acid, 223”. ‘H,

‘“CNMR, MS

Triterpene acid, 205-207”, ‘H, %NMR, MS

Triterpcne acid, 219”, ‘H,

‘%NMR, MS, X-ray analysis

Triterpene acid, ‘H, 13C NMR, MS

Coriandrinonediol, 285-290”,

+ 38.3”, UV, IR, MS

Cornulacic acid, IR. NMR, MS

Monacanthic acid, IR, NMR, MS

Triterpenoid, 188”, -24’. IR,

‘H, 13C NMR, MS

Triterpenoid, 176’. - 6”. IR, ‘H NMR, MS

Triterpenoid

Triterpenoid, IR, ‘H NMR, MS

Triterpenoid, 184-186”. +0.64”,

IR ‘H ‘%NMR, MS 3 3 2-Epitormentic acid; Me ester,

+ 16.3”, IR, ‘H NMR, MS

Hydroxyoleanonic lactone,

304-306’. +60.4”. IR, ‘H. “CNMR, MS

1 I-Deoxocucurbitacin I,

212-213”. UV, IR, ‘H,

“CNMR. MS

2CHydroxytormentic acid, IR, ‘H, ‘%NMR, MS

7a-Hydroxytormentic acid, IR,

‘H, “C NMR, MS

7a.23-Dihydroxytormentic acid, IR ‘H “CNMR, MS 3 9 (24R)Cycloeucalanol; acetate,

107.5-108”. +70.9’, IR,

‘H NMR, MS

6/l-Hydroxyursolic acid,

230-235”. IR, ‘H NMR. MS

21/?-E-Cinnamoyloxyoleanolic acid, 270”. IR, ‘H, “CNMR.

MS

11

11

10

1

1

1

1

1

1

5

1

1

14

14 38-OAc; A7s2*; 21.23-epoxy

I

7

8

3/?-OAc; 23/24-CHO, A20’29’

2/?-OH; 3a-OAc;

28+ 13-lactone

2-Me; 22-OH

2

1

2B,3/?,19a-OH; 28-CO,H; A’*

3-0x0; 12u-OH;

28+ 138-lactone

12

11

2

1

la-OAc; 3j&OH; Az4;

s/3,19-cycle

lz,2a,3j?-OH; A8v2*; 29-nor

3j?,l2/3,25,30-OH;

2o(sx24vkpoxY

3a-OH; 27-CO,H; Al2

3-0x0; 27_CO,H; Al1

3.29-0x0; 27-CO,H; Al2

3a-OH; 29-CHO, 27-CO,H;

A’I

3a, 29-OH; 27-CO,H; d”

~K-OH; 27,29_CO,H, Al2

1-0x0; 1 l&ZlC-OH

3p-OH; 27-CO,H; 612; 18&H

3/I-OH; 28-CO,H; A12;

15s 27-cycle; 18&H

3-0x0; A7*24; 21.23-epoxy

WI

WI

c=21

cu31

c2231

I?31

~2231

~2231

12231

~2241

c2251

c2251

CW

CW

cwl

I2281

c2293

cw

Cl391

2,16s20.25-OH; 3,22-0x0; A1.3.23

~2311

2s3/3,19a,24-OH; 28-CO,H; A’2

2u,3/?,7a,l9u-OH; 28-CO,H; AL2

2~,3/?,7a,l9a,23-OH; 28-CO,H; A’2

3/l-OH; 9/?,19cyclo; 24(R)-Me;

29-nor

c2321

c2321

c2321

12331

3/?,6/?-OH; 28-CO,H; A” cw

3/?-OH; 21/?-E-cinnamoyloxy; 28-CO,H; Al2

12351

Page 24: Trite r Pen Oids

2222 S. B. MAHATO et al.

Table I. (Continued)

1 2 3 4 5

Euphorhia antiquorum

(Euphorbiaceae)

E. hroteri

E. caudicifolia

E. maculara

E. niculia

E. supina

E. rirwalli

Euonymus revolulus

(Celastraceae) Triterpene acid, 298-300^. IR, ‘H, “C NMR, MS

Triterpene acid. 258-260’. IR,

‘H NMR, MS

Tritcrpene acid, 288-290). IR,

‘H NMR

Triterpene acid, 288.-290”. IR,

‘H NMR, MS

Tr’terpene acid, 3OC-302’, IR,

‘H KMR. MS

Triterpenoid. 268- 269’. + 23.5’.

IR. ‘H NMR, MS

Triterpznoid, 238-240”. + 27.5”

IR, ‘H NMR

Tritcrpenoid, 31 l-312’. 62.8’.

IR. ‘H NMR

Triterpenoid, +28.5, IR. ‘H.

‘“C NMR, MS

Tr’terpenoid; acetate, 98-lOO-,

+ 50.3-. IR. ‘H, “C NMR, MS

Triterpenoid, ‘H, “CNMR, MS

3-Epicyclolaudenol. 140’.

- IO’. IR, ‘H NMR, MS

Triterpenoid, 190- 191.5 ‘,

+ 76.8’. IR, ‘H. “C NMR, MS

Triterpenoid, 150-151.5”. +362.6’, I:V, IR. ‘H NMR, MS

Triterpenoid, 85-, +23’, IR,

‘H NMR, MS

Spirosupinanonediol, 248-250’. -3.8.‘. IR, ‘H. “C NMR, MS,

X-ray analysis

&Amyrinformate, 254-256’. + 15.2., IR, ‘H, “C NMR. MS

Tr’terpenoid, 193 - 196.5’. IR. ‘H NMR. MS

I la,l2a-Oxidotaraxerol,

286.-288’) - 38.9’, IR, ‘H.

“CNMR. MS

Triterpeno’d, 242-244”. - I I’, IR ‘H “CNMR, MS . .

Esp’nendiol A, 194-196’,

+90.7’, IR, ‘H, “CNMR, MS,

X-ray analysis

Espinendiol B, 1922193.5’.

- 17.1”. IR, ‘H, “CNMR. MS

Espinenoxide, 215-218“,

+ 7.8’., ‘H, 13C NMR, MS,

X-ray analysis

Trisnor’soesp’nenoxide,

209213’. -2.9’,, ‘H.

“C NMR, MS

Cycloeuphordenol, 105-106”.

7

4

4

4

1

4

4

4

11

11

18

I1

17

2

11

21

1 3P-formyloxy: A’3”s’

9 3,&OH; A’.“(’ ”

18 3,&OH: A’? 11% I Zz-epoxy

9

9

9

9

11 3/&OH: 9/I. 19-cycle: A”‘; C2471

2z.3z-OH; 2%CO,H; Arotr9’

22-OH; 3-0x0; 28-CO,H

2-0x0; 32-OH; 28-CO,H

3-0x0; 29-OH: 2%CO,H

2z,3z-OH; 28-CO,H; A”

3fl,30-OAc

3&OH; 30-OAc

3/I-OAc; 30-OH

3/GOH; 9~,19-cyclo;

24.25~epoxy

3p-OH; 98.19~cycle; 24-(0Me),;

25,26,27-nor

3.4-Srco: 3C0,Mc; A4’2J’.‘4

3~OH; 24-Me; A”; 9/J,19-cycle

3/I-OAc; A”

3P_OH; AS,“,.‘1

3/j-OH; Az5; 9/?,19-cycle

32,7x-OH; 8-0~0

3P.9r.l lz-OH; A”

3,4-Seco; 2%nor; l&-H; 9/I-Me;

3.5~OH; A”“’

3,4-Seco; 25-nor; IOa-H; 9/i-Me;

3,5/GOH; A4””

3,4-Srco; 25-nor; l&x-H; 9/?-Me;

3,5/kpoxy; A“‘=

3.4~Seco; 9fi-Me; 4,23,24.25-nor;

A”““; 3.5-epoxy

12361

[237]

I2371

CW

[238]

[239]

[2391

L2391

L2401

Pa

c2403

~2411

~2421

~2421

WI

~521

P441

w41

L2441

[245]

[2461

[2461

[2461

C2461

Page 25: Trite r Pen Oids

Tritevoids 2223

Table 1. (Continued)

1 2 3 4 5

+39”, UV, IR, ‘H, “C NMR,

MS

Cyclotirucanenol, ‘H,

13C NMR

Euphorginol, 168- 170”,

+22.35”, IR. ‘H, ‘“C NMR, MS

Fe&a link, (Umbelliferae) Triterpenoid, 223-226”. + 315”. UV IR ‘H =CNMR, MS 9 9 7 Triterpenoid, 224-229”, IR,

‘H NMR, MS

G. luclhm

Gaderma applanatum (Polyporaceae)

Ganoderenic acid F, + 93”. UV,

IR ‘H 13CNMR, MS . I

Ganoderenic acid G, + 189”, UV, IR, ‘H, “C NMR, HRMS

Ganoderenic acid H; Me ester,

+61’, UV, IR, ‘HNMR, MS

Ganoderenic acid I; Me ester,

+96”, UV, IR, ‘H, ‘)CNMR,

MS

Furanoganoderic acid, + 70’.

UV, IR, ‘H, 13CNMR, MS

Ganoderic acid AP, Me ester,

+71”, UV, IR, ‘H, “CNMR,

MS

Ganoderic acid A, + 153.8”. IR,

‘H, ‘“C NMR, MS

Ganoderic acid B, IR, ‘H,

‘“C NMR

Ganoderic acid C, 184.5-185.5”.

+ 184.9”. UV, IR, ‘H, “CNMR,

MS

Lucidenic acid A, 194-195”.

+ 173.3”, UV, IR, ‘H,

“CNMR, MS

Lucidenic acid B. 179-181”.

+ 168.9”, UV, IR, ‘H,

13CNMR, MS

Lucidenic acid C, 199-200”,

+ 140”, UV, IR, ‘H NMR, MS

Lucidenic acid D, Me ester,

+ 136”. UV, IR, ‘H, 13C NMR,

MS

Lucidenic acid E; Me ester,

l40-144’=, +86”, UV, IR, ‘H,

13CNMR, MS

Lucidenic acid F, Me ester,

208-211”. +195”, UV. IR, ‘H, “C NMR

Ganoderic acid D; Me ester, 199-200”. +98”, UV,

IR, ‘H NMR, MS

Ganoderic acid E, Me ester,

206-208”, + 167”,

‘H, ‘“CNMR

11

18

1

1

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

24/3-Me; 29-nor

3B-OH; 9/?,19cyclo; A”‘;

248-Me

&OH; A”

3/?-OAc; 6p-OH; Aw111.12

cw

CW

c2501

cw

3,7,11,15,23-0x0; 26-CO,H;

(20E)AB.2q22’

3,7,11,23-0x0; 15,sOH; 26-CO,H; (20E)A**20’22’

3/?-OH; 7,11,15,23-0x0;

26-CO& (20E)A8*20’22’

3,?,15wOH; 7,11,23-0x0;

26-CO,H; (20E)A’.2q22’

12511

WI

c2511

WI

3,7,11-0x0; 15a-OH; 26-CO,H; A8.20s22; 21,23cpoxy

3,7,11,23-0x0; 12/?,15a&OH;

2fX0,H; A8

c2511

c2511

3,11,23-0x0; 78,15a-OH;

26_CO,H; Aa

3a.7jI-OH; 11,15,23-0x0;

26-CO,H; A’

3,11,15,23-0x0; 7j-OH;

2K0,H; A”

c2521

c2521

C2531

3,11,15-0x0; 7/I-OH; 24-CO,H;

AO; 25,26,27-nor C2531

3,11,15-0x0; 7/?,12-08;

24-CO,H; A’; 25,26,27-nor C2531

3j,7j.I,12-OH; 1 l,ls-0x0;

24-CO,H; A*; 25,26,27-nor

3,7,11,15-0x0; 128-OAc;

26C0,H; As; 25,26,27-nor

C2531

cw

3/3-OH; 12/?-OAc; 7,11,15-0x0;

24-CO,H; A*; 25,26,27-nor WI

3,7,11,15-0x0; 24-CO,H;

A8; 25,26,27-nor C2541

3/?,78,15a-OH; 11.23-0x0;

26C0,H; A* C2541

3,7,11,15,23-0x0; ZCCO,H; A’ cw

Page 26: Trite r Pen Oids

2224 S. B. MAHATO et ol.

Table I. (Continued)

I 2 3 4 5

Ganoderic ac’d F; Me ester.

III’. UV. ‘H. “C NMR. MS

Ganoderic ac’d H; Me ester. 155-156”. +55’, UV. IR, ‘H,

“C NMR, MS

Ganoderic acid G; Me ester.

134-135”. +64’. UV. IR. ‘H.

“C NMR. MS

Ganoderic acid I; Me ester,

279-281”. + 132’. UV, IR, ‘H.

“CNMR

Ganolucidic acid A; Me ester, 192-194’. + 188”. UV. IR. ‘H.

“CNMR. MS

Ganolucidic acid B, Me ester.

167-169”. + 114’. UV. IR. ‘H,

“CNMR, MS

Ganoderic acid C. UV, IR. ‘H,

“C NMR, MS. X-ray analysis

Ganoderemc acid A. + 127.8’,

UV. IR. ‘H NMR, MS

Ganoderenic acid B, 21 I-214’.

+ 102.9‘. UV, IR. ‘H NMR. MS

Ganoderenic acid C, +66.2”,

UV. IR, ‘H NMR. MS

Ganoderenic acid D. 214-216”.

+ 163.4”. UV. IR, ‘H NMR. MS

Ganoderal A. 127- 128”. + 27”.

UV. ‘H NMR. MS

Ganoderol A. 99-IOI”, + 33”.

UV, ‘H NMR. MS

Ganoderol B, 171-173”. +61’.

UV. ‘H NMR. MS

Ganodenc acid S. 168-169”.

UV. ‘H NMR. MS

Ganoderic acid K. +48”, UV.

‘H NMR. MS

Ganodermatriol; triacetate.

98-100”. 59.91’. UV. ‘H,

“C NMR. MS

Ganodenc acid R. 201-202’. + 8.7’. UV. IR, ‘H. “C NMR

Ganoderic acid T. 200-202’, +23‘. UV. IR. ‘H. “CNMR

Ganoderic acid Ma. - 16.. UV. IR ‘H 13CNMR. MS 8 * Ganoderic acid Mb. -4.0’. UV.

IR ‘H “CNMR, MS . . Ganoderic acid MC, - 23”, UV.

IR ‘H 13CNMR. MS . . Ganoderic acid Md, 180-182”, -20’. UV. IR, ‘H. “CNMR.

MS

Ganoderic acid Me. + 53”. UV.

IR ‘H “CNMR, MS , 3

11

II

11

II

11

11

11

11

11

11

11

I1

11

11

11

II

11

11

II

11

11

11

II

11

3.7.11.15.23-0x0: IZfl-OAc;

26.CO,H: As

3fi-OH; 12jLOAc; 7. I I, 15.23-0x0; 26-CO,H; A*

3fi,7~,12j?-OH; 11.15.23-0x0;

26-CO,H; As

3/?.7~,2O_OH; 11.15.23-0x0:

26-CO,H: A”

3.11.23-0x0; I 52-OH: 26-CO,H; As

3/?.15a-OH; I1.23-0x0;

26-CO,H: A”

3fLOH; IZfi-OAc; 7.1 1.15.23-0x0; 26-CO,H; As

3.11.23-0x0; 7/1’.15+OH;

26-CO,H: (20E)A.8~‘0””

3j?,7/3-OH; 1 I .I 5.23-0x0;

26sCO,H; (20E)As~zo’2z’

3/?.7/?.15s-OH; 11.23-0x0; 26-CO,H: (20E)A8~z0”*’

3.11.15.23-0x0; 7fl-OH; 26-CO,H: (2OE)A”.*““”

3-0x0: 26-CHO; (24~)A,.*#’ 11.21

3-0x0; 26-OH; (24E)A7~9”“.z’

38.26-OH; (24E)A7~Y”“~z’

3-0x0: 26-CO,H; (24~)A~.Wl’hu

3/L7fi-OH; 12B-OAc;

11.15.23-0x0; 26-CO,H;A*

3&26,27-OH: A7.“““.z4

3a,22(S)-OAc; 26-CO,H; (24~)~T.g” ‘1.24

32.152.22JS)-OAc; 26X0,H; (24~)~‘.%1 ‘j.24

32.7sOAc; 15a-OH; 26-CO,H:

(24E) A*.”

3%. ISz.22-OAc; 7a-OH;

26-CO,H: (24E) A”.”

3a.7z.22-OAc: I5s-OH;

26.CO,H; (24E)A”.l’

3a.22-OAc; 7sOMe; 26-CO,H; (24E)AB,*‘

3a.15~OAc; 26-CO,H; (24~)~:.%‘11.24

WI

[2541

L2551

W51

WI

WI

C2561

12571

[2571

[2571

[2571

[Ial

[14(Jl

L 1401

[14w

[]@I

[2581

[2591

[2591

[2601

c26w

[2Wl

C2@1

[2@1

Page 27: Trite r Pen Oids

Triterpenoids 2225

Table 1. (Continued)

1 2 3 4 5

Ganoderic acid Mf. +42’, UV,

IR ‘H ‘“CNMR, MS , 3 Ganoderiol A, 232-234”, + 20”. UV IR ‘H ‘“CNMR, MS 9 . 7 Ganoderiol B, UV,

‘H, 13C NMR, MS

Ganodermanondiol, 182- 183”.

