12
Transport phenomena in a plasma of confining gluons Wojciech Florkowski IFJ PAN, Cracow & UJK KIelce, Poland in collaboration with: R. Ryblewski (INP PAN, Cracow), N. Su (Frankfurt U.) and K. Tywoniuk (ICC, Barcelona U.) International Symposium on Multiparticle Dynamics Wildbad Kreuth, Germany, Oct. 4-9, 2015 Wojciech Florkowski (IFJ PAN) Oct. 7, 2015 1 / 11

Transport phenomena in a plasma of confining gluons · Transport phenomena in a plasma of confining gluons Wojciech Florkowski IFJ PAN, Cracow & UJK KIelce, Poland in collaboration

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Transport phenomena in a plasma of confining gluons · Transport phenomena in a plasma of confining gluons Wojciech Florkowski IFJ PAN, Cracow & UJK KIelce, Poland in collaboration

Transport phenomena in a plasma of confining gluons

Wojciech Florkowski

IFJ PAN, Cracow & UJK KIelce, Poland

in collaboration with:R. Ryblewski (INP PAN, Cracow), N. Su (Frankfurt U.) and K. Tywoniuk (ICC, Barcelona U.)

International Symposium on Multiparticle DynamicsWildbad Kreuth, Germany, Oct. 4-9, 2015

Wojciech Florkowski (IFJ PAN) Oct. 7, 2015 1 / 11

Page 2: Transport phenomena in a plasma of confining gluons · Transport phenomena in a plasma of confining gluons Wojciech Florkowski IFJ PAN, Cracow & UJK KIelce, Poland in collaboration

Motivation

RHIC and LHC HIC data suggest that QGP is a strongly-interacting dissipative fluid

⇒ relativistic dissipative fluid dynamics (equation of state?, transport coefficients?)

equation of state (at high T )

lattice QCD[M. Cheng et al., PRD 77, 014511 (2008); S. Borsanyi et al., JHEP 11, 077 (2010);S. Borsanyi et al., JHEP 07, 056 (2012)]

re-summed perturbation theory[J.-P. Blaizot, E. Iancu, Phys. Rept. 359, 355 (2002), ;J. O. Andersen, M. Strickland, Annals Phys. 317, 281 (2005); G. D. Moore, O.Saremi, JHEP 09, 015 (2008); J. Hong, D. Teaney, PRC 82, 044908 (2010); N. Su, Commun. Theor. Phys. 57, 409 (2012); ]

transport coefficients[W. Israel, J. M. Stewart, Ann. Phys. (NY) 118, 341 (1979); A. Muronga, PRC 69, 034903 (2004); A. El et al., PRC 81, 041901(R) (2010); G. S.Denicol et al., PRL 105, 162501 (2010); A. Jaiswal, PRC 87, 051901(R) (2013)]

Π̇ +Π

τΠ= −

ζτΠθ − δΠΠΠθ+ λΠππ

µνσµν

π̇〈µν〉 +πµν

τπ= 2

η

τπσµν + 2π〈µγ ω

ν〉γ− δπππ

µνθ − τπππ〈µγ σ

ν〉γ + λπΠΠσµν

ζ→ bulk viscosity η→ shear viscosity

by force of the Kubo formulas, they are sensitive to the long-distance dynamics of the underlyingmicroscopic theory

Wojciech Florkowski (IFJ PAN) Oct. 7, 2015 2 / 11

Page 3: Transport phenomena in a plasma of confining gluons · Transport phenomena in a plasma of confining gluons Wojciech Florkowski IFJ PAN, Cracow & UJK KIelce, Poland in collaboration

Motivation

transport coefficients (cont’d)pQCD [P. B. Arnold et al., JHEP 11, 001 (2000); P. B. Arnold et al., JHEP 05, 051 (2003); G. D. Moore, O. Saremi, JHEP 09, 015 (2008);P. B. Arnold et al., PRD 74, 085021 (2006);]functional renormalization techniques [M. Haas et al., PRD90, 091501 (2014); N. Christiansen et al., (2014),arXiv:1411.7986 [hep-ph]]low energy theorems [D. Kharzeev, K. Tuchin, JHEP 09, 093 (2008); F. Karsch et al., PLB 663, 217 (2008);]

lQCD [H. B. Meyer, PRL 100, 162001 (2008); H. B. Meyer, PRD 76, 101701 (2007);]N = 4 supersymmetric YM plasma with broken conformal symmetry [G. Policastro et al., PRL 87, 081601(2001); P. Benincasa et al., NPB 733, 160 (2006); A. Buchel, PRD 72, 106002 (2005); S. I. Finazzo et al., JHEP 02, 051 (2015)]]HRG+HS [G.P. Kadam, H. Mishra, NPA 934 (2014) 133-147]]parton-hadron-string dynamics transport approach [ V. Ozvenchuk, O. Linnyk, M. I. Gorenstein, E. L.Bratkovskaya and W. Cassing, PRC 87, no. 6, 064903 (2013)]]

. . .

æææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æææ

æ

à

à

à

à

à à

à àà à àà

à àà à à à

à à àà

HRG+HS

PHSD

pQCD

nonconf. AdS

100 150 200 250 300 350 4000.00

0.05

0.10

0.15

T HMeVL

Ζ�s

æ

æ

æ

æ ææ æ

æ ææ

æ æææ ææ æ

æ æ ææ æ æ

æ ææ

æ

à àààà

àà

àà à à à

UrQMD

PHSD kubo kin.

AdS�CFT

HRG+HS+QGP

semiQGP

DS YangMills

BAMPS

100 150 200 250 300 350 4000.0

0.5

1.0

1.5

T HMeVL

Η�s

around TC ζ and η are comparable

Wojciech Florkowski (IFJ PAN) Oct. 7, 2015 3 / 11

Page 4: Transport phenomena in a plasma of confining gluons · Transport phenomena in a plasma of confining gluons Wojciech Florkowski IFJ PAN, Cracow & UJK KIelce, Poland in collaboration

Gribov’s confining gluons

Gribov quantization of YM theory -fixing the infrared (IR) residual gaugetransformations remaining afterFaddeev-Popov procedure

a new scale γG that leads to anIR-improved dispersion relation for gluons(Coulomb gauge)[V. Gribov, NPB 139, 1 (1978);D. Zwanziger, NPB 323, 513 (1989)]

E(k) = |k| → E(k) =

√k2 +

γ4G

k2

attracted a lot of attention recently[G. Burgio, M. Quandt, H. Reinhardt, PRL 102, 032002(2009);N. Su, K. Tywoniuk, PRL. 114, 161601 (2015);D. E. Kharzeev, E. M. Levin, PRL 114, 242001 (2015);. . . ]

0 ΓG

0

2 ΓG

k=ÈkÓ

È

EHk

L

E= k2 + m2

E= k2 +ΓG

4

k2

reduction of the physical phase spacedue to the large energy cost of theexcitation of soft gluons

essential feature of the confinement[V. Gribov, NPB 139, 1 (1978);R.P. Feynman, NPB 188, 479 (1981);D. Zwanziger, NPB 485, 185 (1997); ]

Wojciech Florkowski (IFJ PAN) Oct. 7, 2015 4 / 11

Page 5: Transport phenomena in a plasma of confining gluons · Transport phenomena in a plasma of confining gluons Wojciech Florkowski IFJ PAN, Cracow & UJK KIelce, Poland in collaboration

Covariant setup

local rest frame comoving frame

E(k) =

√k2 +

γ4G

k2→ E(k · u) =

√(k · u)2 +

γ4G

(k · u)2

thermodynamics of the system of confining gluons

[D. Zwanziger, PRL 94, 182301 (2005);] [W. F., R.Ryblewski, N. Su, K. Tywoniuk, arXiv:1504.03176;]

ε = g0

∫d3k

(2π)3E(k) f (k) → ε =

∫dK E(k · u) f (x , k)

P =g0

3

∫d3k

(2π)3|k|∂E(k)

∂|k|f(k) → P =

13

∫dK

(k · u)2

E(k · u)

1 − γ4G

(k · u)4

f (x , k)

∫dK (. . .) = g0

∫d3k

(2π)3k0(k · u) (. . .)

g0 = 2(N2c − 1) (SU(Nc))

Wojciech Florkowski (IFJ PAN) Oct. 7, 2015 5 / 11

Page 6: Transport phenomena in a plasma of confining gluons · Transport phenomena in a plasma of confining gluons Wojciech Florkowski IFJ PAN, Cracow & UJK KIelce, Poland in collaboration

GZ plasma vs lQCD data — fixing γG

in high-T limit γG →d

d+1Nc

4√

2πg2T

D. Zwanziger, PRD 76, 125014 (2007)

T ≈ (2 − 4) Tc ⇒ γG ≈ const.

