46
Stefan Rusu 9/2001 ©2001 Intel Corp. Page 1 Trends and Challenges in VLSI Trends and Challenges in VLSI Technology Scaling Towards 100nm Technology Scaling Towards 100nm Stefan Rusu Stefan Rusu Intel Corporation Intel Corporation [email protected] [email protected] September 2001 September 2001

Trends and Challenges in VLSI Technology Scaling Towards 100nm

  • Upload
    others

  • View
    38

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 1

Trends and Challenges in VLSI Trends and Challenges in VLSI Technology Scaling Towards 100nmTechnology Scaling Towards 100nm

Stefan RusuStefan RusuIntel CorporationIntel [email protected]@intel.com

September 2001September 2001

Page 2: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 2

AgendaAgenda

•• VLSI Technology TrendsVLSI Technology Trends–– Frequency and power trendsFrequency and power trends

•• Scaling ChallengesScaling Challenges–– Transistor scalingTransistor scaling–– Interconnect scalingInterconnect scaling–– Capacitive and inductive couplingCapacitive and inductive coupling–– LeakageLeakage

•• SummarySummary

Page 3: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 3

Process Technology EvolutionProcess Technology Evolution

19611961First Planar Integrated Circuit First Planar Integrated Circuit

Two transistorsTwo transistors

20012001PentiumPentium 4 Processor4 Processor42 million transistors42 million transistors

Page 4: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 4

Moore�s Law Moore�s Law -- 19651965

ElectronicsElectronics, April 1965, April 1965

Page 5: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 5

Moore�s Law Moore�s Law -- TodayToday

•• Number of transistors per integrated circuit Number of transistors per integrated circuit doubles every two yearsdoubles every two years

Page 6: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 6

SIA Technology RoadmapSIA Technology Roadmap

Characteristic 1999 2001 2004 2008

Process Technology [nm] 180 130 90 60

Logic Transistors [mil] 23.8 47.6 135 539

Across-chip Clock Speed [MHz] 1200 1600 2000 2655

Die area [sq. mm] 340 340 390 468

Wiring Levels 6 7 8 9

Page 7: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 7

ITRS 2000 Update Review – December 2000

ITRS Roadmap Acceleration ContinuesITRS Roadmap Acceleration Continues

1994

19971998/1999

500

350

250

180

130100

70

50

35

25

Year of Production

Feat

ure

Size

(nm

)

95 97 99 01 04 07 10 13 16

2000

Page 8: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 8

Processor Frequency TrendProcessor Frequency Trend

•• Frequency doubles each generationFrequency doubles each generation•• Number of gates per clock reduces by 25%Number of gates per clock reduces by 25%

386486

Pentium

Pentium Pro

Pentium II

10

100

1,000

10,000

1987

1989

1991

1993

1995

1997

1999

2001

2003

2005

Freq

uenc

y [M

Hz]

1

10

100

Gat

e D

elay

s / C

lock

Intel Processors FrequencyGate delays/Clock

Pentium III

Pentium 4

Page 9: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 9

Processor Core Vs. Bus ClockProcessor Core Vs. Bus Clock

Bus frequency is not keeping up with the processor core

0

500

1000

1500

2000

2500

386

486-

33

486D

X2

486D

X4

P-10

0

P-15

0

P-20

0

PII-3

00

PII-4

00

PIII-

600

PIII-

700

PIII-

800

PIII-

1G

P4-1

.5G

P4-2

.0G

Processor

Clo

ck F

requ

ency

(MH

z) Core ClkBus Clk

Page 10: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 10

Processor Power TrendProcessor Power Trend

•• Lead processor power increases every generationLead processor power increases every generation•• Compactions provide higher performance at lower powerCompactions provide higher performance at lower power