+45.8”, UV. IR, ‘H, ‘%NMR,

MS

Ganodermanontriol, 161-162”,

+ 35.7”, UV, IR, ‘H, 13C NMR,

MS

Ganoderic acid K; Me ester,

166-167”, +156”, UV, IR, ‘H,

13C NMR, MS

Compound B8; Me ester,

158-163”, + 128”. UV, IR, ‘H,

13C NMR, MS

Compound B9, UV. IR, ‘H,

13C NMR, MS

Compound C5’, 118.5-121.5”,

+ 101”. UV, IR, ‘H, “CNMR,

MS

Compound C6, 14&148”, UV,

IR ‘H “CNMR, MS , 3 Methyl ganoderate M,

206-210”, UV, IR, ‘H, MS, CD

Methyl ganoderate N,

164167”, + 153”, UV, IR, ‘H,

13C NMR, MS, CD

Methyl ganoderate 0,

168-171”, UV, IR, ‘HNMR,

MS. CD

Triterpene eater, 227-229”. UV,

IR, ‘H NMR, MS, CD

Methyl lucidenate H, 190- 192”.

+ 136”. UV, IR, ‘H, 13CNMR,

MS, CD

Methyl lucidenate I, + 118”.

UV, IR, ‘H, 13CNMR, MS, CD

Methyl lucidenate J, + 78”. UV,

IR, ‘H NMR, MS, CD

Methyl lucidenate K, UV, IR,

‘H NMR, MS, CD

Methyl lucidenate L, UV, IR,

‘H NMR, MS, CD

Methyl lucidenate M, UV,

‘H NMR, MS

Epoxyganoderiol A, +65’, IR,

‘H, 13CNMR, MS, CD

Epoxyganoderiol B, + 35”, UV,

IR, ‘H, “CNMR, MS, CD

Epoxyganoderiol C, +43”, UV, IR ‘H 9 9 13CNMR MS CD 9 * Ganoderal B, +94”, UV, IR,

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

3a-OAc; 15a-OH;

26CO,H; (24E)A7*9*‘11’2*

3/?,24.25,26-OH A’.9’111

3-0x0; 15x,26,27-OH; AT.%1 1,.2.

3-0x0; 24(s). 25-OH; A7.90 ‘)

c2w

WI

WI

CW

3-0x0; 24(5),25,26_OH; A’.9011 CW

3/?,15a-OH; 7,11,23-0x0;

26C0,H; A” C381

7a,lSa-OH;3.11,23-0x0;

26CO,H; A* C381

3/?,7a,15a-OH; 11,23-0x0;

26C0,H; A8

3.1 I.1 5.23-0x0; 78,12/?-OH;

26CO2 Me; Aa

C381

c391

3/3,12/?-OH; 7,11,15,23-0x0;

26C0,Me; A8

3,11,15,23-0x0; 7/?,12a-OH;

26CO,Me; A8

3,11,15,23-0x0; 7B,20<-OH;

26COrMe; A8

c391

C2631

C2633

3,7,11,15,23-0x0; 20C-OH;

26CO,Me; Aa C2631

3.11,15,23-0x0; 7,!f,12/I-OH; 26

CO,Me; (20E)A8~‘M22’

38,7/J,28-OH; I 1,15-0x0;

24CO,Me; As; 25.26.27~nor

C2631

12631

3/?,28-OH; 7,11,15-0x0;

24CO,Me; A’; 25.26.27~nor

3/?,12/$28-OH; 7,11,15-0x0;

24COrMe; A’; 25,26.27-nor

3.7, I 1.15-0x0; 12a-OH;

24CO,Me; A’; 25,26,27-nor

3jI,12/LOH; 7,11,15-0x0;

24CO,Me; A”; 25,26,27-nor

3/?,7a,lSa-OH; 11-0~0; 24C0,Me; Aa; 25,26,27-nor

3-0x0; 7x,26-OH;

A*; 24(s),2Ys)epoxy

3-0x0; 26-OH; A’.9’1 ‘I;

2YSL2Ys)ePoxY

3&26-OH; A’*9”“;

24(s).2Ys)epoxY

3-0x0; 7a-OH; 26CHO;

C2631

C2631

C2631

C2631

C2631

c2641

P541

cw

c2641

Page 28: Trite r Pen Oids

2226 S. B. MAHATO er (11.

Table 1. (Continued)

1 2 3 4 5

‘H NMR, MS

Ganodertnic acid Ja UV, ‘H,

l’C NMR, MS

Ganodermic acid Jb, 2OO--202”.

UV ‘H 13CNMR, MS . >

Ganodermic acid Pl, UV, ‘H, “C NMR. MS

Ganodermlc acid P2. UV, ‘H,

“CNMR, MS

Ganodermic acid R, 126- 129’. UV IR ‘H “CNMR. MS . . .

Ganoderrmc acid S, 123- 124.‘.

UV IR ‘H 13CNMR. MS 9 9 * Triterpene acid, UV, ‘H,

“CNMR, MS

Triterpene acid. UV, ‘H.

“C NMR, MS

Triterpene acid, UV, ‘H.

“C NMR, MS

Triterpene acid, 198-199”, UV.

‘H, 13C NMR, MS

Triterpene acid lJV, ‘H.

“C NMR, MS

Ganodermic acid T-N,

145-146‘. UV, ‘H, “CNMR,

MS

Ganodermtc ac’d T-O,

16&162’.. UV. ‘H. 13CNMR,

MS

Ganodermic acid T-Q, UV. ‘H,

“CNMR, MS

Ganoderiol C, IR, ‘H,

13C NMR, HRMS of its 24, 26-

diacetate

Ganoderiol D, “CNMR

Ganoderiol E; triacetate, + 18’.

UV IR ‘H “CNMR, MS . . .

Ganoderiol F, 116- 120”, + 42”.

UV, IR, ‘H, “CNMR, MS

Ganoderiol G, + 34.. IR. ‘H NMR, MS

Ganoderiol H, 2Ot-201.5’.

+ 22’. UV, IR, ‘HNMR, “C NMR. HRMS

Ganoderiol 1, + 53”. IR,

‘H NMR, HRMS

Ganolucidic acid E, + 154-, UV,

IR, ‘H NMR, HRMS

Triterpene acid. UV. ‘H.

“C NMR, MS

Triterpene ac’d, 178-180”. UV,

‘H, “C NMR, MS

Triterpene acid, UV. ‘H, “C NMR. MS

11

II

II

II

I1

II

II

11

II

II

II

II

11

II

I1

11

11

II

I1

II

II

II

11

11

II

(24.k-)A8~“’

3a.l %-OH; 26_CO H. AT.911 ‘I.24

2 7

38.1 %-OH; 26-CO,H; A7.%“,.Z4

3a,22/1-OAc; 1 Sa-OH; 26_CO,H; A7.%1’).24

3/?-OH; 15a,22p-OAc; 26_CO,H; A7.91”).2*

32,1511-OAc; 26-CO,H; A-.rc’1).24

36.1 Sa-OAc; 26-CO,H; AT.%’ ’ b.21

3sOH; 1 Sz-OAc; 23-0x0; 26_CO,H; A7.‘%“L?.*

3sOAc; 1 Sa-OH; 23-0x0; 26_CO H. A7.%“).2*

2 .

3a. 1 Sa-OAc; 23-0x0; 26_CO,H; AT.911 ‘,.2*

3a-OAc; 15a,22(Sj-OH; ‘,6_CO H. AT.‘%“,.?.1

2 . 3/LlSz,22(S)-OH; 26-CO,H; AT.%“).24

3/1-OH; 1 Sa-OAc; 26C0,H; AT.91 1 ’ 1.24

3/?-OAc; 15a-OH; 26_C01H; A7.‘%“l.24

3-0x0; 15sOH; 26_CO,H. A’.Yl”J.24

3-0x0; 7a-OEt; 24,25,26OH; AR

3.7-0~0; 24.25.26OH; As

3/?.26,27-OH; 7-0x0; AR.24

3-0x0; 26,27-OH; A’.9’1 “.‘*

3-0x0; 7z-OMe;

24.25,26-OH; A’

3/?,24,25.26-OH; 7-0x0; A*

3-0x0; 15,26,27-OH; 7sOMe; A*.‘*

3.11-0x0; 15x-OH; 26-CO,H; (24E)A”.”

32,15q22z-OH; 26_CO,H; A’.9(“).24

3fi,l5~.22/3-OH; 26_CO,H. A7.9,1 Lb.24

3cr.I Sz-OAc; 22a-OH; 26_CO,H. A7.%’ ‘j.2.

C2651

I2651

I2651

P651

WI

12661

W71

P71

W71

W71

C2’571

CW

W81

W81

W91

C2691

W91

W91

P91

I391

C2691

V91

12701

c2701

~2701

Page 29: Trite r Pen Oids

Triterpenoids 2227

Table 1. (Continued)

1 2 3 4 5

Gardenia jasminoides

(Rubiaceae)

Gentiana jlavo-maculata (Gentianaceae)

Glycyrrhiza uralensis

(Leguminosae)

Guaiacum oficinale Triterpene acid, 290”. +66.66’, (Zygophyllaaae) UV, IR, MS

Gynocardia odorata

(Flacourtiaceae)

Odolactone, 304-305”. 47.06

IR, ‘H NMR, “C NMR, MS

Odollactone, 303-304‘, IR,

‘H NMR, MS

Acetylodollactone, 302-303”. - 19”. IR, ‘H NMR, MS

Gyrinops walla (Thymelaeaceae)

Hedyolis lawsoniae (Rubiaceae)

Heteropanax jiiagraus

Hoya lacunosa (Asclepiadaceae)

Humata pectinata

(Davalliaceae)

Hyptis capitata (Labiatae)

H. mutabilis

Triterpene acid, UV. ‘H,

“C NMR, MS

Triterpene acid, UV, ‘H,

“C NMR, MS

Triterpene acid, UV, ‘H, “CNMR. MS

Triterpene acid, UV, ‘H,

“CNMR, MS

Gardenolic acid. 212-214”.

+ 38.3”. UV, IR. ‘H, ‘% NMR,

MS

Triterpenoid

24-Hydroxy glabrolide

Uralenolide, 302-303”

Glyuranolide

Wallenone, 194-196”. -71.6’.

IR, ‘H. 13CNMR, MS, X-ray

analysis

Triterpene acid; Me ester,

180-181.5”. +64.1’, IR,

‘H NMR, MS

Triterpene acid; Me ester,

l80-182”, +50.8”, IR,

‘H NMR, MS

Triterpene acid; Me ester, 51”.

IR, ‘H NMR, MS

Triterpene acid

Dihydronyctanthic acid; methyl

ester, MS

Seco-triterpenoid, MS

Triterpenoid, 236-238’. + 37.4’.

IR, ‘H NMR, MS

Triterpenoid, 324-326”. + 26.7”.

IR, ‘H NMR, MS

Hyptatic acid A, 298-304”,

+ 57”, IR, ‘H NMR, MS, X-ray

analysis

Hyptatic acid B, 225-228”.

+28’, IR, ‘HNMR, MS

Triterpene acid IR, ‘HNMR,

MS

11

11

11

11

11

2 3/?-Palmityloxy; 28-OH; A”

1

1

4

4

4

14

2

2

2

7 38,23-OH; 27,28-CO,H; A2o’29)

1 3,4-Seco; 3-CO&e; A’*

18 3,4-Seco; 3-CO,Me; A”

8 3/?-OH

8 3/?-OAc

1 Z&38,24-OH; 2&CO,H; Al2

2

2

3B,lSa-OAc; 222-OH; 26_CO,H; AT.‘%’ lb.24

3u,lSu-OH; 22fl-OAc; 26_CO,H; A7.%‘1).24

3/?,1 Sa-OH; 22/l-OAc; 26x0 H. A7.%“).24

2 7 3B.l Sa-OAc,

26-CO,H; A”.24

3/LOH; 23-0x0; 28-CO,H;

A’*; 9~,19-cyclo

38,24-OH; 1 I-0x0; A’*;

30-+22/Llactone

3/j24_OH; A’lJ3f”“;

30+22/?-lactone

3/l-O@ 1 I-0x0; 27-CO,Me;

A’l; 29+22a-lactone

38. 24-OH; 28,29-CO,H; Al2

Cl411

~2721

C2731

I2741

3-0x0; 26+ l2g-lactone

3a-OH; 26-t 12b-lactone

3a-OAc; 26+ 12/l-lactone

3-0x0; 24-(=CH,); 25-Me; A’

C2751

C2761

C2761

C27’51

c2773

3&23-OH; 28-CO,H; A” C2781

3/J,24_OH; 28-CO,H; A’* C2781

h,3fl,24-OH; 28-CO,H; A” C2781

C2791

W’l

WOI

WI

WI

WI

2~,3/?,19s24-OH; 28C0,H;

AL2

3a,l9a-OH; 28_CO,H; A”

cw

L-21

Page 30: Trite r Pen Oids

2228 S. B. MAHATO et al.

Table I. (Conrinued)

1 2 3 4 5

Triterpenoid lactone, 292-294‘.

+ 18.8”. IR. ‘H. ‘sC NMR, MS

H. suaveolens

flex rorunda (Aquifoliaceae)

Impariens balsamina (Balsaminaceae)

Inonotus obliquus

Triterpene acid, 307-308”.

+31‘, IR, ‘HNMR, MS

Rotungenic acid, 295-298’.

+ 16”. UV, IR, “C NMR, MS

Rotundioic acid, 295-298”.

+ 50”. UV, IR, ‘-‘C NMR, MS

Hosenkol-A. 225-227’. + 78.9”.

UV IR ‘H > . . “CNMR MS . . X-ray analysis

Triterpenoid, 145-146”. IR. ‘H,

“C NMR, MS

Inuh britannica (Compositae)

Triterpenoid

Triterpenoid. IR, “C NMR.

MS

Triterpenoid, IR, “C NMR, MS

Triterpenoid. IR, ‘H, 13CNMR,

MS

Triterpenoid, IR, ‘H NMR, MS

Triterpenoid, MS

I. missouriensis

Jaspis siellifera

Iris germmica (Iridaceae) z-lrtgermanal, +36”, UV, IR.

‘H, 13C NMR, MS

y-lrigermanal, 74-75’. + IO”,

UV IR ‘H I . 9 13CNMR MS 9 , X-ray analysis

Iridogermanal, +41”, UV, IR,

‘H, “CNMR, MS

Missourin

Missouriensin, 213-216’. IR,

‘H, “C NMR, MS

Triterpene I; Me ester, +22.8”.

UV IR ‘H “CNMR, MS , 3 .

Kadsura coccinea (Schisandraceae)

K. heteroclita

K. longipedunculata

Triterpene II; Me ester, - 154”,

UV IR ‘H “CNMR. MS 9 3 3

Triterpene III, -32.7”, UV, IR,

‘H, 13C NMR, MS

Triterpene IV, -66.7”, UV, IR,

‘H, ‘%NMR, MS

Coccinic acid

Triterpene acid, 95-97”.

+ 69.95”. 13C NMR, MS

Neokadsuranic acid A, -35.0”.

UV ‘H 13CNMR, MS . 1 Neokadsuranic acid B, + 37.4”,

‘H, 13C NMR. MS, CD

Neokadsuranic acid C. +42.0”,

‘H, 13C NMR, MS, CD

11

11

34

34

34

1

7

2

2

23

11

ll

I1

11

11

7

7

38

39

48 _-

8 &-OH; 30-CO,H; Azzfz9’

8 6a-OAc; 21/l-OH; A22’29’

19 3fi-OH; 12-0x0; 28-CO,H;

(13Z.l5E,17E,22E) 413.13.*7,2lw2.2*

3fi-OAc; 12-0~0; 28-CO,H;

(13Z,15&17E,22E) A’&‘% ‘12eL22.21

3&28-OAc; 22-OH; 12-0x0;

(13Z,15E,17E)A”~“~‘7’~0’~2’

38-OH; 12-0x0;

(13Z,lSE,17E,22E) A13.15.17~20~.21.21

3-0x0; 2W0,H; A9”“.s*

19

19

19

3/?-OAc; 28 -+ 13/l-lactone

3/l-OH; 27-CO,H; Azo’29’

3j?,l9a,24-OH; 2%CO,H; Al2

38,19n-OH; 23,28-CO,H; A”

3/?.17@,26,28-OH:

21,24wePOXY

3/?-OH; 21-CHO; As.‘*

3~,22_OH; A’.q(* “.2*

3fl.21-OH; As.“’

3P.22,25-OH; A8.z3

3g,22-OH; 7-0x0: Asz4

3fLPalmityloxy; 16/l-OH; Aro,z%

3/LMyristyloxy; 16/8-OH; Ar0,29’

_

3-0x0; 26C0,H; (242)Ae.s’

3-0x0; 26-COzH; (24Z)As” I’.’ 3118Ltd

3-0x0; 26C0,H;

(24Z)A 8.13,18,.2.

3-0x0; I38-OH; 26CO,H;

(24Z)Asz4

C28-7

C2831

12841

L-41

[543

C2851

PW

I?871

~2871

C-2881

I2893

US91

C6.21

C621

CQI

cwl

c2901

~2911

~2911

~2911

c2911

~2921

c591

c591

C581

C581

Page 31: Trite r Pen Oids
Page 32: Trite r Pen Oids

2230 S. B. MAHATO el al.

Table 1. (Continued)

1 2 3 4 5

kwsonia iwrmis (Lythraceae)

Triterpenoid, 287-289”, + 62”, UV, IR, ‘H NMR, MS

Hennadiol, ‘H NMR, MS

Triterpenoid, ‘H NMR, MS

Lemmaphyllwn microphyllum (Polypodiaceae)

Triterpene. 103- 104”. +46.6”,

‘H NMR, MS

Triterpene, -39.8”. ‘H NMR,

MS

Triterpene, 93-94”. + 16.1’.