γG(T ) derived from the gap equation with running coupling from lQCDJ. O. Andersen et al., PRL 104, 122003 (2010);K. Fukushima, N. Su, PRD 88, 076008 (2013);

W. F., R.Ryblewski, N. Su, K. Tywoniuk, arXiv:1504.03176

1 2 3 40.0

0.5

1.0

1.5

2.0

2.5

3.0

T�Tc

I

T4

{QCD HBorsanyi et al, JHEP 07, 056 H2012LL

ΓG = 700 MeV

GZP Heq.L

Wojciech Florkowski (IFJ PAN) Oct. 7, 2015 6 / 11

Page 7: Transport phenomena in a plasma of confining gluons · Transport phenomena in a plasma of confining gluons Wojciech Florkowski IFJ PAN, Cracow & UJK KIelce, Poland in collaboration

(0+1)D Bjorken symmetry implementation

consider the case of a transverselyhomogeneous boost-invariant system

assume the Bjorken flow of matter inlongitudinal direction (boost-invariance)[J. D. Bjorken, PRD 27, 140 (1983);]

uµ = (t/τ, 0, 0, z/τ)

introduce convenient boost-invariantvariables[A. Bialas et al., NPB 296, 611 (1988);]

v = k0t − k‖z

w = k‖t − k0z

EOM follow from the conservation of Tµν

Tµν =

∫dK kµkνf (x , k)

f = f (τ,w , k⊥)

within the assumed symmetries the Tµν

has the spherically anisotropic form[W. F., R. Ryblewski, PRC 85, 044902 (2012);M. Martinez et al., PRC 85, 064913 (2012);]

Tµν = (ε+ P⊥)uµuν − P⊥gµν + (P‖ − P⊥)zµzν

zµ = (z/τ, 0, 0, t/τ)

∂µTµν = 0 ⇒dεdτ

+ε+ P‖τ

= 0

Wojciech Florkowski (IFJ PAN) Oct. 7, 2015 7 / 11

Page 8: Transport phenomena in a plasma of confining gluons · Transport phenomena in a plasma of confining gluons Wojciech Florkowski IFJ PAN, Cracow & UJK KIelce, Poland in collaboration

Non-equilibrium fluid dynamics of GZ plasma

[A. Muronga, PRC 69, 034903 (2004);R. Baier et al., PRC 73, 064903 (2006);]

dεdτ + 1

τ (ε+ PGZ + Π − π) = 0 ⇔dεdτ +

ε+P‖

τ = 0

dissipative fluxes

π =43η

τ

Π = −ζτ

(Navier-Stokes dissipative fluid dynamics)

π =23

(P‖ − P⊥)

Π = P − PGZ =13

(P‖ + 2P⊥) − PGZ

what is the form of ζ and η for GZ plasma?, close to equilibrium one can use the linear responseapproximation f ≈ fGZ + δf + · · ·

ζ(T , γG) =g0γ5

G

3π2

τrel

T

∫∞

0dy

[c2

s −13

y4− 1

y4 + 1

]fGZ(1+fGZ)

η(T , γG) =1

10

g0γ5G

3π2

τrel

T

∫∞

0dy

(y4− 1

)2

y4 + 1fGZ(1 + fGZ)

Wojciech Florkowski (IFJ PAN) Oct. 7, 2015 8 / 11

Page 9: Transport phenomena in a plasma of confining gluons · Transport phenomena in a plasma of confining gluons Wojciech Florkowski IFJ PAN, Cracow & UJK KIelce, Poland in collaboration

Kinetic equation in the relaxation-time approximation (cross-check)

dεdτ

+ε+ P‖τ

=

∫dK E(τ,w , k⊥)

∂f (τ,w , k⊥)

∂τ

(0+1)D kinetic equation in RTAP. L. Bhatnagar et al., Phys. Rev. 94, 511 (1954);G. Baym, PLB 138, 18 (1984);G. Baym, NPA 418, 525C (1984);]

∂f (τ,w , k⊥)

∂τ=

fGZ(τ,w , k⊥) − f (τ,w , k⊥)