386 386

486 486

Pentium

Pentium

MMX

Pentium Pro

Pentium II

1

10

100

1.5µµµµ 1µµµµ 0.8µµµµ 0.6µµµµ 0.35µµµµ 0.25µµµµ 0.18µµµµ 0.13µµµµ

Pow

er (W

atts

) Pentium III

Pentium 4

Page 11: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 11

Power Density TrendPower Density Trend

•• Assumptions: 15mm die, 1.5x frequency increase per generationAssumptions: 15mm die, 1.5x frequency increase per generation

0

50

100

150

200

250

0.25µµµµ 0.18µµµµ 0.13µµµµ 0.1µµµµ

Wat

ts

0

25

50

75

100

Pow

er D

ensi

ty (W

/cm

2 )Leakage Pwr

Active PwrPower Density

Page 12: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 12

Voltage ScalingVoltage Scaling

0.1

1

10

1991 1993 1995 1997 1999 2001 2003 2005 2007Year

Supp

ly V

olta

ge [V

]

~0.7X Scaling~0.85X Scaling

Page 13: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 13

Transistor Physical Gate Length Transistor Physical Gate Length

Source: Robert Chau, 6/2001

0.18um0.13um

90nm65nm

45nm

0.25um0.35um

0.5um

130nm

0.2um

70nm

50nm

30nm20nm

0.01

0.1

1

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009

Year

Mic

ron

Technology Node

Transistor Physical Gate Length

Page 14: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 14

0.130.13µµm Process Technologym Process Technology

70nm Lgate NMOS transistor 70nm Lgate NMOS transistor –– in production todayin production todaySource: S. Tyagi, et.al., IEDM 2000

Page 15: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 15

Transistor Physical Gate Length Transistor Physical Gate Length

Source: Robert Chau, 6/2001

0.18um0.13um

90nm65nm

45nm

0.25um0.35um

0.5um

130nm

0.2um

70nm

50nm

30nm20nm

0.01

0.1

1

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009

Year

Mic

ron

Technology Node

Transistor Physical Gate Length

Page 16: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 16

30nm Physical Gate Length 30nm Physical Gate Length TransistorTransistor

Source: R. Chau, et.al., IEDM 2000

For the 65nm technology node For the 65nm technology node –– production 2005production 2005

Page 17: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 17

Transistor Physical Gate Length Transistor Physical Gate Length

Source: R. Chau, 6/2001

0.18um0.13um

90nm65nm

45nm

0.25um0.35um

0.5um

130nm

0.2um

70nm

50nm

30nm20nm

0.01

0.1

1

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009

Year

Mic

ron

Technology Node

Transistor Physical Gate Length

Page 18: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 18

Research Transistor with 20nm Research Transistor with 20nm Physical Gate LengthPhysical Gate Length

Source: R. Chau, et.al., SNW 2001

For the 45nm technology node For the 45nm technology node –– research phaseresearch phase

Page 19: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 19

Oxide Thickness ScalingOxide Thickness Scaling

Source: T. Ghani, VLSI Symposium, 2000

0

1

2

3

4

5

0.25 0.18 0.13 0.1 0.07

Technology Generation [um]

Oxi

de T

hick

ness

[nm

]

TOX (Electrical)

Equivalent OxideThickness (Physical)

Page 20: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 20

AtomsAtoms--Thin Gate OxideThin Gate Oxide

Source: R. Chau, et.al., IEDM 2000

Page 21: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 21

Moore�s Law + 300mm Wafers = Moore�s Law + 300mm Wafers = 4x advantage4x advantage