‘H NMR, MS

Triterpene, + 57.1’. IR,

‘H NMR, MS

Triterpene, -24.8”. ‘H NMR,

MS

a-Polypodatetraene, +27.4”,

IR ‘H ‘%NMR, MS . 3 Triterpene, 155-156”. +3.1”,

‘H, “C NMR. MS

Triterpene, + 87.8”. ‘H,

“CNMR, MS

Triterpene, 83-85”. + 15.6”. ‘H,

"CNMR,MS

Triterpene, 174 175”. + 94.8”,

‘H, ‘% NMR, MS

13/IH-Malabaricatriene, + 16.3’. IR. ‘H. ‘-‘CNMR, MS

13aH-Malabaricatriene, - 23.3’. IR, ‘H NMR, MS

Liartris microcephalo

(Eopatotiaceae)

Lindheimera texana (Compositae)

Nortriterpeno’d. 228-233”, IR,

‘H NMR, MS

Triterpenoid. ‘H, ‘%Z NMR,

MS

Triterpenoid, 160-162.5”. IR,

‘H, ‘sC NMR, MS, CD

Triterpenoid, 214-217”. IR, ‘H,

“C NMR, MS, X-ray analysis

Triterpenoid, ‘H, ‘% NMR

Triterpenoid. ‘H, ‘%Z NMR

Triterpenoid, 228-23 1’. IR, 1 H, “C NMR, MS, CD

Triterpenoid, 185-187”, IR, ‘H, “C NMR, MS, CD

Triterpenoid, 225-228” (dec.) ‘H. “CNMR

Lufla amara (Cucurbitaceae) Amarinin

Lygodium Jexuosum (Polypodiaceae)

Macaranga peltara

(Euphorbiaoeae)

Triterpenoid

Cyclopeltenyl acetate, IR,

‘H NMR, MS

I

1

7

23

24

25

10

14

26

20

20

20

20

19

19

11

11

12

8

11

3/I-4’-Hydroxycinnamoyloxy;

28-OH; Al2

3/?,30-OH; A2”‘s9’

38,30-OH; 20s

A12.21

AY.2.

A3.21

A*&‘*

AT.24

AT.14

A7.13

A&14(“’

(17~ 24~)Al*~‘s),‘7l20l.2*.

138-H

(17~ 24~)A’*“s’.l7’ZO).2*.

13a-H

3/I-OAc; A”; 30-nor

3-0x0; 9B,19-cycle; A24;

l6B.2YS)epox~

3-0x0; 9/?,19cyclo; As*;

16&23(R)-epoxy

3-0x0; 9/3,19-cycle; 168,23-,

23.25-diepoxy; 23R

3/?-OH; 9jI,19cyclo; 6”;

168,23(S)-epoxy

38-OH; 9/?,19cyclo; A=;

l6B>2YR)-epoxy

3-0x0; 9/?,19_cyclo;

22+ 16/7-lactone;

23,24,25,26,2%nor

3-0x0; 16@-OH; s/I,1 9-cycle; 23.24-epoxy

3-0x0; 16p,23&24&25-OH;

98.19~cycle

3,11,22-0x0; I6a,20-OH;

25-OAc; A=’

29-pCoumaryloxy

3&OAc; 24-Me; A”; 9/?,19-cyclo; 21-nor

[3041

c3051

c3051

c3w

c3w

c3w

c3w

c3w

[491

c3071

c3071

c3071

[3071

C3W

C3081

c3091

C3lOl

C3lOl

C3lOl

C3lOl

C3lOl

[3lOl

[3lOl

C3lOl

El431

C3lll

~3121

Page 33: Trite r Pen Oids

Triterpenoids 2231

Table 1. (Continued)

1 2 3 4 5

Madhuca butyracea (Sapotaceae)

Manggera indica (Anacardiaceae)

Butyracic acid

Triterpenoid, 116-118”. +30.6’,

IR, ‘H NMR

Triterpenoid, 109-l 1 l”, +64.9”

IR, ‘H NMR, MS

Triterpenoid, 154-155”. +51’,

IR, ‘H NMR, MS

Maprounea africano (Euphorbiaceae)

Triterpenoid, 19t- 192”,

+ 18.8”. IR, ‘H NMR, MS

Triterpcnoid, 154-156”. +O”,

IR, ‘H NMR

Triterpenoid, 16% 163”,

+42.5”, IR, ‘H NMR, MS

Triterpenoid, 218-220”, + 27.5”.

UV IR ‘H 13CNMR, MS 3 9 7 Triterpenoid, IR, ‘H, iJC NMR,

MS

Triterpenoid, IR, ‘H, 13C NMR, MS

Triterpenoid, 205-207”, +21.5”,

UV IR ‘H ‘“CNMR, MS . 3 7 Triterpenoid, 253-255”. IR, MS

Maprounic acid 305-307”.

+ 12.8”. IR, MS

Maprounic acid 3-p-hydroxy-

bcnroate, 308-31 l”, + 32.5’.

UV, IR, MS

7B-Hydroxymaprounic acid

3-ghydroxybenzoate, + 8.0”.

UV, IR, MS

Triterpenoid, UV, IR, MS

Maytenus con&rtiJora

(Celastraceae)

M. diwrsifolio

Confertiflorol

Maytenfolic acid, 281-282”.

+34.2”. IR, ‘H, i3CNMR, MS,

X-ray analysis

M. horrida

Maytenfoliol, 290-291”. - 12.8”. IR, ‘H, 13C NMR, MS,

X-ray analysis

Maytensifolin A, 234-236”,

-29.5”. IR. ‘H, ‘sCNMR, MS,

X-ray analysis

Maytensifolin B, 280-282”.

-21.8” IR “CNMR, MS . .

Triterpenoid, ‘H NMR. MS

M. octogona

M. orbiculata

Melia toosendan (Meliaceae)

Triterpenoid

Triterpenoid

Lipomelianol, 5455”, - 3”, IR,

‘H, 13C NMR, MS

21-0-Acetyltoosendantriol,

‘)CNMR, X-ray analysis

1

10

10

11

11

3-0x0; 2qSbOH; 260Ac;

(24E)A”

3&26-OH; 9/?,19_cyclo;

(24E)A”

3/?,24(,27-OH; 9/?,19<ycl0; A*’

11 3&24<,25-OH; 9~,19cyclo

11

11

11

11

11

8

2

3/?,24{-OAc; 25-OH; 98,19-cycle

3x,22{-OH; 26C0,H;

9/?,19-cycle; (24E)A”

3j?,22C-OH; 26-CO,H;

9/?,19-cycle; (24E)A*’

3/?,23(-OH; 26-CO,H; 9~,19cyclo; (24E)A*’

3x,27-OH; 26CO,H;

9/?,19-cycle; (24E)A*’

1/?,3/7,22-OH

3j3-OH; 29C0,H; A’*

2 3/?-O-(p-hydroxybenzoyl); 29C0,H; Ai*

2

4 3-0x0; 28,30-OH c317l

4 3-0x0; I7-OOH; 28-nor C3181

4

1

4

7

14

16

2)9,38,23-OH; 28-CO& A’r

3-0x0; 20(S),26_OH; (24E)A**

38-O-(phydroxybenzoyl~

7fi-OH; 29-CO,H; A”

2q3p-(p-hydroxybenzoyl),; 29C0,H; A’*

3-0x0; 28,29-OH

3f?,22a-OH; 29-CO,H; Ai*

16-0X0

1~,3/?.1 la-OH; A’*

3-0x0; 28-CO,Me

38.29-08; A20t29)

3fi-OCO(CH,),Me; 21<-OH,

21,23-, 24,25diepoxy; A’ where n= 10,12,14,16

3a,7a-OH; 21-OAc; A”;

2123-24.25diepoxy

C3I31

c3141

c3141

c3141

13141

c3141

c3141

c3151

c3151

c3151

c3151

c3151

ClW

CW

ClW

CW

C3161

c3171

C3I91

13201

~3211

~3223

C3231

C3241

Page 34: Trite r Pen Oids

2232 S. B. MAHATO et al.

Table I. (Conrinued)

1 2 3 4 5

Methylosinus tricosporiwn

Monechma debile (Acanthaceae)

Musa paradisiaca (Musaceae)

Muscari comosum (Lihaceae)

Myrianthus arboreus Myrianthinic actd; Me ester,

(Cecropiaceae) 145 -147”. IR, ‘H NMR, MS

Myrica rubra (Myricaceae)

Nardia scalaris

(Marchantiopsida)

Neochamaelea pulwrulenta

(Cneoraceae)

Nepeta, hindosrana (Labiatae)

Nerium oleander (Apocynaceae)

Triterpenoid

Monechmol, 292-294”. + 28’.

IR, ‘H NMR, MS

Triterpenoid, IR, ‘H NMR, MS

Triterpenoid, 135’. + 72’. IR.

MS

Nortriterpcnoid. 194-195’.

+67.2”, ‘H, “CNMR, MS

Nortriterpenoid. 196-l 98’. ’ H.

“C NMR, MS

Nortriterpcnoid, I84- 186”. ’ H,

“C NMR. MS

Nortriterpenoid, 234-236’.

‘H NMR, MS

Nortriterpenoid, 195-197”,

-22‘ ‘H “CNMR. MS . 1 Nortriterpenoid. 18 I- 183”. UV,

IR ‘H ‘-‘CNMR, MS > 7

Nortriterpenoid. 221.-224’. UV,

IR, ‘H NMR. MS

Arboreic actd: Me ester,

239-230’. IR, ‘H NMR. MS

Myriabortc acid: dimethyl ester,

2%260’, IR. ‘H, 13CNMR.

MS

Triterpenoid. 225-227’, -0.2’,

IR ‘H ‘%INMR, MS 3 3

Triterpcnoid, 213-215”. +81’,

IR, NMR, MS

Protolimonoid I, 229”. - 66.3’. IR ‘H “CNMR, MS > I Protolimonoid II, 187-189”. -89‘. MS

Nepetidone 300” (dec.),

-28.13’. UV, IR, ‘H.

r3C NMR, MS

Nepedinol, 282”. (dec.),

- 18.67”, UV, IR, ‘H,

13CNMR, MS

Triterpene acid; Me ester,

210-212”. IR, ‘H, “CNMR,

MS

Kaneric acid. 122”. + 16.66”.

UV IR ‘H 13CNMR. MS . 7 .

Ncriucoumaric acid

Oleanderen, ’ H NM R,

‘%NMR,

Oleanderol, 206.-208‘. + 6.15”. UV IR ‘H “CNMR, MS . 1 .

Kamerin, 280-28 1’. + 14.28”,

UV, IR, ‘H NMR, MS

46

5

11

11

II

11

11

11

II

I1

II

1

1

2

18 3-0x0; 2X-CO,H; A“’ [336]

6 3-0x0: 21x-OMe; A”

14

14

7

3-0x0; 23x.25OH; 21-24lactone; A’

3-0x0; 245, 25-OH;

21+23-Iactone; A’

1/7,3&l Ix-OH: 30-nor; 20-0x0

c3371

[3381

C3381

c3391

7 1/7,3/I,lla, 30-OH; A20’29’

2 2j,3a, 23-OH; 28-CO,H; At*

31,32,33,34-OH; 35-NH,

38-OH; A”

3-0x0; 98.19~cycle; A”‘; 29-nor

3/I-OH; 24-Me; A”.“; 29-nor

3.15-0x0; 24(S).29-OH; 17x,23(S)-epoxy; AH; 27-nor

3/I.29-OH: 1 S,24Oxo;

17x23( RFepoxy: A’; 27-nor

3.15.24-0x0; 29-OH;

17x,23( R )-epoxy; A’; 27-nor

3/?,24(S),29-OH; 15-0x0;

17z,23(S)-epoxy; A”; 27-nor

3/?,29-OH; 24-0x0;

17x.23(S)-epoxy: A’: 27-nor

3,15,24-0x0; 29-OH;

17x,23(S)-epoxy; A’.‘; 27-nor

3/I,29-OH; 15,24-0x0;

17x,23(S)-epoxy; A’.““‘; 27-nor

3/%6P-OH. 29-CO,H; A”

2&3/1,24-OH; 28-CO,H; A”

3/1,19x-OH; 24.28-CO,H; A”

l/I,3/I-OH; 28-CO,H; A”

3fi-OH; 2x-cis-p-coumaryloxy;

28-CO,H; A”

A’2

3/1,27,28-OH; A’z~20’29)

3/?,5a-OH; 28-CO,H; 24-nor; A4,23,.te

~3251

13261

C3271

(I3281

C3291

[3301

c3301

c3311

[3311

[3321

[3321

[3331

c3341

[3351

II3391

c3401

c3411

c3421

c3431

[3441

c3451

Page 35: Trite r Pen Oids

Triterpcnoids 2233

Table 1. (Continued)

1 2 3 4 5

Neroilia purpwea (Orchidaceae)

Nothohzena candida (Pteridaceae)

Orthopterygium huancuy (Julianaceae)

Orthosphenia mexicana (Celastraceae)

Pachysandra terminalis, (Buxaceae)

Parmelia tinctorwn (Parmeliaceae)

Parsonslo laevigata

(bowa==)

Partheniumfruticosum (Compositate)

P. lozanianwn

Perenniporia ochrokuca (Polyporaceae)

Dihydroursolic acid, 150-l 52”. +6.0”. UV, IR, ‘H NMR, MS

Kanerocin; acetate, 184-185”, + 52.63”. UV, IR, ‘H NMR, MS

Oleanderolic acid, 262-264”, + 50.0”. UV, IR, ‘H NMR, MS

Kanerodione, 178-180”, -36.36”, UV, IR, ‘H NMR, MS

Cyclonervilol, 166- 169”. + 37.9”, ‘H NMR, MS

Cyclohomonervilol, 166-167”. 40.5”, IR, ‘H NMR, MS

24(R/a)-Dihydrocycloeucalenol, 141-142”. ‘H NMR, MS

24(S/&Dihydrocycloucalenol, 152-153”, ‘HNMR, MS

Dihydrocyclonervilol, l54-156”, ‘H NMR, MS

Triterpenoid, 234-236”. IR, ‘H, 13CNMR, MS

Triterpenoid, 204-205”, - 7”. IR ‘H “CNMR, MS 7 , Orthosphenic acid, 298-300 and 330” (double), IR, ‘H, HRMS, X-ray analysis

Netzahualcoyone, 210-212”, UV, IR, ‘H, HRMS, X-ray analysis

Trikrpenoid, IR, ‘H NMR, MS

Pachysandienol A, 21 l-213”. + 153.1”. IR, MS

Pachysandienol B, 236-241”, +89.5”. UV, IR, ‘H NMR, MS

Triterpenoid, 246-247”, + 77.0”, UV, IR, ‘H NMR, HRMS

Triterpenoid, + 52.0”. IR, ‘H NMR, HRMS

Triterpenoid

Triterpenoid, 320”, IR, HRMS 18 3/&24-OH; Al4

Fruticin A, 217-218”, +75”, IR, ‘HNMR, MS

Fruticin B, 235-236”, +12.9”, IR, ‘H NMR, MS, X-ray analysis

Desoxyprefruticin B, IR, ‘H NMR, MS

Desoxyisofruticin B, IR, ‘H NMR, MS

Perenniporiol, 186187”, + loo”, UV, IR, ‘H, I’ CNMR, MS

7

11

11

11

11

11

8

1

4

4

1

4

4

4

4

8

11

11

11

11

11

3/LOH; 28-CO,H

3a-OH; 28-CO,H; A1*.“’

3B-pHydroxylphenoxy; 1 lx-OMe; 12a-OH; 28-CO,H; AZ0

3.7-0x0; 28-OH; A20’29)

J/?-OH; 24-Et; 9/?,19cyclo; A”; 29-nor

3fi-OH; 24t-isopropenyl; 9/?,19-cycle; 29-nor

3B-OH; 24 (R)-Me; 9/?,19cyclo; 29-nor

3/J-OH; 24(!+Me; 9fi,l9_cyclo; 29-nor

3/?-OH; 24(R )-Et; 9/$19-cycle; 29-nor

6a-OAc; 16j?,22-OH; 24-CO,H

3-0x0; 6/?-OH; 28-CO, Me; A’*

2a,3a-OH; 29-CO,H; 38,24-~x~

3,2lj?-OH; 2,22-0x0; 29-CO, Me; 24.26nor; A3.%7.‘0(‘).‘*; 15_Me

3-0x0; 28,29-OH; A’*

3/?-OH, 16-Me; A’6*21; 28-nor

3fi_OH; 16_Me; A1s.1’(22);

28-nor

3!-OH; lCCH,OH; A’6*21; 28-nor

3/?-OH; 16-CH,OH; A16; 28-nor

3/J-OAc, 12/7,22-OH

3-0x0; 168,240.OH; 20,25-epoxy, A”

3-0x0; 16/l,24a-OH; 20,25cpoxy; 9~,19_cyclo

3-0x0; 98, 19cyclo; 24.25-epoxy

3-0x0; 25-OH; 9/.3,19-cycle; 16.24-epoxy

3826-OH; 1 Sa-OAc; 2226-epoxy; A7.9(11).2*; 22s; 26s

13451

c3461

13473

P-473

C3481

C3481

C3481

C3481

WI

c3491

c3501

c3511

C3521

c3531

c3541

c3541

c3551

c3551

C3561

c3571

C3581

C3581

c3591

c3591

c3fw

Page 36: Trite r Pen Oids

2234

1 2

S. 0. MAHAT~ er al.

Table 1. (Continued)

3 4 5

Triterpenoid. 197-200,‘. + 102”, IR ‘H “CNMR, MS , 3

Periandra d&is (Leguminosae) Triterpenoid, 290-296’.

+ 123.68”, IR, ‘H NMR. MS

Triterpenold, 283-292’,

+ 1.52”. IR, ‘H NMR, MS

Triterpenoid. 260-263”.

+ 183.36’. IR, MS

Pfajia panicuiata Pfaffic acid, 285-286”.

(Amaranthaceae) + 109.2”. IR, ‘H, ‘% NMR,

MS, X-ray analysis

P. puluerulenta Nortriterpenoid

Nortriterpenoid

Nortrrterpenoid

Nortriterpenoid

Triterpenoid, 188-189”. + 138”.

UV IR ‘H “CNMR, MS 9 . 1

Triterpenoid, 208-209”. + 174”. UV IR ‘H . 7 9 “CNMR MS . 3 X-ray analysis

Triterpenoid, 208-210”. + 117’. UV IR ‘H 13CNMR, MS 3 , 1

Triterpenoid. I70- 171 .I, + 68’.

IR ‘H ‘-‘CNMR, MS , . Triterpenold, 187- 188”. + 43”.

IR ‘H ‘+ZNMR, MS 3 I 12/&Acetoxyperenniporiol, 217-218”. -2.6”. UV. IR, ‘H,

“C NMR, MS

Phase&s vulgaris,

(Leguminosae)

Phellinus pomaceus

Phellodendron chinense (Rutaceae)

Pholidota chinensis

Glycinoeclepin A, ‘H,

“C NMR, MS, X-ray analysis

Glycinoeclepin B, ‘H,

“C NMR, FDMS

Glycinoeclepin C, ‘H,

“C NMR, FDMS

Javeroic acid; dimethyl ester,

125-126”. +lOl”, IR, ‘HNMR,

MS, X-ray analysis

Phellinic acid, 218-220”. UV,

IR, ‘H NMR, HRMS

Niloticin, 147’, -62”, IR, ‘H.

“C NMR, MS

Niloticin acetate, 157”. -75”.

IR, ‘H NMR. HRMS

Dihydroniloticin, 174‘, -47”.

IR ‘H “CNMR, MS , .

Cyclopholidonol

Cyclopholidone

II

II

11

11

I

I

1

29

29

29

29

29

41

42

43

44

45

13/14

13114

13/14

11

11

3/?-OH; I Sa-OAc; 26-OMe; 22.26-epoxy; A7,9” I’.‘*;

22S;26S

38.1 Sa-OAc; 26-OMe; 22.26-epoxy; A’~9”“.2*; 22S;26S

38.1 Sa-OAc; 26-OH; 22,26-epoxy; A’.9f”J~24;

22s;26S

3fi-OH; 2GOMe; 22,26epoxy; A”; 22x26s

3fI.26-OH; 22,26-epoxy; A’;

22x26s

3/?,26-OH; 128.1 Sa-OAc; 22.26epoxy; A’.“’ “.‘*; 22S;26S

3/Y,]%-OAc; 26-OH; 22,2t%epoxy; A8.11; 22S;26S

3-0x0; 25-CHO; 29-CO,H; At2

3-0x0; 25-CHO; 29-CO,H; A”

3-0x0; 25-OH; 30-CO,H; A”

3@-OH; 28-CO,H; A”

3/LOH; I I-0x0; 28-CO,H; A”

3-0x0; 28-CO,H; Al2

3,lI-0x0; 28-CO,H; AL2

3.11-0x0; 72-OH; 28-CO,H;

A’2

-

_

3-0x0; 23&OH; 24(,25epoxy; A’

3-0x0; 23(-OAc 2%. 25cpoxy;

A’

3/?,23<-OH: 24(,25_epoxy; A’

38-OH; 9/3,19-cycle; 24, 24Me; A”; 29-nor

3-0x0; 9/?,19-cycle; 24,24-Me;

A”; 29-nor

[3W

c3m1

c36(Y

C3Wl

C3@1

C3611

C3611

C3621

[3621

C3631

WI

C651

C651

C651

[653

WI

c371

c371

C611

C611

c3641

c3641

c3641

C3651

C3651

Page 37: Trite r Pen Oids
Page 38: Trite r Pen Oids

2236 S. B. MAHATO et al.

Table 1. (Conrmued)

I 2 3 4 5

Pisolithus rinctorius

(Sclerodennataceae)

P’sracia lentiscus Triterpenoid, ‘H NMR,

(Anacardiaceae) “CNMR

PIectranthus rugosus (Labiatae) Plectranthoic acid, 296”. + 42”,

IR, ‘H NMR, MS

Acetylplectranthoic acid, 258”.

+ 58’. IR, ‘H NMR, MS

Plectranthadiol, 220”. + 26” IR,

‘H NMR, MS

Polygala chomaebuxus Triterpenoid

(Polygalaceae)

Polypodium jauriei Triterp-ene, - 14.4”. ‘H NMR,

(Polypodiaceae) MS

a-Polypodatetraene, + 27.4”.

IR ‘H “CNMR, MS 9 .

P. .formosanum (24R)Cyclolaudenyl acetate

127-128’. + 53.5”. IR, ‘H NMR, MS

(24R)Cyclomargenyl acetate

144-145”. 50.5‘. IR, ‘HNMR,

MS

Pittosporum breuicalyx

(Pittosporaceae)

P. phillyraeoides

Pinus monf icola (Pinaceae)

“C NMR, MS

Picfeltarraegenin VI, UV, IR.

‘H, ‘% NMR, MS

Pittobrevigenin

27-Desoxyphillyrigenin, 294-297”, IR, ‘H NMR, MS

23-Hydroxyphillyrigenin, 330-332’. + 19,“. IR, MS

Triterpenoid, IR, ‘H. “C NMR,

MS

Triterpenoid, IR, ‘H, “CNMR,

MS

Triterpenoid, IR,‘H, “CNMR,

MS

Pisolactone, 279-280’, + 60”,

IR, ‘H, “CNMR, MS, X-ray

analysis

Triterpenoid, IR. ‘H NMR

Triterpenoid, IR, ‘H NMR

3-Oxopisolactone, 248-250”.

+79”, IR, ‘H NMR, MS

Triterpenoid, 161- 165”, + 29”,

IR ‘H ‘%NMR, MS . .

Triterpenoid. 190-192”. + 6”.

IR, ‘H NMR, MS, X-ray

analysis

Triterpenoid, 187-190‘. IR,

‘H NMR, MS

(24R)Cyclolaudenol. 123-124”.

+ 36.5’, IR, ‘H NMR, MS

(24R)-Cyclomargenol,

12

1

3

epoxy; As.”

2/?&,16a-OH; 11,22-0x0;

2424-epoxy; A=’

3/&l 5a. 16a,28-OH; 22a-OAc,

21j%angelyloxy; A’*

3/?-OH; 28+20/I-lactone

3 3/?,23,27-OH; 28+20,3-lactone

6 3@-OMe; 2Ia,30-OH; Al4

6 3/I-OMe; 21a.29-OH; A’*

6 3/I-OMe; 21@,30-OH; Al4

11

11

11

11

11

11

11

26

2

2

2

1

10

26

11

11

11

11

3/I-OH; A”; 24-CO-O-22

3,!7,235-OH; 22<-OAc;

24-(=CH,); A*

3&23<-OH; 22C OAc; 24-(=CHMe); A*

3-0x0; A”; 24-C0-O-22

3/l,22(S)-OH; 24-(=CH’); As

32,22(R)-OAc; 25-OH; A*=

3x,25-OH; 22 (R)-OAc; A“=

38,8z-OH; A13.‘7.2’

3a-OH; 29-CO,H; A”; 18a-H;

19s

3x-OAc; 29-CO’H; A”; 182-H;

19s

3a,29-OH. A”. 18a-H; 19s 3 9

38,23,27,29-OH; 28-CO,H; A”

A’% 17b.2.; 20R

3/3-OAc; 24(R)-Me; 9/?,19-cyclo;

A’s

3/I-OAc; 24(R)-Et; 9/?,19cyclo;

A=s

3/I-OH; 24 (R)-Me; 9/?, 19cyclo;

Al5

3/?-OH; 24(R)-Et; 9~.19cyclo; C3841

c3751

CW

13771

c3771

13781

[3781

WI

c3791

C361

C361

C3801

C3801

C3801

C3801

c5w

C38Il

C38Il

C38Il

C3821

[3831

c491

C3841

[3841

C3841

Page 39: Trite r Pen Oids
Page 40: Trite r Pen Oids
Page 41: Trite r Pen Oids

Triterpenoids 2239

Table 1. (Continued)

1 2 3 4 5

S. nicolsoniana

S. pinnata

S. przewalskii

Santolina oblongi$Aia (Compositae)

Sapium sebjr- (Euphorbiaceae)

Schaefferia cunejrolia (Celastraceae)

Triterpenoid, 2-264”. + 69”. IR ‘H ‘sCNMR. MS * ,

Triterpene acid, > 300”. IR. ‘H NMR, MS

Triterpene acid, > 300”. IR, ‘H NMR, MS

Triterpenoid, 185”. IR, ‘H NMR, MS

Przewanoic acid A, 269-270”. + 125”. UV, IR, ‘H, ‘% NMR, MS

Przewanoic acid B, 258-259”. + 103”. UV, IR, ‘H, ‘sCNMR, MS

Triterpenoid, 136137”, +48.8”, IR ‘H ‘sCNMR, MS , .

Triterpenoid, 161-162”. + 58.6”, IR ‘H ‘%NMR, MS 9 , Triterpenoid, 181-182’, +48.4”. IR ‘H “CNMR, MS . ,

Sebiferenic acid, 325” (de-c.), IR, ‘H, i3C NMR, MS

Triterpenoid, 237-238”, + 8.5”, IR ‘H ‘sCNMR, MS 3 3 Triterpenoid, 230-232”. + 6.35”. IR ‘H ‘+ZNMR, MS ? * Triterpenoid; acetate, 208-210”. +31.5”, IR, ‘H, ‘%NMR, MS

Scheflera octophylla (Araliaceae)

Triterpenoid; acetate, 210-212”. +37”, IR, ‘H NMR, MS

Triterpene acid, 213-214”. -2.0’ IR MS ’

‘H “CNMR. 3 3

Schisandra propinqua Anwuweixonic acid

Manwuweizic acid

Schizandra species

Schizandra grandijlora (Schixandraceae)

Scilla scilloides (Liliaceae)

Schisanlactone B, 205-207”, + 80.2”, UV, IR, ‘H, “C NMR, HRMS, X-ray analysis

Schixandraflorin, NMR, MS

Nortriteqxnoid

Nortriterpenoid, 235-239”, -36.7”, IR, ‘H. “CNMR, HRMS, X-ray analysis

Nortriterpenoid, 214216”, -47.4”. IR, ‘H, ‘%NMR, HRMS

Scutelloria riuularis (Labiatae)

Siphonochalina siphonella

Scutellaric acid, 275-277”. +35.5”, IR, ‘H NMR, MS

Sipholenol A, 169-171”, -60”. IR, ‘H, “CNMR, HRMS. X-ray analysis

PWm 3117-O

7

1

1

1

18

18

10

10

10

18

1

1

1

1

7

11

11

11

11

11

11

11

1

21

l/I,1 la&OH; 3-0~0

3a, 24-OH; 28-CO,H; A”

301.24OH; 28, 3OC0,H; A’*

2a3B.l la-OH; A”““’

&3a-OH; 28-CO,H; A14; 12a.27~cycle

2a,3r-OH; 28-CO,H; 12z,27cyclo; 24-nor; A4’23’.‘4

3B-OAc; l’la-OH; A”‘.”

38,25-OH; Azo**’

3/7,25-OH; Ax’

2a,3p-OH; 28-CO,H; Al4

3rI?.16/?-OH; A’s

3/I.l6/.7-OAc; A’s

3-0x0; 168-OH; A’s

3-0x0; 16a-OH; A’s

301.1 la-OH; 23,28-COzH; AZOW%

3-0x0; 26CO,H; Air.”

3.4Seco; 3.26CO,H; AWs’. 8.x.

3,4-Seco; 9~,19-cyclo; 3+4-, 26-+22dilactone; A’, ”

3.24-0~0; 9/?,19cyclo; AZ0

3fl,29-OH; 240x0; 17a.23-epoxy; As; 27-nor

31,22/?,29-OH; 24-0x0; 17a.23-epoxy; A’; 27-nor

3.24-0x0; 29-OH; 17a.23-epoxy; Aa; 27-nor

3a,24-OH; 28-CO,H; A’*

4a,lOj?,l9~-OH; A”

c4101

c4111

c4111

~4121

[4131

c4131

c4141

14141

c4141

c4151

C4161

C4161

C4161

C4161

c417l

CIW

ClW

C4181

c4191

~4201

~4211

~4211

~4221

c46.471

Page 42: Trite r Pen Oids

2240 S. B. MAHATO et al.

Table 1. (Continued)

1 2 3 4 5

Skimmia japonica (Rutaceae)

Sorghum bicolor (Gramineae)

Stauntonia hexaphylla

Stellet ta species

Stirophyllum riparium

(Bignoniaceae)

Swertia chirata

(Gentianaceae)

Terminalia alata

(Combretaczae)

T. bellerica

Treooa trinercis (Rhamnaceae)

Sipholenone A, 187-188”,

-29”, IR, ‘H, “CNMR, MS

Sipholenone B, + SC, IR. ‘H,

13C NMR, MS

Sipholenone C, + 1’. IR,

13C NMR, MS

Sipholenol B. -37’, IR, ‘H.

13CNMR, HRMS

Sipholenol C, -28-, IR. ‘H,

13C NMR, HRMS

Sipholenol D, - 3 1 _. IR,

‘HNMR

Sipholenol E, IR, ‘H,

“CNMR. HRMS

Siphonellinol, 109-I 11”. - 52”.

IR ‘H “CNMR, HRMS . > Skimmiarepin A,

164.S-165.5-, -22.7”. IR, ‘H,

“CNMR. MS

Skimmiarepin B, 1688169”,

-39.8”. UV, IR, ‘H, “CNMR

Sorghumol, 277-282”.

‘H NMR. MS

32 _

3_Epimesembryanthe-

moidigenic acid, ‘H NMR, MS

3-0-Acetyl-3-cp’-

mesembryanthemoidigenic acid. + 106.7’. IR, ‘H,

‘“C NMR. MS

3z,29-OH; 28-CO,H; A”

3z-OAc: 29-OH; 28-CO,H: A”

t4231

t4241

[424]

3-O-Acetylmesembryanthemoi- digenic acid

3fi-OAc; 29-OH; 2X-C&H: A”

3-0-Acetylserratagenic acid,

> 290‘. ‘H, “C NMR. MS

3fi-OAc; 28.29~CO,H; Al2

3-0-Acetyl-3-epi-serratagenic

acid, ‘H. “CNMR, MS

Triterpeno’d. 258.-260’. + 87”,

UV, ‘H. “CNMR. MS, X-ray analysis

32-OAc; 2X,29-CO’H; A”

19 3.12-0x0: 26-22~lactone; A’J.‘%‘W”,.ZZ.L4; 8x_Me(30,

L4241

t4241

t4241

t4251

Triterpenoid, 200 202 ‘, + 28.2”.

UV IR ‘H “CNMR. MS . . >

Triterpenoid, 178-180‘. + 33.3”.

UV IR ‘H ‘%NMR, MS . , . Tr’terpenoid, 195-197’. + 1.58”.

UV, IR, ‘H, 13C’ NMR, MS

Swertanone. 270-272‘.

-98.12’. IR, ‘H, “CNMR,

MS, X-ray analysis

3-Acetylmaslinic acid,

192 195’. ~32’. IR, ‘H NMR

Belleric acid > 300’. + 77”. IR,

‘H. 13C NMR, MS

Trevoagenin A, 297-300”.