•• Moore’s Law:Moore’s Law:–– From 0.18µm to 0.13µm = From 0.18µm to 0.13µm =

2x output2x output

•• 300mm Wafers:300mm Wafers:–– From 200mm to 300mm = From 200mm to 300mm =

2x output2x output

•• Combined output Combined output advantage:advantage:–– 4x output4x output

Page 22: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 22

0.130.13µµµµµµµµm Production Rampm Production Ramp

•• Six factories readying Six factories readying 0.130.13µµµµµµµµm productionm production–– Plan to spend $7.5B on Plan to spend $7.5B on

capital in 2001capital in 2001•• Yields and volume Yields and volume

exceeding expectationsexceeding expectations–– 0.130.13µµµµµµµµm products have m products have

been shipping since Maybeen shipping since May

Page 23: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 23

Lithography ChallengesLithography Challenges

0.01

0.1

1

1989 1991 1993 1995 1997 1999 2001 2003 2005 2007

Year

Mic

ron

Lithography Wavelength

Silicon Feature Size

Page 24: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 24

Extreme Ultraviolet LithographyExtreme Ultraviolet Lithography•• EUV lithography uses extremely short wavelength light EUV lithography uses extremely short wavelength light

(20x shorter than today�s lithography processes)(20x shorter than today�s lithography processes)–– Visible light Visible light –– 400 to 700 nm400 to 700 nm–– DUV lithography DUV lithography –– 193 and 248 nm193 and 248 nm–– EUV lithography EUV lithography –– 13 nm13 nm

•• Will be used first in 2005 for critical lithography steps to Will be used first in 2005 for critical lithography steps to produce 70 nm patternsproduce 70 nm patterns

World�s First 6-inch EUV ETS Mask

Page 25: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 25

SRAM Cell Size ScalingSRAM Cell Size Scaling

•• SRAM cell size will continue to scale ~0.5x per generationSRAM cell size will continue to scale ~0.5x per generation

44

21

10.65.6

2.105

101520253035404550

SRA

M C

ell S

ize

[sq.

um]

0.5 0.35 0.25 0.18 0.13

Technology Generation [um]

Page 26: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 26

Exploit Memory Power EfficiencyExploit Memory Power Efficiency

•• Static memory has 10X lower active power densityStatic memory has 10X lower active power density•• Lower leakage than logicLower leakage than logic•• Integrated L2 provides higher bandwidth and lower latencyIntegrated L2 provides higher bandwidth and lower latency

1

10

100

0.25µ 0.18µ 0.13µ 0.1µ

Power Density (W/cm2)

1

10

100

0.25µ 0.18µ 0.13µ 0.1µ

Power Density (W/cm2)

Memory

Logic

Page 27: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 27

Example: PentiumExample: Pentium®® III Processor EvolutionIII Processor Evolution

•• 0.180.18µµm technologym technology•• 256KB L2256KB L2•• 28 million transistors28 million transistors•• 106 mm² die size106 mm² die size

•• 0.130.13µµm technologym technology•• 512KB L2512KB L2•• 44 million transistors44 million transistors•• 80 mm² die size80 mm² die size

Page 28: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 28

Bit Line Delay ScalingBit Line Delay Scaling

• Bit line swing limited by parameter mismatch & differential noise• Cell stability degrades with Vt lowering• Reducing number of rows per bitline approaching limit

0

0.2

0.4

0.6

0.8

1.0

1.2

0.25 0.18 0.13 0.10Technology generation [µµµµm]

Nor

mal

ized

del

ay

Logic circuit delayBit line delay (15% swing scaling)Bit line delay (constant swing)

Page 29: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 29

Within-Die Fluctuations

Systematic

Die-to-Die Fluctuations

Random Placement of Dopant Atoms

Lens AberrationsResist Thickness

Random

Process FluctuationsProcess Fluctuations

Source: K. Bowman, et.al., ISSCC�2001

Page 30: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 30

0.180.18µµm Al Interconnectm Al Interconnect

Metal 5Metal 5

Metal 4Metal 4Metal 3Metal 3Metal 2Metal 2Metal 1Metal 1

Metal 6Metal 6

TransistorsTransistors

Page 31: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 31

Wires Are Not Scaling Well Wires Are Not Scaling Well

0

5

10

15

20

25

30

35

40

45

0.65 0.5 0.35 0.25 0.18 0.13 0.1

Process Generation [um]