-49”, IR, ‘H NMR, MS, X-ray analysis

2

2

2

28

38-OH; 24rrans-fcrulyloxy;

28-CO,H; A’*

3/I-OH; 24-cis-ferulyloxy:

28-CO,H; Al2

3/J,l9-OH; 24-rrans-ferulyloxy:

28-CO,H: A”

3-0x0: A’

t4261

t4261

L4261

t631

I

I

10

2%~OH; 3/I-OAc: 28-C&H. A”

2a,3j,23,24-OH: 28-CO’H: A’2

3jI,25,30-OH; 16-0x0;

2O(R),24(R)-epoxy

t4271

t4281

[429]

Trevoagenm B. 243-246”. - 31 II, 10 3/?.25,30-OH; 16-0x0: t4291

21

21

21

21

21

21

21

22

10

10

40x0; lOfl,19,!?-OH; A”

40x0; 10/3,19/?-OH;

152,l &-epoxy

4.16-0x0; 10/?,19/?-OH; A’%%%

& 10-s 19B-OH; A” 3 3

4a,lO/3,19/&OH;

( 13E,‘Z)A13

42.10/3,19~-OH; 16-0x0;

Al4

4z,lO/LI6~,19~-OH; A’*

4a,lO~,16~-OH: A“‘.‘*

3a-Isovaleryloxy; 7z,21{-OH; 21,23-, 24.25-diepoxy; 30,13a-

cycle

3a-Decan-2’,4’,6’-trienoyloxy:

7x,21(-OH; 21,23-.24,25-

diepoxy; 30,132~cycio

t46 471

t471

t471

t471

t471

t471

t471

[4Rl

~1421

~1421

Page 43: Trite r Pen Oids
Page 44: Trite r Pen Oids

2242 S. B. MAHATO er al.

Table 1. (Continued)

I 2 3

Wjzrhia mollis (Compositae)

Zanha golunyensis

Triterpenoid, 21 l-212“. IR. ‘H, II

lJCNMR, MS

Triterpenoid, 168.5-171’, UV, II

IR, ‘H NMR, HRMS

Zanhic acid I

Zanhic acid-a,,-lactone I

%ymomono mobilis Triterpenoid 46

4 5

3-0x0; 23/3-OMe; 98.19~cycle; [444]

16/3,23-. 24,2S-diepoxy

3-0~0; A’.““‘; 22.25epoxy c4W

28.3/?.16z-OH; 23,28XO,H;

A’2

2~.3~,16+OH: 23-CO,H;

28+ 13/I-lactone

32-0x0; 33,34,35-OH

C4461

C4461

c4471

in the rabbit model [ 1353. It was suggested that this was effected through an increase in the mucopolysaccharide layer in the bladder. Alisol B and its monacetate isolated from Al&ma orientale were found to be inhibitors of experimentally-induced contractions in isolated rat ileum [I 361. Alisol B at a concentration of 10. ’ M inhibited contractions in isolated rat ileum induced by bradykinin, acetylcholine and S-isoleucine-angiotensin by 63, 50 and 65%, respectively, whereas the monoacetate inhibited by 56, 42 and 33%, respectively. Glycyrrhizin (20 mg kg- ‘, intravenous or 50 mg kg- ‘, intraperitoneal) and its agly- cone, glycyrrhetinic acid (5 mg kg- ‘, intravenous) in- duced interferon (IFN) activity in the blood serum ofmice [137]. Glycyrrhizin was found to be more effective than glycyrrhetinic acid. The antitussive and expectorant ac- tivities of glycyrrhetinic acid choline were evaluated in experimental animals including guinea-pigs and mice [I 381. Subcutaneous injection of glycyrrhetinic acid choline at a dosage of 5..10 mg kg- ’ suppressed coughing in guinea-pigs exposed to citric acid fumes. The antitus- sive effect of this compound was slightly less than that of codeine at a dosage of 3 mg kg- ‘. Intraperitoneal injec- tion of the compound (5-10 mg kg- ‘) also suppressed coughing in mice exposed to ammonia vapour and the antitussive effect was comparable to that of codeine at 1 mg kg I. lntraperitoneal administered glycyrrhetinic acid choline (5-20 mg kg- ‘) markedly stimulated the respiratory tract expectorant activity in mice. Glycyrrhe- tinic acid choline did not suppress the histamine- or acetylcholine-induced contraction of isolated tracheal smooth muscle of guinea-pigs but suppressed the acetyl- choline-induced contraction of isolated colonic smooth muscle of guinea-pigs. The LD,, value of the compound was found to be 584.5 mg kg-’ (orally). Apparently, glycyrrhetinic acid choline is an effective antitussive agent.

The antiviral activity of some dammar resin triterpen- oids was investigated by Poehland et al. [139]. Nine triterpenoids isolated from dammar resin showed anti- viral activity against Herpes simplex virus type I and II in vitro. Each compound caused a significant reduction in viral cytopathic effect when Vero cells exposed continu- ously to l--l0 pg ml- ’ of compound for 48 hours after viral challenge. Mariesiic acid A and other triterpenoid acids having normal and rearranged lanostane skeletons isolated from Abies mariesii and A.firma exhibited anti- microbial activity [SS, 561 against Gram-positive bac- teria and actinomycetes. The results suggested that not

only the carboxylic group, but also the hydrophobic moiety, played an important role in revealing the inhibit- ory activity. The inhibitory effects of 10 lanostane triter- penes (including five new) isolated from Ganoderma lucidurn on angiotensin-converting enzyme (ACE) activity were determined [I401 and expressed in terms of IC,,. The term IC,, was defined as the amount of the sample needed to inhibit 50% of ACE activity. Eight compounds were found to be inhibitory. Ganoderic acid F had the highest effect (IC,, =4.7 x 1O--6 M) whereas, the IC,, values of the other compounds were in the order of lo-’ M. Gentiatriculin, a new triterpene ester isolated from the herbs of Gentianajaco-maculata protected mice against Ccl,-induced hepatotoxicity, as detected by its reduction in pentoberbital-induced sleeping time and SGOTiSGPT blood enzyme levels [141]. Skimmiarepins A and B, two new triterpenoids isolated from the leaves and fruits of Skimmia japonica [ 1421 exhibited an insect growth inhibitory activity against the silk worm, Bomhyx mori. Amarinin (2-deoxycucurbitacin B) isolated from the seeds of f&u amara inhibited the growth of the second leaf sheath of rice both in the presence and absence of GA, [143]. The circulatory effects of oleanolic acid sodium hydrogen succinate (OSS), an analogue of the antiulcer drug carbenoxolone, were investigated by Fil- czewski et al. [ 1443. Carbenoxolone (433 mg kg- ‘, orally) and OSS (666 mg kg ‘, orally) were given to rats twice daily for four weeks. The systolic blood pressure was elevated after the first week of treatment. The hyperten- sion was found to be accompanied by bradycardia and increased with the time of treatment. In the blood an increase in the creatinine level, a decrease in the urea level and a slight elevation in sodium concentration were found after the treatment, while the potassium concentra- tion during the whole period (four weeks) of treatment remained unchanged. Although the principal aldosteron- e-like effects of carbenoxolone were attributed to the presence of the I I -0x0 group in the glycyrrhetinic moiety, the absence of an oxo-function at that position did not cause the loss of the adverse circulatory effect.

REFERENCES

I. Das. M. C. and Mahato. S. B. (1983) Phytochemistry 22, 1071.

2. White, D. E. (1956) Rea. Pure. Appl. Chem. 6, 191. 3. Halsall, T. G. and Aplin, R. T. (1964) in Progress in the

Page 45: Trite r Pen Oids

Triterpenoids 2243

Chemistry of Organic Natural Products (Zecnmeister. L.,

ed.), Vol. 22, p. 153. Springer, New York.

4. Basu, N. and Rastogi, R. P. (1967) Phyrochemisrry 6, 1249.

5. Agarwal, S. K. and Rastogi, R. P. (1974) Phyrochemisrry 13,

2623.

6. Pant, P. and Rastogi, R. P. (1979) Phyrochemisrry 18, 1095.

7. Boar, R. B. (1983) ‘ferpenoids SreroidT 12, 207.

8. Boar, R. B. (1984) Nor. Prod. Rep. 1, 53.

9. Connolly, J. D. and Hill, R. A. (1986) Nat. Prod. Rep. 3,421.

10. Mukherjee, K. S. and Ghosh, P. K. (1983) J. Sci. Ind. Res. 42,25.

11. Alaniya, M. D. (1985) Rasrir. Resur. 21, 510.

12. Siddiqui, S., Siddiqui, B. S., Faizi, S. and Mahmood, T.

(1988) J. Nat. Prod. 51, 30.

13. Taylor, R. F. (1984) Microbiological Rev. 48, 181.

14. Rullkotter, J. and Philip, P. (1981) Narure (Lond) 292,616.

15. Corbett, R. E., Cong, A. N. T., Holland, P. T. and Wilkins,

A. L. (1987) Ausr. J. Gem. 40,461. 16. Shiao, M., Lin, L. J. and Chen. C. S. (1989) J. Lipid Rex 30,

287.

17. Lewis, K. G. and Tucker, D. J. (1983) Ausr. J. Chem. 36, 2297.

18. Kawanishi, K., Hashimoto, Y., Wang, Q. and Xu, Z. (1985)

Phyrochemisrry 24, 205 1.

19. Shibata, S. (1986) in Advances in Medicinal Phyrochemisrry (Barton, D. and Ollis, W. D., eds). John Libbey.

20. Mahato, S. B., Dutta, N. L. and Chakravorti, R. N. (1973)

J. Indiun Chem. Sot. 50, 254.

21. Yosioka, I., Matsuda, A., Imai, K., Nishimura, T. and

Kitagawa, 1. (1971) Chem. Pharm. Bull. 19, 1200. 22. Jurzysta, M. (1984) 14rh Inr. Symp. Chem. Nat. Prod. p 127. 23. Mahato, S. B. (1991) Phyrochemisrry 30, 3389. 24. Mahato, S. B. and Pal, B. C. (1987) J. Chem. Sot. Perkin

Trans. I 629.

26. Mahato, S. B. and Nandy, A. K. (1991) Phyrochemisrry 30, 1357.

25. Mahato, S. B., Sarkar, S. K. and Poddar, G. (1988) Phyro- chemistry 21, 3037.

27. Ogihara, Y. and Nose, M. (1986) J. Chem. Sot. Chem. Commun. 1417.

28. Chen, Y., Nose, M. and Ogihara, Y. (1987) Chem. Pharm. Bull. 35, 1653.

29. Mahato, S. B., Sahu, N. P., Roy, S. K. and Sen, S. (1991)

Tetrahedron 41, 5215. 30. Reynolds, W. F., McLean, S. and Poplawski, J. (1986)

Tetrahedron 42, 34 19. 31. Reynolds, W. F., Hughes, D. W., Perpick-Dumont. M. and

Enriquez, R. G. (1985) J. Magn. Reson. 63,413. 32. Buckley, D. G., Green, G. H., Ritchie, E. and Taylor, W. G.

(1971) Chem. Ind. 11, 298. 33. Kessler, H., Griesenger, C., Zarbock, J. and Loosi, H. R.

(1984) J. Magn. Reson. 57, 331. 34. Ksebati, M. B., Schmitz, F. J. and Gunasekera. S. P. (1988)

J. Org. Gem. 53, 3917.

35. Derome, A. (1987) Modern N MR Techniques for Chemistry Research. Pergamon Press, New York.

36. Lobo, A. M., Mawdo de Abreu, P., Prabhakar, S., Godinho, L. S., Rzepa, H. S. and Sheppard, R. N. (1985)

Tetrahedron Letters 26, 2589. 37. Fukuzawa, A., Matsue, H., Ikura, M. and Masamune, T.

(1985) Tetrahedron Lerrers 26, 5539. 38. Kikuchi, T., Kanomi, S.. Kadota, S., Murai, Y., Tsubano, K.

and Ogita, Z. (1986) Chem. Pharm. Bull. 34, 3695. 39. Kikuchi, T., Kanomi, S., Murai, Y., Kadota, S.,Tsubano, K.

and Ogita, Z. (1986) Chem. Pharm. Bull. 34.4018. 40. McLean, S., Perpick-Dumont, M. and Reynolds, W. F.

(1987) Can. J. Chem. 65, 2519.

41. Wrzeciono, U., Zaprutko, L., Budzianowski, J., Wojtowiq

H. and Dubowska, D. (1987) Magn. Reson. Chem. 25,223. 42. Grahn, H., Masino, C. J., Norden, B. and Edlund, U. (1988)

Magn. Reson. Chem. 26, 1097.

43. Milon, A., Nakatani, Y., Kintzinger, J. P. and Ourisson, G.

(1989) Helo. Chim. Acra 74, 1.

44. Tsuda, Y., Yamashita, T. and Sano, T. (1984) Chem. Pharm. Bull. 32, 4820.

45. Klinot, J., Vsetecka, V., Klinotova, E. and Vystreil, A.

(1986) Collect. Czech. Chem. Commun. 51, 611. 46. Shmueli, U., Carmely, S.. Groweiss, A. and Kashman, Y.

(1981) Terrahedron Lerrers 22, 709. 47. Carmely, S. and Kashman, Y. (1983) J. Org. Chem. 4&3517.

48. Carmely, S., Loya, Y. and Kashman, Y. (1983) Tetrahedron Lerrers 24, 3673.

49. Shiojima, K., Arai, Y., Masuda, K., Kamoda, T. and Ageta,

H. (1983) Terrahedron Lerrers 24, 5733. 50. Boar, R. B., Couchman. L. A., Jaques, A. J. and Perkins,

M. J. (1984) J. Am. Chem. Sot. 106, 2476.

51. van Tamelen, E. E. (1982) J. Chem. 104, 6480. 52. Matsunaga, S., Morita, R., Ishida, T., Inone, M., Shigi, M.

and Miyamae, A. (1984) J. Chem. Sot. Chem. Commun. 1128.

53. Rice, G. K., Yokoi, T., Hayashi, T., Suzuki. H., Lee, K. H.

and McPhail, A. T. (1986) J. Chem. Sot. Gem. Commun. 1397.

54. Shoji, N., Umeyama, A., Taira, Z., Takemoto, T., Nomoto,

K., Mizukawa, K. and Ohizumi, Y. (1983) J. Chem. Sot. Chem. Commun. 871.

55. Hasegawa, S., Miura, T., Hirose, Y. and Iitaka, Y. (1985)

Chem. Letters 1589. 56. Hasegawa, S., Miura, T., Kaneko, N., Hirose, Y. and Iitaka.

Y. (1987) Terrahedron 43, 1775. 57. Shevtsov, S. A. and Raldugin, V. A. (1989) Khim. Prir.

Soedin. 2 12. 58. Li. L., Xue, H.. Kangouri, K., Ikeda, A. and Omura, S.

(1989) Planra Med. 55, 294. 59. Kangouri, K., Miyoshi, T., Kawashima, A., Ikeda, A.,

Mizutani, T., Omura, S., Li, L. and Xue, H. (1989) Planra Med. 55. 297.

60. Fukuzawa, A., Furasaki. A., Ikura, M. and Masamune, T.

(I 985) J. Chem. Sot. Chem. Commun. 222.

61. Gonzaler, A. G., Bennejo Barrera, J., Mediavilla Perez,

M. J., Toledo Marante, F. J. and Perales, A. (1986) J. Chem. Sot. Perkm Trans. I 551.

62. Marner. F. J:, Krick, W., Gelhich, B., Jaenicke, L. and

Winter, W. (1982) J. Org. Chem. 47. 2531. 63. Chakravarty, A. K., Das, B., Pakrashi, S. C., McPhail, D. R.

and McPhail, A. T. (1989) J. Chem. Sot. Chem. Commun. 438.

64. Takemoto, T., Nishimoto, N.. Nakai, S., Takagi, N.,

Hayashi, S., Odashima. S. and Wada, Y. (1983) Terrahedron Letters 24. 1057.

65. Nishimoto, N., Shiobara, Y., Inoue, S., Takemoto, T., De

Oliveira, F., Akisue, G. and Hashimoto, G. (1988) Tennen Yuki Kagobursu Toronkai Koen Yoshishu 30, 17.

66. Edwards, 0. E. and Paryzek, Z. (1983) Can. J. Chem. 61,

1973. 67. Paryzek. Z., Wydra, R. and Blaszczyk, K. (1983) Chem.

Letters 1171. 68. Paryzek, Z. and Wydra, R. (1985) Can. J. Chem. 63, 1280.

69. Edwards, 0. E. and Kolt, R. J. (1987) Can. J. Chem. 65,595.

70. Anjaneyulu, A. S. R., Anjaneyulu, V., Prosad, K. H., Rao,

G. S. and Suryanarayana, P. (1983) Indian J. Chem. Sect. B 22, 1179.

Page 46: Trite r Pen Oids

2244 S. B. MAHATO et al.

71. Francisco, C. G., Freire, R., Hemandez, R., Salazar, J. A.,

Suarez, E. and Cortes. M. (1983) J. Chem. Sot. Perkin Trans.

I 2757. 72. Denisenko, M. V., Odinokova, L. E., Denisenko. V. A. and

Uvarova, N. I. (1987) Zh. Org. Khim. 23,452. 73. Huang, K. F., Lai. J. S. and Jang, 1. Y. (1987) Bull. Inst.

Chem. Acad. Sin. 34, 35.

76. Bhaumik, T., Dey, A. K., Das, P. C., Mukhopadhyay, A. K.

and Chatterjee, A. (1981) Indian J. Chem. Sect. B 20. 664.

77. Habermehl, G. G. and Kirsch, J. H. (1983) Tetrahedron

Letters 24, 298 1.

74. Narayana, V. L., Murthy, V. L. N. and Row. L. R. (1982)

Indian J. Chem. Sect. B 21, 977.

75. Yoshikawa, M., Murakami, N., Taniyama, T., Hamamoto, Y., Nakae, T. and Kitagawa, I. (1987) Tetrahedron fetters

28,2029.

78. Nishizawa, M., Nishide, H., Kuriyama, K. and Hayashi. Y.

(1986) Chem. Pharm. Bull. 34, 4443.

79. Kamal, G. M., Gunaherath, B. and Gunatilaka, A. A. L.

(1983) Tetrahedron Lefters 24, 2025.

80. Takai, M., Tori, M., Tsuyuki, T.. Takahashi, T., Itai, A. and

Iitaka, Y. (1985) Bull. Chem. Sot. Jpn. 58, 185. 81. Aimi, N., Kawada, K., Nagasato, Y., Sakai, S. and Hagi-

niwa, J. (1982) Chem. Pharm. Bull. 30, 1098.

82. Naora, M., Murae. T., Tasuyuki, T. and Takahashi, T.

(1986) Bull. Chrm. Sot. Jpn. 59, 1767. 83. Gibson, J. R. and Reusch. W. (1983) Tetrahedron 39, 55.

84. Wang, W. Y. and Reusch, W. (1988) Tetruhedron 44, 1007.

85. Piatak, D. M. and Wicha, J. (1978) Chem. Rev. 78, 199.

86. Redpath. J. and Zeelen, F. J. (1983) Chem. Sot. Rep. 12, 75. 87. Kametani. T., Toya. T., Tsubuki, M., Kawai. K. and

Honda, T. (1986) Chem. Pharm. Bull. 34, 3169.

88. Atopkina, L. N., Samoshina, N. F., Denisenko, V. A.,

Pokhilo, N. D. and Uvarova, N. I. (1986) Khim. Prir.

Swdin. 445.

89. Atopkina, L. N. and Uvarova, N. I. (1986) Khim. Prir.

Soedin. 45 1.

90. Atopkina. L. N., Denisenko. V. A., Novikov, V. L. and

Uvarova, N. I. (1986) Khim. Prir. Soedin. 301.

91. Dasai. M. C., Singh, C., Chawla, H. P. S. and Dev, S. (1982)

Tetrahedron 38, 201.

92. Audouin, M. and Levisalles, J. (1983) Tetrahedron 39.2799.

93. Uusvuori, R. and Hase, T. A. (1982) Synrh. Commun. 12,

1081. 94. Majumder, P. L. and Bagchi, A. (1983) Tetrahedron 39,649.

95. Pradhan, B. P., Chakraborty, S. and Weyerstahl, P. (1987)

Tetrahedron 43.4487.

96. Yoshikawa, M., Wang, H. K., Tosirisuk, V. and Kitagawa.

I. (1982) Chem. Pharm. Bull. 30, 3057. 97. Mehrotra, R., Singh, C. and Popli, S. P. (1984) Indian J.

Chem. Sect. B 23, 695.

98. Mahato, S. B., Nandy, A. K., Luger, P. and Weber, M.

(1990) J. Chem. Sot. Perkin Trans. I1 1445.

99. Ling, H. C., King, M. L., Chen, C. F., Hsu, K. P., Su, M. H.

and Lin, M. H. (1982) Chung-hua 1 Hsuch Tsa Chih 29,308;

(1982) Chem. Abs. 97, 120120. 100. Nishino, H., Nishino, A., Takayasu. J., Hasegawa, T.,

Iwashima, A., Hirabayashi, K., Iwata, S. and Shibata, S. (1988) Cancer Res. 48, 5210.

101. Lee, K. H.. Lin, Y. M., Wu, T. S., Zhang, D. C., Yamagishi,

T., Hayashi, T., Hall, I. H., Chang, J. J.. Wu, R. Y. and Yang,

T. H. (1988) Pianta Med. 54, 308. 102. Yamagishi, T., Zhang, D. C., Chang, J. J., McPhail, D. R.,

McPhail, A. T. and Lee, K. H. (1988) Phytochemistry 27,

3213.

103. Abe. H., Ohya, N., Yamamoto, K. F., Shibuya, T., Arichi, S.

and Odashima, S. (1987) Eur. J. Cancer C/in. Oncoi. 23,

1549. 104. Shibata, S., Nishino. H. and Nagata, N. (1986) Japanese

Patent 61 243 017 [86243 0171: (1987) Chem. Abs. 107,

109342. 105. Fujimoto, Y. and Made. S. (1988) Japanese Patent 63

60 949 [88 60 9491; (1988) Chem. Abs. 109, 86332.

106. Liu, J., Huang, M. and Tao, Y.(1988) Can. J. Chem. 66,414.

107. Wang, S. M., Oshima, Y., Pezzuto, J. M.. Fong, H. H. S. and

Farnsworth, N. R. (1986) J. Pharm. Sci. 75. 317.

108. Deng, F., Cao, J., Xia, Z.. Lin, S. and Wang, X. (1987) Zhiwu

Xuebao 29, 73.

109. Wani. M. C., Schaumberg, J. P., Taylor, H. L., Thompson, J. B. and Wall, M. E. (1983) J. IVat. Prod. 46, 537.

110. Chen, R., Fang, S.. Xu, C. and Wei. K. (1989) Zhongcooyao

20, 287.

111. Takayasu, J., Nishino, H.. Hirabayashi. K., Iwata, S..

Nagata. N. and Shibata, S. (1989) Kyoro-furitsu fka

Daigaku Zasshi 98. 13; (1989) Chem. Abs. 110. 225092. 112. Diallo, B., Vanhaelen, M.. Vanhaelen-Fastre, R., Kono-

shima. T., Kozuka. M. and Tokuda. H. (1989) J. Nat. Prod.

52, 879.

113. Gonzales. A. G., Ravelo, A. G., Bazzocchi, I. L., Jimenes, J.,

Gonzales, C. M., Luis, J. G.. Ferro, E. A., Gutierrer A., Moujir, L. and Delas Heras, F. G. (1988) Farmaco, Ed. Sci.

43, 501. 114. Armanmi, D., Karbowiak, I., Krozowski, Z., Funder, J. W.

and Adam, W. R. (1982) Endocrinology 111. 1683. 115. Rask-Maden, J., Bukhavc, K., Madsen, P. E. R. and Bekker,

C. (1983) Eur. J. C/in. Incest. 13. 351.

116. Suetina, I. V. (1982) Bioi. Nauki 47. 117. Khadzhiev, K. K., Ishigov. I. A. and Inoyatova, F. K.(1987)

Med. Zh. Uzb. 44.

118. Sankyo Co. Ltd.. Japan (1984) Japanese Patent 59 222 419

[84 222 4193; (1985) Chem Abs. 103, 16851. 119. Hunan Institute of Medicinal Industry; Shanxi Medical

College, Peop. Rep. China (1982) Zhongcuoyao 13. 505;

(1983) Chem. Abs. 98, 119385. 120. Komoda, Y., Shimizu, M.. Sonoda, Y. and Sato. Y. (1989)

Chem. Pharm. Bull. 37, 531.

121. Sato, Y. and Sonoda. Y. (1981) Chem. Pharm. Bull. 29.2604.

122. Inoue, H., Mori, T., Shibata. S. and Koshihara, Y. (1988)

J. Pharm. Pharmacoi. 40. 272.

123. Inoue, H., Mori,T., Shibata, S. and Koshihara, Y. (1989) Br.

J. Pharmacol. 96, 204.

124. Han, B. H., Lee, H. J. and Han, D. S. (1982) Yakhak Hoe Chi

26, 1; (1982) Chem. Airs. 97, 156257. 125. Han. B. H., Han, Y. N. and Kim, T. H. (1986) Saenyyak

Hakhoechi 17, 178.

126. Capasso, F., Mascolo, N.. Autore, G. and Duraccio. M. R.

(1983) J. Pharm. Pharmacol. 35, 332. 127. Sugishita, E.. Amagaya, S. and Ogihara, Y. (1983)

J. Pharmacobio-Dyn. 6, 287.

128. Otsuka, H., Fujioka, S., Komiya, T., Goto, M., Hiramatsu, Y. and Fujimura, H. (1981) Chem. Pharm. Bull. 29, 3099.

129. Yesibada, E., Tanaka, S., Sezik, E. and Tabata. M. (1988)

J. Nat. Prod. 51, 504. 130. Zhang, C., Zhang, Y., Lu, X., Chen. Y., Ma. P., LI, S. and

Zhang, Z. (1984) Nanjing Yaoxueyuan Xuebao 69.

131. Ikeda. T. (1984) Ntppon Koshohin Koyakkaishi 8. 67.

132. Minofargen Seiyaku Honkan, Japan (1981) Japanese

Patent 81 139 416; (1982) Chem. Abs. 96, 79876

133. Comes, A., Sharma, R. M. and Ray Ghatak, B. J. (1987) Indian J. Exp. Bioi. 25, 826.

134. Ma, X., Zhao, Y.. Yin. L., Han, D. and Ji, C. (1982) Yaoxue

Xuebao 17. 93.

Page 47: Trite r Pen Oids

Triterpenoids 2245

135. Mooreville, M.. Fritz, R. W. and Mulholland, S. G. (1983) J. Ural. 130, 607; (1983) Chem. Abs. 99, 187706.

136. Yun, H. S., Chung, S. H. and Kim, Y. S. (1981) Soul Tuehakkyo Saengyak Yonguso Opjukjip 20.79; (1983) Chem. Ahs. 98.65325.

137. Abe, N., Ebina, T. and Ishida, N. (1982) Microbial. Immunol. 26, 535.

138. Bian, R., Xie, Q. and Guo, H. (1982) Zhejiang Yike Daxw Xuebaa 11, 273.

139. Poehland, B. L., Carte, B. K., Francis, T. A., Hyland, I. J.,

Allaudeen, H. S. and Troupe, N. (1987) J. Nat. Prod. So,

706.

140. Morigiwa. A., Kitabatake, K., Fujimoto, Y. and Ikekawa, N. (1986) Chem. Pharm. Bull. 34, 3025.

141. Lin. C. N., Chung, M. I. and Can, K. H. (1987) T’ai-wan

Yao Hsueh Tsa Chth 39, 182.

142. Ochi, M., Tatsukawa, A., Seki, N., Kotsuki, H. and Shibata,

K. (1988) Bull. Chem. Sot. Jpn. 61, 3225.

143. Mukherjee, S., Shaw, A. K., Ganguly, S. N., Ganguly, T. and Shaha, P. K. (1986) Plant Cell Physiol. 27, 935.

144. Filczewski, M., Kosmala, M. and Oledska, K. (1988) Pol. J. Pharmucol. Pharm. 40, 233.

145. Hasegawa, S., Kaneko, N. and Hirose, Y. (1987) Phyro-

chemistry 26, 1095.

146. Raldugin, V. A., Gatilov, Y. V., Rybalova, T. V. and

Rashkes, Y. V. (1986) Khim. Prir. Soedin. 688.

147. Raldugin, V. A., Gatilov, Y. V., Bagryanskay, I. Y. and Yaroshenko, N. 1. (1986) Khim. Prir. Soedin. 584.

148. Rashchin, V. I., Raldugin, V. A., Baranova, R. A. and

Pentegova, V. A. (1986) Khim. Prir. Soedin. 648.

149. Raldugin. V. A., Shevtsov, S. A., Shakirov, M. M., Roshc-

hin, V. 1. and Pentegova, V. A. (1989) Khim. Prir. Soedin.

207.

150. Yaroshenko, N. I. and Raldugin, V. A. (1989) Khim. Prir. Soedin. 220.

151. Greger, H., Zdero, C. and Bohlmann, F. (1983) Phytochem-

istry 22, 2085.

152. Takeshita, T., Hamada, S. and Nohara, T. (1989) Chem.

Pharm. Bull. 37, 846.

153. Chiang, T. C., Chang, H. M. and Mak, T. C. W. (1983)

Planra Med. 49, 165.

154. Ty, P. D., Lischewski, M., Phiet, H. V., Preiss, A., Nguyen, P. V. and Adam, G. (1985) Phytochemistry 24, 867.

155. Huang. C., Li. G., Fan, H., Zhang, Z. and Zhou, J. (1986)

Yunnan Zhiwu Yanjiu 8, 489.

156. Huang, C.. Zhang, Z., Li, G. and Zhou, J. (1988) Yunnan Zhiwu Yanjiu 10, 93.

157. Konoshima, T. and Lee, K. H. (1986) J. Nat. Prod. 49,650.

158. Purushothaman, K. K., Sarada, A., Balakrishnan, M., Venkatanarasimhan, M. and Balakrishna, K. (1986) Indian

Drugs 23,260. 159. Vishnoi, S. P., Shoeb, A. and Kapil, R. S. (1988) Planta Med.

54,40. 160. Kouno, I., Baba, N., Ohni, Y. and Kawano, N. (1988)

Phytochemistry 27, 297.

161. Joshi, B. S., Kamat, V. N., Pelletier, S. W., Go, K. and

Bhandari, K. (1985) Tetrahedron Letters 26, 1273.

162. Ikuta, A. and Itokawa, H. (1986) Phytochemistry 25, 1625.

163. Ikuta, A. and Itokawa, H. (1988) Phytochemistry 27, 3809.

164. Geng, P., Fukuyama, Y., Yamada, T., Rei, W., Jinxian, B.

and Nakagawa, K. (1988) Phytochemistry 27, 1161.

165. Fukuyama, Y., Geng, P., Wang, R., Yamada, T. and

Nakagawa, K. (1988) Planta Med. 54, 445. 166. Saltykova, 1. A., Zorina, A. D., Martynov, V. F. and

Matyukhina, L. G. (1981) Zh. Obshch. Khim. 51, 2809.

167. Saltykova, I. A., Zorina, A. D.. Lushchitskoya, I. M.,

Matyukhina, L. G. and Martynov, V. F. (1983) Zh. Obshch.

Khim. 53, 2412.

168. Aoki, T., Ohta, S. and Suga, T. (1988) Phytochemistry 27,

2915.

169. Sanada, S., Inaba, K., Ida, Y. and Shoji, J. (1987) Shoyokug-

aki Zasshi 41, 80.

170. Suga, T., Ohta, S., Ohta, E. and Aoki, T. (1986) Phytochem-

isrry 25, 1243.

171. Pioui, F., Patemostro, M., Passannanti S. and Gaes-Baitz,

E. (1986) Phytochemistry 25, 539.

172. Watson, W. H., Dominguez, X. A., Vazquez G. and Garcia,

S. (1987) Rec. Lotinoam. Quim. 18, 89. 173. Wahyuono, S., Hoffmann, J. J., Jolad, S. D. and Dentali, S.

J. (1987) Phytochemistry 26, 1213.

174. Mukherjee, K. S., Bhattacharjee, P., Mukherjee, R. K. and

Ghosh. P. K. (1986) Phyrochemistry 25, 2669.

175. Mukherjee, K. S. and Bhattacharjee, P. (1987) Phytochemis-

try 26, 1539.

176. Pal, B. C., Roy,G. and Mahato, S. B. (1984) Phytochemistry 23, 1475.

177. Kikuchi. H., Tensho, A., Shim& I.. Shiokawa, H., Kuno,

A., Yamada, S., Fujiwara, T. and Tomita, K. (1983) Chem. Letters 603.

178. Kundu, A. B., Ray, S. and Chatterjee, A. (1985) Phyto- chemistry 24, 2123.

179. Yan, X., Mei, X., Luan. X. and Qian, X. (198S)Shanghai Diyi Yixueyuan Xuebao 12, 265.

180. Van Eijk, G. W., Roeijmaus, H. J. and Seykeus, D. (1986)

Tetrahedron Letters 27, 2533.

181. Takaishi, Y., Murakami, Y., Ohashi, T., Nakano, K.,

Murakami, K. and Tomimatsu, T. (1987) Phytochemistry

26, 2341.

182. Elenga, P. A., Nikolov. S. and Panova, D. (1987) Phurmazie

42, 422.

183. Isaev, M. 1.. Gorovits, M. B., Abdullaev, N. D. and Abubakirov, N. K. (1982) Khim. Prir. Soedin. 458.

184. Babady. B., Warin, R., Delaude, C. and Huls. R. (1982) Bull. Sot. Chim. Be/g. 91, 321.

185. Babady, B. and Warin, R. (1983) Bull. Sac. Chim. Belg. 92,

355.

186. Tessier, A. M., Delaveau, P. and Piffault, N. (1982) Planta Med. 44, 215.

187. Guang-Yi, L., Gray, A. I. and Waterman, P. G. (1988)

Phytochemisrry 27, 2283.

188. Rego de Sousa, J., Jannotti, N. K., Silva, G. D. F. and Pinheiro, J. A. (1988) Gazz. Chim. Ital. 118, 821.

189. Siddiqui, S., Siddiqui, B. S. and Faizi, S. (1985) Planta Med. 478.

190. Siddiqui, S., Mahmood, T., Siddiqui, B. S. and Faizi, S.

(1986) Phytochemistry 25, 2183.

191. Siddiqui, S., Siddiqui, B. S., Faizi, S. and Mahmood, T.

(1986) J. Chem. Sot. Pak. 8,341.

192. Rao, G. S. R. S., Yadagiri, B., Rao, S. N. and Mallavarapu,

G. R. (1984) Phyzochemistry 23,2%2.

193. Rao, G. S. R. S., Prasanna, S., Kumar, V. P. S. and Yadagiri,

B. (1986) Indian J. Chem. Sect. B 25, 113.

194. Pokhilo, N. D., Malinovskaya, G. V., Makhan’Kov, V. V.,

Denisenko, V. A. and Uvarova, N. I. (1985) Khim. Prir. Soedin. 352.

195. Pokhilo, N. D., Denisenko, V. A., Baranov, V. I. and

Uvarova, N. I. (1986) Khim. Prir. Soedin. 650.