Del

ay [p

s]

Gate Al wires + SiO2 Cu wires + lowKGate + Al wires Gate + Cu wires

Source: SIA NTRS projection

Page 32: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 32

0.130.13µµm Cu Interconnectm Cu Interconnect

TransistorsTransistorsMetal 1Metal 1Metal 2Metal 2Metal 3Metal 3

Metal 4Metal 4

Metal 5Metal 5

Metal 6Metal 6

Source: S. Tyagi, et.al., IEDM 2000

Page 33: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 33

Metal LayersMetal Layers

0

1

2

3

4

5

6

7Nu

mbe

r of M

etal

Lay

ers

1.5 1 0.8 0.6 0.35 0.25 0.18 0.13

Technology Generation [um]

Page 34: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 34

Metal Aspect RatiosMetal Aspect Ratios

0

0.5

1

1.5

2A

vera

ge A

spec

t Rat

io

1.5 1 0.8 0.6 0.35 0.25 0.18 0.13

Technology Generation [um]

Page 35: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 35

Interconnect RC Delay vs. PitchInterconnect RC Delay vs. Pitch

•• 40% lower RC delay by using Cu + FSG ILD40% lower RC delay by using Cu + FSG ILDSource: S. Tyagi, et.al., IEDM 2000

Page 36: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 36

Routing a 70nm ProcessorRouting a 70nm Processor

M1

M3

M4

M5

M6

M7

M8

M9

M2

Super-Fat WiringTop 2 layers

Global routing

Fat Wiring2 metal layers

Cluster-level routing

Semi-Global Wiring2 metal layers

Unit-level routing

Local Wiring3 metal layers

Block-level routing

25m

m

Page 37: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 37

Noise SourcesNoise Sources•• Capacitive CouplingCapacitive Coupling

–– Due to electric fieldDue to electric field–– “Near” field effect“Near” field effect–– Measures resistance Measures resistance

to a voltage changeto a voltage change•• Inductive CouplingInductive Coupling

–– Due to magnetic fieldDue to magnetic field–– “Far” field effect“Far” field effect–– Measures resistance Measures resistance

to a current changeto a current change–– Frequency dependentFrequency dependent

Page 38: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 38

Inductive NoiseInductive Noise

•• Inductance of VLSI metal lines is becoming Inductance of VLSI metal lines is becoming important at operating frequencies above 1GHzimportant at operating frequencies above 1GHz

Impe

danc

e (O

hms/

cm)

1E+00

1E+01

1E+02

1E+03

1E+04

1E+08 1E+09 1E+10 1E+11

Frequency (Hz)

R

ωL

Impe

danc

e(O

hms/

cm)

1E-02

1E-01

1E+00

1E+01

1E+02

1E+06 1E+07 1E+8 1E+9

Frequency (Hz)

R

ωL

PCB (FR4) Signal TracePCB (FR4) Signal Trace VLSI Metal LineVLSI Metal Line

Page 39: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 39

Effects of Capacitive CouplingEffects of Capacitive Coupling•• Capacitive coupling can translate into a Capacitive coupling can translate into a

noise problem noise problem

•• or a delay problemor a delay problem

VictimVictim

AggressorAggressor

VictimVictim

AggressorAggressor

Page 40: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 40

Worst Case Input PatternsWorst Case Input Patterns

victimvictim nearnearnearnear farfarfarfar

CC--onlyonly !! Near attackers couple mostly Near attackers couple mostly by capacitanceby capacitance

!! Far attackers couple mostly Far attackers couple mostly by inductanceby inductance

!! Lenz’s law Lenz’s law -- a change in a change in current will generate an current will generate an opposingopposing current which current which resists the changeresists the change

!! WorstWorst--case switching pattern case switching pattern when near and far attackers when near and far attackers switch antiswitch anti--phasephase