196. Reichardt, P. B., Green, T. P. and Chang, S. (1987) Phyta- chemistry 26, 855.

197. Pokhilo, N. D., Denisenko, V. A., Makhan’Kov, V. V. and Uvarova, N. I. (1986) Khim. Prir. So&n. 179.

198. Oyarzum, M. L.. Garbarino, J. A., Gambaro, V., Guilhem,

Page 48: Trite r Pen Oids

2246 S. B. MAHATO et al

J. and Pascard, C. (1987) Phyrochemiscry 26, 221.

199. Fattorusso, E., Santacroce, C. and Xaasan, C. F. (1983)

Phytochemistry 22, 2868.

200. Fattorusso, E., Santacroce, C. and Xaasan, C. F. (1985)

Phytochemistry 24, 1035.

201. Huang, 2. and Poulter, C. D. (1989) Phytochemistry 28,

1467.

202. Wilkomirski, B. (1985) PhytFhemisrry 24, 3066.

203. Khan, A. Q., Ahmed, Z., Kazmi, S. N. U. H. and Malik, A.

(1988) J. Nat. Prod. 51, 925. 204. Bhandari, P. and Rastogi, R. P. (1984) Phyrochemistry 23,

2082.

205. Itokawa, H., Nakajima, H., Ikura, A. and Iitaka, Y. (1981)

Phprochemistry 20, 2539.

206. Tamai, M., Watanabe, N.. Someya, M., Konoloh, H.,

Omura, S., Ling, Z. P., Chang, R. and Ming, C. W. (1989) Planra Med. 55, 44.

207. Fernando, H. C., Gunatilaka, A. A. L., Kumar, V.. Weera-

tunga, G., Tezuka. Y. and Kikuchi, T. (1988) Tetrahedron

Lerrers 29, 387.

208. Pauptit, R. A., Waters, J. M., Rowan. D. D., Russell, G. B.,

Connor, H. E. and Purdie. A. W. (1984) Ausr. J. Chem. 37,

1341.

209. Mata, R., Rios, L.. Del Rayo Camacho. M., Reguro, M. T.

and Lorence., D. (1988) Phytochemistry 27, 1887.

210. Kusano, G., Nozoe, S., Taira, Z. and Takemoto, T. (1983)

Hererocycles 20, 195 1. 211. Majumder. P. L. and Pal, A. (1985) Phytochemistry 24.

2120.

212. Bhutani, K. K., Kapoor, R. and Atal, C. K. (1984) Phyro-

chemistry 23, 407.

213. De Pascual Teresa, J., Urones, J. G., Basabe, P., Sanchez,

M. and GranelL F. (1982) An. Quim. Ser. C. 78, 324.

214. Ahmad, V. U. and Alvi, K. A. (1987) Phyrochemisrry 26.3 15.

215. Caballero, P., Fronczek, F. R., Fischer, N. H.. Fernandez, S.

and Hernandeq E. (1984) J. Nat. Prod. 47, 819.

216. Ahmad, V. U., Mohammad, F. V. and Rasheed, T. (1987)

Phyrochemisrry 26, 793.

217. Osborne, R. and Pegel, K. H. (1984) Phytochemistry 23,635.

218. Osborne, R. and Pegel, K. H. (1985) S. A/r. J. Chem. 38,

83.

2 19. Rogers, C. B. and Subramony, G. (1988) Phyrochemisrry 27,

531.

220. Waterman, P. G. and Ampofo, S. (1985) Phytochemistry 24,

2925.

221. Provan, G. J. and Waterman, P. G. (1988) Phytochemistry

27, 3841.

222. Hasan, C. M., Islam, A., Ahmed, M.. Ahmed, M. D. and

Waterman, P. G. (1984) Phyrochemisrry 23, 2583.

223. Chen,T. K., Ales, D. C., Baenziger. N. C. and Wiemer. D. F.

(1983) J. Org. C/tern. 481, 3525.

224. Naik, C. G., Namboori. K. and Merchant, J. R. (1983) Curr.

Sci. 52. 598.

225. Dawidar, A. M., Reisch. J. and Amer. M. A. (1980) Egypt. J.

Chem. 23, 3 1. 226. Bhakuni, R. S., Shukla, Y. N. and Thakur, R. S. (1987)

Phytachemistry 26, 2606.

227. Bhakuni, R. S., Shukla, Y. N. and Thakur, R. S. (1988)

Firoterapiu 59, 45.

228. Bhakuni, R. S., Shukla, Y. N. and Thakur, R. S. (1988)

Indian J. Pharm. Sci. SO, 332.

229. Babadjamian, A., Faure, R., Laget, M., Dumenil, G. and

Padieu, P. (1984) J. Chem. Sot. Chem. Commam. 1657.

230. Delgado. G., Hemandeq J. and Pereda-Miranda, R. (1989)

Phyrochemistry 28, 1483.

231. Amonkar. A. A., McCloud, T. G.. Chang. C. J., Saenz-

Renauld, J. A. and Cassady. J. M. (1985) Phytochemistry 24,

1803.

232. Houghton, P. J. and Lian, L. M. (1986) Phytochemisrry 25,

1939.

233. Conner. A. H. and Foster, D. 0. (1981) Phytochemisrry 20,

2543.

234. Sakakibara, J.. Kaiya, T., Fukuda, H. and Ohki, T. (1983)

Phytochemisrry 22, 2553.

235. Delgado, M. C. C., Da Silva, M. S. and Fo, R. B. (1984)

Phytochemistry 23, 2289.

236. Kumar. N. S., Muthukuda, P. M. and Wazeer, M. I. M.

(1985) Phytochemistry 24, 1337.

237. Kumar, N. S.. Muthukuda, P. M. and MacLeod. J. K.

(1985) J. Chem. Sac. Perkin Trans. 1 685.

238. Kumar. N. S., Muthukuda, P. M. and Balasubramaniam, S.

(1985) Phytochemistry 24, 2454.

239. Aqaneyulu, V. and Ravi. K. (1989) Phyrochemis1r.v 28,

1695.

240. De Pascual Teresa, J., Urones, J. G., Marcos. 1. S., Basabe,

P., Sexmero Cuadrado, M. J. and Fernandez Moro, R. (1987) Phyrochemistry 26, 1767.

241. Govardhan, C., Reddy. R. P. and Sundararamaiah, T.

(1984) Phytochemistry 23,411.

242. Matsunaga, S., Tanaka, R. and Akagi, M. (1988) Phyro-

chemistry 27, 535.

243. Laxman Rao, K., Ramraj, S. K., Nath, A. R.. Subba Rao. T.

V. P. R. and Sundararamaiah, T. (1986) Phyrochemistry 25.

277.

244. Tanaka, R. and Matsunaga, S. (1988) Phytachemistry 27,

3579.

245. Tanaka, R. and Matsunaga. S. (1989) Phytochemistry 28.

1699.

246. Tanaka. R., Matsunaga, S., Ishida. T. and Shingu. T. (1989)

Tetrahedron Letters 30, 1661.

247. Khan, A. Q., Rasheed, T., Kazrni. S. N. U. H., Ahmed, Z.

and Malik, A. (1988) Phytochemistry 27, 2279.

248. Khan, A. Q., Ahmed, Z., Kazmi, N. U. H., Malik, A. and

Af7a, N. (1988) Z. Naturforsch. E. Chem. Sci. 43, 1059. 249. Rasool, N.. Khan, A. Q. and Malik, A. (1989) Phyro-

chemistry 28, 1193.

251. Nishitoba. T.. Goto, S., Sato, H. and Sakamura, S. (1989)

Phytochemisrry 28, 193.

250. Diaz., J. G.. Fraga, B. M., Gonzalez, A. G., Gonzalez, P.,

Hernandez, M. G. and Miranda, J. M. (1984) Phyra-

chemistry 23, I47 1.

252. Kubota. T., Asaka, Y., Miura, I. and Mori. H. (1982) !le/c. Chum. Acra 65, 611.

253. Nishitoba, T., Sato, H.. Kasai, T., Kawagishi, H. and

Sakamura, S. (1984) Agric. Biol. C/rem. 48, 2905.

254. Kikuchi, T., Matsuda, S., Kadota, S., Murai. Y. and Ogita, Z. (I 985) Chem. Pharm. Bull. 33. 2624.

255. Kikuchi. T., Matsuda, S., Murai, Y. and Ogita. Z. (1985)

Chem. Pharm. Bull. 33. 2628.

256. Hirotani, M., Furuya, T. and Shiro, M. (1985) Phyro-

chemtsrry 24. 2055.

257. Komoda, Y., Nakamura, H., Ishihara, S., Uchida, M.,

Kohda, H. and Yamasaki. K. (1985) Chem. Pharm. Bull. 33,

4829.

258. Arisawa, M., Fujita, A., Saga, M., Fukumura. H., Hayashi,

T., Shimizu, M. and Morita, N. (1986) 1. Nor. Prod. 49,621.

259. Hirotani. M., Ino, C., Furuya. T. and Shiro, M. (1986) Chem. Pharm. Bull. 34, 2282.

260. Nishitoba, T.. Sato, H., Shirasu, S. and Sakamura, S. (1987) Agric. Biol. Chem. 51, 619.

261. Sato, H., Nishitoba, T., Shirasu, S., Oda, K. and Sakamura, S. (1986) Agric. Biol. Chem. SO, 2887.

Page 49: Trite r Pen Oids

Triterpenoids 2241

262. Fujita, A., Arisawa, M., Saga, M., Hayashi, T. and Morita,

N. (1986) .I. Nat. Prod. 49, 1122.

263. Nishitoba, T., Sate, H. and Sakamura, S. (1987) Phyto- chemistry 26, 1777.

297. Gunatilaka, A. A. L. and Nanayakkara, N. P. D. (1984)

Tetrahedron 40, 805.

298. Gamlath, C. A. and Gunatilaka, A. A. L. (1988) Phyto-

chemistry 27, 3221.

264. Nishitoba, T., Sato, H., Oda, K. and Sakamura, S. (1988) 299. Talapatra, B., Chaudhuri, P. K., Mallik. A. K. and Talapa- Agric. Biol. Chem. 52, 211, tra, S. K. (1983) Phytochemisrry 22, 2559.

265. Shiao, M. S.. Lin, L. J. and Yeh, S. F. (1988) Phytochemistry 300. Barik. B. R. and Kundu, A. B. (1988) Phytochemistry 27, 27, 873. 3679.

266. Shiao, M. S., Lin, L. J., Yeh, S. F. and Chou, C. S. (1987) J.

Nat. Prod. 50, 886.

267. Shiao, M. S., Lin, L. J. and Yeh, S. F. (1988) Phytochemistry 27, 291 1.

268. Lin, L. J., Shiao, M. S. and Yeh, S. F. (1988) Phytochemisrry 27, 2269.

301. Nishizawa, M., Nishide, H., Kosela, S. and Hayashi, Y.

(1983) J. Org. Chem. 48.4462. 302. Barua, A. K., Chakrabarti, P., Chowdhury, M. K, Basak,

A., Basu, K., Ray, S. and Saha, S. K. (1985) J. Indian Chem. Sot. 62, 298.

269. Nishitoba, T., Oda, K., Sato, H. and Sakamura. S. (1988) Agric. Biol. Chem. 52, 367.

270. Lin, L. J., Shiao, M. S. and Yeh, S. F. (1988) J. Nar. Prod. 51, 918.

303. Johns, S. R., Lamberton, J. A., Morton, T. C., Suares, H.

and Willing, R. 1. (1983) Ausr. J. Chem. 36, 2537. 304. Xue. H. Z., Lu, Z. Z., Konno, C., Soejarto, D. D., Cordell, G.

A.. Fong, H. H. S. and Hodgson, W. (1988) Phylochemisrry

27, 233.

271. Qin, G., Fan, Z., Xu, R. and Zhang, B. (1989) Youji Huaxue 9, 263.

305. Chakrabartty, T., Poddar, G. and St. Pyreck, J. (1982)

Phyrochemisrry 21, 1814. 272. Shu, Y., Zhao, Y. and Zhang, R. (1985) Yuoxue Xuehao 20,

193. 306. Masuda, K., Shiojima, K. and Ageta, H. (1983) Chem.

Pharm. Bull. 31, 2530.

273. Shu, Y., Zhang, R., Zhao, Y.. Zhang, J. and Tong, W. (1987) Yaoxue Xuebao 22, 5 12.

307. Masuda, K., Shiojima, K. and Ageta, H. (1989) Chem.

Pharm. Bull. 37, 263.

274. Jia, Q., Wang, B., shu, Y. H., Zhang, R. Y., Gao, C. Y., Qiao,

L. and Pang, J. H. (1989) Yooxue Xuebao 24, 348.

275. Ahmad, V. U., Bano, N. and Bano, S. (1984) J. Nat. Prod. 41, 977.

308. Masuda. K., Shiojima, K. and Ageta, H. (1989) Chem. Pharm. Bull. 37, 1140.

276. Pradhan, B. P., Hassan, A. and Shoolery, J. N. (1984)

Terrahedron Lerrers 25, 865.

277. Schun, Y ., Cordell, G. A., Cox, P. J. and Howie, R. A. (1986)

Phyrochemisrry 25, 753.

309. Herr, W. and Watanabe., K. (1983) Phytochemisrry 22,1457.

310. Herz, W., Watanabe, K., Kulanthaivel, P. and Blount. J. F.

(1985) Phyrochemisrry 24, 2645.

311. Achari, B., Basu, K., Saha, C. R. and Pakrashi, S. C. (1986) Planra Med. 329.

278. Kikuchi, T., Matsuda, S., Kadota, S., Sakai, Y., Namba, T.,

Watenabe, K. and Dissanayake, M. R. B. (1984) Chem. Pharm. Bull. 32, 3906.

312. Anjaneyulu, A. S. R. and Reddy, D. S. K. (1981) Indian J.

Chem. Sect. B 20, 1033.

313. Banerji, R., Misra, G. and Nigam, S. K. (1985) PIanra Med. 280.

279. Song, R., Li, G., Zhang, Z. and Zhou, J. (1988) Yunnan

Zhiwu Yanjiu 10, 457. 280. Baas, W. J. (1983) Phyrochemistry 22, 2809.

281. Wu, T. S., Furukawa, H. and Kuoh, C. S. (1982) J. Nat. Prod. 45, 721.

282. Pereda-Miranda, R. and Gascon-Figueroa, M. (1988) J.

Nat. Prod. 51, 996.

314. Anjaneyulu, V.. Prasad, K. H., Ravi, K. and Connolly, J. D.

(1985) Phytochemisrry 24, 2359.

3 15. Anjaneyulu. V., Ravi, K., Prasad, K. H. and Connolly, J. D.

(1989) Phyrochemisrry 28, 1471.

316. Wang, X., Pu, Q., Chen, J., Wei, R. and Jiang, D. (1985)

Zhiwu Xuehao 21. 393.

283. Misra. T. N.. Sing, R. S. and Upadhyay, J. (1983) Phyro- chemistry 22. 2557.

284. Nakatani, M.. Miyazaki, Y.. Iwashita, T., Naoki, H. and

Hase, T. (1989) Phyrochemisrry 2& 1479.

285. Kahlos, K., Hiltunen, R. and Von Schantz, M. (1984) Planra Med. 50, 197.

317. Nozaki, H., Suzuki, H., Lee., K. H. and McPhail, A. T.

(1982) .I. Chem. Sot. Chem. Commun. 1048. 318. Lee, K. H., Nozaki, H. and McPhail, A. T. (1984) Tetruhe-

dron LRrrers U. 707.

286. Kahlos, K. and Hiltunen, R. (1986) PIanta Med. 52,495.

287. Kahlos, K. and Hiltunen, R. (1986) Acra Phorm. Fenn. 95,

71.

319. Nozaki, H., Suzuki, H., Hirayama, T., Kasai, R., Wy, R. Y.

and Lee, K. H. (1986) Phyrochemisrry U, 479. 320. Gonzalez, A. G., Ferro. E. A. and Ravelo, A. G. (1987)

Phyrochemisrry 26, 2785.

288. Kahlos, K. (1986) Acra Pharm. Fenn. 95. 113.

289. Oksuz, S. and Topcu, G. (1987) Phyrochemistry 26. 3082. 290. Wang, S. M., Pezzuto, J. M., Fang, H. H. S. and

Farnsworth, N. R. (1986) .I. Nat. Prod. 49, 330. 291. Ravi, B. N. and Wells, R. J. (1982) Ausr. J. Chem. 35, 39. 292. Li, L. and Xue, H. (1986) Planra Med. 52.492. 293. Gunaherath, G. M. K. B. and Gunatilaka, A. A. L. (1983) J.

Chem. Sot. Perkin Trans. 1. 2845. 294. Gamlath, C. B., Gunaherath, G. M. K. B. and Gnatilaka, A.

A. L. (1987) J. Chem. Sot. Perkin Trans. I 2849.

295. Gunaherath, G. M. K. B. and Gunatilaka, A. A. L. (1983)

Tetrahedron Letters 24, 2799.

321. Gonzalez, A. G., Amaro, L. J. A. and Gutierrez, L. J. (1986)

Rev. Larinoam. Quim. 17, 56.

322. Xu. X. (1982) Yun Nan Zhi Wu Yan Jiu 4, 71.

323. Nakanishi, T., Inada, A. and Lavie, D. (1986) Chem. Pharm. Bull. 34, loo.

324. Nakanishi, T., Inada, A., Nishi, M., Miki, T., Hino, R. and

Fujiwara, T. (1986) Chem. Lerrers 69.

325. Neunlist, S. and Rohmer, M. (1985) J. Gen. Microbial. 131, 1363.

326. Ayoub, S. M. H. and Babiker, A. I. (1984) Plonra Med. So, 520.

327. Bane@, N., Sen, A. K. and Das, A. K. (1982) Indian .I. Chem.

Sect. B 21, 387.

296. Gunatilaka, A. A. L., Nanayakkara, N. P. D. and

Sultanbawa, M. U. S. (1983). J. Chem. Sot. Perkin Trans. I 2459.

328. Dutta, P. K., Das, A. K. and Bane@, N. (1983) Phyrochemis- try 22, 2563.

329. Adinolfi, M., Barone, G., Lanzctta, R., Laonigro, G.,

Mangoni, L. and Parrilli, M. (1983) J. Not. Prod. 46, 559.

Page 50: Trite r Pen Oids

2248 S. B. MAHATO et al.

330. Adinolti, M., Barone, G., Lanzetta, R., Laonigro, G., Mangoni, L. and Parrilli, M. (1984) J. Nar. Prod. 47, 100.

331. Adinolli, hi., Barone, G., Lanzetta. R., Laonigro, G., Mangoni, L. and Parrilli. M. (1984) J. Nat. Prod. 47, 721.

332. Adinolfi, M., Barone, G., Lanzetta, R., Laonigro. G., Mangoni, L. and Parrilh, M. (1984) J. Nat. Prod. 47, 544.

333. Ngounou, F. N., Lontsi, D. and Sondengam. B. L. (1988) Phytochemistry 27, 30 I

Phytochemistry 23. I 129.

361. Ino, C., Hirotani, M. and Furuya. T. (1984) Phytochemistry

23, 2885.

334. Ngounou, F. N., Lontsi, D., Ayafor, J. F. and Sondengam. B. L. (1987) Phytochemistry 26, 3080.

335. Ngounou, F. N., Lontsi, D. and Sondengam, B. L. (1988) Phytochemistry 27, 2287.

362. Hashimoto, Y., Ishizone, H., Moriyasu, M., Kawanishi. K.,

Kato, A. and Ogura, M. (1984) Phytochemistry 23, 693.

363. Hashimoto, Y., Ishrzone, H., Moriyasu, M., Kawanishr, K.,

Kato, A. and Ogura, M. (1984) Phytochemisrry 23, 1807.

364. Gray, A. 1.. Bhandari, P. and Waterman, P. G. (1988)

Phytochemistry 27, 1805.

365. Lin. W., Chen. W., Xue, Z. and Liang, X. (1988) Pfanta Med. 4.

366. Tanaka, R. and Matsunaga, S. (1988) Phytochemistry 27,

2273.

336. Sakurai. N., Yaguchi, Y. and Inoue. T. (1987) Phyro- 367. Tanaka. R., Tabuse. M. and Matsunaga, S. (1988) Phyto-

chemistry 26, 217. chemistry 27, 3563.

337. Benes, I.. Vanek, T., Budesinsky. M. and Herout, V. (1981) Phytochemistry 20, 259 I.

368. Singh. B., Agarwal, P. K. and Thakur. R. S. (1989) fndiun J.

Chem. Sect. R 28. 319.

338. Mondon, A., Epe. B. and Oelbermann, U. (1981) Terra-

hedron Letters 22. 4467.

369. Elcx, J. A., Whtlton, A. A. and Jones, A. J. (1982) Aust J.

Chem. 35. 641.

339. Ahmad, V. U. and Vali Mohammad, F. (1986) J.Nut. Prod.

49, 524.

340. Ahmad. V. U., Bano, S. and Bano. N. (1986) Phyrochemistry 25 1487.

370. Razdan, T. K.. Harkar, S., Kachroo, V., Koul, G. L. and

Waight, E. S. (1983) Phytochemistry 22. 1797.

371. Harkar. S.. Razdan, T. K. and Watght. E. S. (1984) Phyto-

chemistry 23, 2893.

341. Siddiqui, S., Hafeez, F.. Begum, S. and Siddiqui, B. S. (1986) J. Nat. Prod. 49, 1086.

372. Niimi, Y., Hirota, H.. Tsuyuki, T. and Takahashi, T. (1989) C‘hem. Pharm. Bull. 37. 57.

342. Siddiqui, S., Siddiqui, B. S., Hafeez F. and Begum, S. (1987) Planta Med. 53. 424.

343. Siddiqui, S., Siddiqui, B. S., Hafeez, F. and Begum. S. (1988) Planta Med. 54, 232.

373. Cheng, G., Jin, J.. Wen. Y.. Chen, Y.. Gan, L. and Zhou. W.

(1982) Huaxue Xuebao 40. 737.

374. Gan, L.. Chou. W.. Cheng. G. and Jin, J. (1982) Zhiwu

Xuehao 24. 59.

344. Siddiqui, S., Hafeez, F.. Begum. S. and Siddiqui, B. S. (1988) J. Nat. Prod. 51, 229.

375. Gan, L., Mao. G.. Wu, W. and Zhou. W. (1982) ffuaxue

Xuehao 40. 926.

345. Siddrqui, S., Begum, S.. Siddiqui, B. S. and Hafeez, F. (1989) J. Nat. Prod. 52, 57.

376. Yang, H.. Chen, Y.. Xie, J. and Zhao, S. (1986) Huaxue

Xuehuo 44. 946.

346. Siddiqui, S., Siddiqui, B. S., Begum. S. and Hafeez. F. (1989) Planta Med. 55, 292.

377. Errington. S. G. and Jeffcries. P. R. (19X8) Phytochemistry

27, 543.

347. Siddiqui, S., Begum, S., Hafeez. F. and Siddiqui, B. S. (1989) Phytochemistry 2.8, I 187.

378. Conner, A. H.. Nagasampagi. B. A. and Rowe. J. W. (1984) Tetrahedron 40, 42 17.

348. Kikuchi, T., Kadota. S., Suehara, H. and Shima, T. (19X5)

Chem. Phurm. Bull. 33, I9 14.

349. Arriaga-Gincr. F. J. and Wollenweber, E. (1986) Phyto- chemistry 25, 735.

350. Gonzalez, A. G.. Amaro, J., Fraga, B. M. and Luis, J. G. (1983) Phytochemistry 22, 1828.

351. Gonzalez. A. G., Fraga, B. M., Gonzalez. P., Gonzalez..

C. M., Ravelo, A. G., Ferro, E., Dominguez, X. A..

Martinez, M., Perales. A. and Fayos, J. (1983) J. Ora. Chem.

4& 3759.

379. Lobo. A. M.. Mecedo de Abreu, P.. Prabhakar. S. and

Godinho, L. S. (lY83) Tetrahedron Letters 24, 2205.

380. Lobo. A. M.. Mccedo de Abreu, P.. Prabhakar, S.,

Godinho, L. S.. Jones. R., Rzepa. H. S. and Wtlliams. D. J.

( 1988) Phytochrmrsrry 27. 3569.

381. Razdan. T. K.. Kachroo. V.. Harkar, S., Koul, G. L. and Dhar, K. L. (1982) Phgtochemrstry 21. 409.

382. Hamburger. M. and Hostettmann. K. (1986) He/c. Chim.

Acta 69. 221.

352. GonzaleG A. G., Fraga, B. M., Gonzalez. C. M., Ravelo,

A. G., Ferro, E., Dominguez, X. A., Martinez, M. A., Fayos,

J., Perales, A. and Rodriguez, M. L. (1983) Tetrahedron

Letters 24, 3033.

383. Arat. Y.. Masuda. K. and Ageta. H. (1982) Chem. Pharm.

Bull. M. 4219.

384. Ageta. H. and Arai. Y. (1984) Phytochemistry 23, 2875.

385. Arai, Y.. Shiojima. K. and Ageta, H. (1989) Chrm. Phurm.

Buff. 37, 560.

353. Gonzalez, A. G., Gonzalez, C. M., Ravelo, A. G., Domi-

nguez, X. A. and Fraga, B. M. (1986) J. Nat. Prod. 49, 148.

354. Kikuchi, T., Yokoi, T., Shingu, T. and Niwa. M. (1981)

Chem. Pharm. Bull. 29, 2531.

386. Thappa, R. K., Agarwal, S. G.. Dhar, K. L. and Atal, C. K.

(198 1) Phytochemistry 20, 1746.

387. Bhutan], K. K.. Kapoor, R. and Atal, C. K. (1984) Phyto-

chemistry 23, 403.

355. Yokoi, T., Shingu, T., Kadota, S. and Kikuchi, T. (1985) Chem. Pharm. Bull. 33, 4223.

356. Goto, Y., Takada, T. and Sakurai, A. (1987) Rep. Far. Sci.,

Shizuoka Unir. 21. 59.

388. Kapoor, R., Rishi, A. K., Bhutani, K. K. and Atal. C. K.

(1985) PIanta Med. 51, 334.

357. Ogihara, K., Higa, M., Hokama, K. and Suga, T. (1987) Phytochemistry 26, 783.

389. Pu, X. and Zhou, J. (1987) Yunnan Zhiwu Yanjiu 9, 503.

390. KoJima. H. and Ogura. H. (1986) Phytochemistry 25, 729.

391. KoJima. H., Tominaga, H., Sate, S. and Ogura. H. (1987)

Phytochenu’stry 26. 1107.

358. Matsubara, C. and Romo de Vrvar, A. (1985) Phyto-

chemistry 24, 613.

359. Jakupovic, J., Pathak, V. P., Bohlmann. F. and Dominguez.

X. A. (1987) Phytochemistry 26. 761.

360. Hirotani, M., Ino, C., Furuya, T. and Shiro. M. (1984)

392. Kojima, H. Tominaga, H.. Sate, S., Takayanagi, H. and Qgura. H. (1988) Phytochemistry 27, 2921.

393. Pu, X. and Zhou. J. (1987) Yunnan Zhiwu Yanjiu 9. 369.

394. Rasool, N.. Khan, A. Q. and Malik. A. (1989) J. Nat. Prod.

52. 749.

Page 51: Trite r Pen Oids

Triterpenoids 2249

395. Anjaneyulu, A. S. R. and Raju, S. N. (1987) Phytochemistry 422. Kuo, Y. H., Lin, Y. L. and Lee, S. M. (1988) Chem. Pharm. 26, 2805. Bull. 36, 3619.

396. Monaco, P. and Previtera, L. (1984) J. Nat. Prod. 47, 673. 397. Patra, A., Chaudhuri, S. K. and Panda, S. K. (1988) J. Nat.

Prod. 51, 217. 398. Patra, A. and Chaudhuri, S. K. (1988) Indian J. Chem. Sect.

B. 27, I1 52. 399. Murti, Y. L. N., Jairaj, M. A. and Sree, A. (1989) Phyro-

chemistry 28, 276. 400. Gamlath, C. B.. Gunatilaka, A. A. L. and Schlemper, E. 0.

(1988) J. Chem. Sot. Chem. Commun. 249. 401. Sakakibara, J. and Kaiya, T. (1983) Phytochemistry 22,

2547. 402. Bagchi, A., Sahai, M., Sinha, S. C., Ray, A. B., Oshima. Y.

and Hikino. H. (1985) J. Chem. Res. Synop. 398. 403. Liang, G. (1987) Yaoxue Xuebao 22, 121. 404. Liang, G. Y., Gray, A. I. and Waterman, P. G. (1989) J. Nat.

Prod. 52, 162.

423. Nes, W. D., Heupel, R. C., Benson, M., Stafford, A. E. and Haddon, W. F. (1984) J. Chem. Sot. Chem. Commun. 223.

424. Ikuta, A. and Itokawa, H. (1989) J. Nat. Prod. 52, 623. 425. McCabe, T., Clardy, J., Minale, L., Pizza. C., Zollo, F. and

Riccio, R. (1982) Tetrahedron Letters 23, 3307. 426. Duh, C. Y., Pezzuto, J. M., Kinghom, A. D., Leung, S. L.

and Farnsworth, N. R. (1987) J. Nat. Prod. SO, 63. 427. Anjaneyulu, A. S. R., Reddy, A. V. R., Mallavarapu, G. R.

and Chandrasekhara, R. S. (1986) Phyrochemistry 25.2670. 428. Nandy, A. K., Podder, G., Sahu, N. P. and Mahato, S. B.

(1989) Phytochemistry 28, 2769. 429. Betancor, C.. Freire, R., Hernandez, R., Suarez, E., Cortes,

M., Prange, T. and Pascard, C. (1983) J. Chem. Sot. Perkin Trans. I 1119.

405. Talapatra, S. K., Sarkar, A. C. and Talapatra, B. (1981) Phytochemisrry 243, 1923.

430. Saha, P. K., Mukherjee, S., Shaw, A. K., Ganguly, T. and Ganguly, S. N. (1981) Fitoterapia 52, 231.

431. Morales, G. and Mclaughlin, J. L. (1989) J. Nat. Prod. 52, 381.

406. Arisawa, M., Ueno, H., Nimura, M., Hayashi, T. and Morita, N. (1986) J. Nat. Prod. 49, 1114.

407. Haltori, M., Kuo, K. P., Shu, Y. Z., Tezuka, Y., Kikuchi, T. and Namba, T. (1988) Phytochemistry 27, 3975.

408. Mukherjee, M., Ghatak, K. L., Ganguly, S. N. and Anloulas, S. (1984) Phytochemistry 23, 2581.

409. Bruno, M., Savona, G., Hueso-Rodriguez, J. A., Pascual, C. and Rodriguez, B. (1987) Phytochemistry 26, 497.

410. Savona, G., Bruno, M., Rodriguez, B. and Marco, J. L. (1987) Phytochemistry 26, 3305.

411. Pereda-Miranda, R., Delgado, G. and Romo de Vivar, A. (1986) J. Nat. Prod. 49, 225.

432. Nozoe, S., Takahashi, A., Kusano, G., Itai, A. and Iitaka, Y. (1982) Chem. Letters 1679.

433. Pang, G. M., Zhao. C. J., Hori, H. and Inayama, S. (1989) Yaoxue Xuebao 24,75.

434. Qin, G., Yang, X., Gu, W., Wang, B., Chen, Z., Guo, R. and Shao, K. (1982) Huaxue Xuebao 40,637.

435. Zhang, W., Pan, D., Zhang, L. and Shao, Y. (1986) Yaoxue Xuebao 21. 592.

436. Zhang C. P., Zhang, Y. G., Zhang, Q. T. and He, 0. H. (1989) Yaoxue Xuebao 24, 225.

412. Ulubelen, A. and Topeu, G. (1984) Phyrochemistry 23, 133. 413. Wang, N., Niwa, M. and Luo, H. W. (1988) Phytochemistry

27, 299.

437. Numata, A., Yang, P., Takahashi, C., Fujiki, R., Nabae, M. and Fujita, E. (1989) Chem. Pharm. Bull. 37, 648.

438. Paul, V. J., Fen&l, W., Raffii, S. and Clardy, J. (1982) Tetrahedron Letters 23. 3459.

414. De Pascual Teresa, J., Bellido, I. S., Gonzalez, M. S. and Vicente, S. (1986) Phytochemisrry 25, 185.

415. Pradhan, B. P., De, S., Nath, A. and Shoolery, J. N. (1984) Phytochemistry 23, 2593.

416. Gonzalez, A. G., Mendoza J. J., Ravelo, A. G., Luis, J. G. and Domingua, X. A. (1989) J. Nat. Prod. 52, 567.

417. Lischewski, M., Ty, P. D., Schmidt, J., Preiss. A., Phiet, H. V. and Adam, G. (1984) Phyrochemistry 23, 1695.

418. Liu, J. S., Huang, M. F., Ayer, W. A. and Bigam, G. (1983) Tetrahedron Letters 24, 2355.

419. Talapatra, B., Basak, A. and Talapatra, S. K. (1982) Indian J. Chem. Sect. B 21, 76.

439. Aimi, N., Likhitwitayawuid, K., Goto, J., Ponglux. D., Haginiwa, J. and Sakai, S. (1989) Tetrahedron 45, 4125.

440. Barnes, R. A., Pereira, A. L., Cristina, T., Scofield, V., Filho, R. B. and Pinto, A. C. (1984) Chem. Pharm. BulL 32, 3674.

441. Misra, T. N., Singh, R. S., Upadhyay, J. and Srivastava, R. (1984) 1. Nat. Prod. 47, 865.

442. Kuroyanagi, M., Shiotsu, M., Ebihara, T., Kawai, H., Ueno, A. and Fukushima, S. (1986) C/tern. Pharm. Bull. 34.4012.

443. Kitagawa, I., Wang, H., Saito, M. and Yoshikawa, M. (1983) Chem. Pharm. Bull. 31, 664.

444. Gao, F., Mabry, T. J., Bohlmann, F. and Jakupovic, J. (1986) Phyrochemistry 25, 1489.

420. Kouno, I., Noda, N., Ida, Y., Sholichin, M., Miyahara. K., Komori, T. and Kawasaki, T. (1982) Liebigs Ann. Chem. 306.

421. Sholichin, M., Miyahara, K. and Kawasaki, T. (1982) Hererocycles 17, 251.

445. Waddell, T. G., Thomasson, M. H., Moore, M. W., White, H. W., Swanson-Bean, D., Green, M. E., Van Horn, G. S. and Fales, H. M. (1982) Phyrochemistry 21, 1631.

446. Dimbi, M. Z., Warin, R., Delaude, C., Hula R., Kapundu, M. and Lami, N. (1984) Bull. Sot. Chim. Be/g. 93, 323.

447. F&h, G. and Rohmer, M. (1989) Biochem. J. 262,673.