LL--onlyonly

C & L cancelC & L cancel

C & L additiveC & L additive

Page 41: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 41

Inductive Noise Impact on DelayInductive Noise Impact on Delay

!! Capacitive noise effect on Capacitive noise effect on delay is modeled by delay is modeled by coupling coefficientcoupling coefficient

!! Inductive noise affects Inductive noise affects delay toodelay too

!! Inductive noise can also Inductive noise can also decrease delaydecrease delay

RLC delay w/ far-attackers switching down

00 0.50.5 11 1.51.5 22Coupling CoefficientCoupling Coefficient

RC ONLY delay

RLC delay w/ far-attackers switching up

Del

ayD

elay

Page 42: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 42

0.10.1

1.01.0

10.010.0

11 1010 100100Frequency [GHz]Frequency [GHz]

Skin

dep

th [

Skin

dep

th [ µµ µµµµ µµ

m]

m]

Cu [µµµµm]Al [µµµµm]

0.8µµµµm

0.65µµµµm

2.6µµµµm

2.1µµµµm0.26µµµµm

0.21µµµµm

Skin Effect in VLSI CircuitsSkin Effect in VLSI Circuits

•• Edge frequency is 5Edge frequency is 5--9x the clock frequency9x the clock frequency

Page 43: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 43

SubSub--Threshold LeakageThreshold Leakage

•• SubSub--threshold leakage increases for lower threshold leakage increases for lower channel lengths and lower Vchannel lengths and lower VTT�s�s

Page 44: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 44

Estimated Power of a 15mm ProcessorEstimated Power of a 15mm Processor

0.25µµµµm, 2V

0% 0% 0% 0% 1% 1% 1% 2% 3%

10203040506070

30 40 50 60 70 80 90 100

110

Temp (C)

Pow

er (W

atts

)

LeakageActive

0.18µµµµm, 1.4V

0% 0% 1% 1% 2% 3% 5% 7% 9%

10203040506070

30 40 50 60 70 80 90 100

110

Temp (C)

Pow

er (W

atts

)

LeakageActive

0.13µµµµm, 1V

1% 2% 3% 5% 8% 11% 15% 20%26%

10203040506070

30 40 50 60 70 80 90 100

110

Temp (C)

Pow

er (W

atts

)

LeakageActive

0.1µµµµm, 0.7V

6% 9% 14% 19%26%

33%41% 49% 56%

1020304050

6070

30 40 50 60 70 80 90 100

110

Temp (C)

Pow

er (W

atts

)

LeakageActive

Page 45: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 45

Leakage ImpactLeakage Impact

11

1010

100100

1,0001,000

10,00010,000

3030 4040 5050 6060 7070 8080 9090 100100 110110

Temp (C)Temp (C)

Ioff

(na/

Ioff

(na/

µµ µµµµ µµ m)

m)

0.10µµµµm0.13µµµµm0.18µµµµm0.25µµµµm

•• Design issues: Design issues: –– Dynamic circuits may failDynamic circuits may fail–– Design workarounds needed to guarantee burnDesign workarounds needed to guarantee burn--in functionalityin functionality

•• Test issues:Test issues:–– IDDQ testing may become ineffectiveIDDQ testing may become ineffective–– ThermalThermal--runaway problems, especially at burnrunaway problems, especially at burn--inin

Page 46: Trends and Challenges in VLSI Technology Scaling Towards 100nm

Stefan Rusu 9/2001 ©2001 Intel Corp. Page 46

ConclusionConclusion•• We still have not found a fundamental We still have not found a fundamental

barrier to extending Moore’s lawbarrier to extending Moore’s law•• The challenges are Power and EfficiencyThe challenges are Power and Efficiency

–– Focus on dissipation, delivery, densityFocus on dissipation, delivery, density•• VLSI technology scaling is expected to VLSI technology scaling is expected to

continue for the next decadecontinue for the next decade