τrel(τ)

satisfied as long as Landau matchingcondition is satisfied εGZ = ε

formal solutionNPA 916, 249 (2013);PRC 88, 024903 (2013);PRC 89, 054908 (2014);]

f (τ,w , k⊥) = f0(w , k⊥)D(τ, τ0)

+

∫ τ

τ0

dτ′

τrel(τ′)D(τ, τ′)fGZ(τ′,w , k⊥)

ε =

∫dK E(τ,w , k⊥) f (τ,w , k⊥)

P‖ =

∫dK

w2

τ2E(τ,w , k⊥)

1 − γ4G

(w2/τ2 + k2⊥

)2

f

P⊥ =

∫dK

k2⊥

2 E(τ,w , k⊥)

1 − γ4G

(w2/τ2 + k2⊥

)2

f

D(τ2, τ1) = exp

−∫ τ2

τ1

dττrel(τ)

Wojciech Florkowski (IFJ PAN) Oct. 7, 2015 9 / 11

Page 10: Transport phenomena in a plasma of confining gluons · Transport phenomena in a plasma of confining gluons Wojciech Florkowski IFJ PAN, Cracow & UJK KIelce, Poland in collaboration

Results: Bulk and shear viscosity

0.1 0.2 0.3 0.4 0.5 0.60.0

0.1

0.2

0.3

0.4

0.5

0.60.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

T @GeVD

Η�Hs

Τre

lL@fm

-1

D

linear reponse

Η�Hs ΤrelL HΤrel=2fmL

Η�Hs ΤrelL HΤrel=1fmL

Η�Hs ΤrelL HΤrel=0.5fmL

0.1 0.2 0.3 0.4 0.5 0.6

0.00

0.05

0.10

0.15

0.20

0.1 0.2 0.3 0.4 0.5 0.6

0.00

0.05

0.10

0.15

0.20

T @GeVD

Ζ�Hs

Τre

lL@fm

-1

D

Ζ�Hs ΤrelL HΤrel=2fmL

Ζ�Hs ΤrelL HΤrel=1fmL

Ζ�Hs ΤrelL HΤrel=0.5fmL

linear response

Wojciech Florkowski (IFJ PAN) Oct. 7, 2015 10 / 11

Page 11: Transport phenomena in a plasma of confining gluons · Transport phenomena in a plasma of confining gluons Wojciech Florkowski IFJ PAN, Cracow & UJK KIelce, Poland in collaboration

Results: ζ/η dependence

ζη

= 15(

13− c2

s

)2

photon gas coupled to hot matter[S. Weinberg, Astrophys. J. 168, 175 (1971);]

scalar theory[A. Hosoya et al., Ann. Phys. (N.Y.) 154, 229 (1984);R. Horsley, W. Schoenmaker, NPB 280, 716 (1987);]

weakly-coupled QCD (large-T limit)[P. B. Arnold et al., JHEP 0011 (2000) 001;P. B. Arnold et al., JHEP 0305 (2003) 051;P. B. Arnold et al., PRD 74 (2006) 085021;]

ζη

= κ

(13− c2

s

)strongly-coupled nearly-conformalgauge theory plasma using gaugetheory–gravity duality (large-T limit)(κ = 2, κ = 4.558 − 4.935)[P. Benincasa et al., NPB 733, 160 (2006);A. Buchel, PRD 72, 106002 (2005);]

Gribov’s plasma of confining gluons(κ = 3)[W. Florkowski, R.R., N. Su, K. Tywoniuk arXiv:1504.03176;W. Florkowski, R.R., N. Su, K. Tywoniuk, forthcoming;]

different from massive BE gas ! →[C. Sasaki, K. Redlich, PRC 79, 055207 (2009);]

0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.00.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

T @GeVD

Ζ�Η

linear responselinear scaling HΚ>3L

0.0 0.5 1.0 1.5 2.01

10

100

1000

1040.0 0.5 1.0 1.5 2.0

1

10

100

1000

104

T @GeVD

rHΖ

�ΗL�H

1�3-

c s2

Lp

GZ Hp=1, r=1, LBE Hp=1, r=5�2LGZ Hp=2, r=1LBE Hp=2, r=5�2L

Κ=5

Κ=3

Wojciech Florkowski (IFJ PAN) Oct. 7, 2015 11 / 11

Page 12: Transport phenomena in a plasma of confining gluons · Transport phenomena in a plasma of confining gluons Wojciech Florkowski IFJ PAN, Cracow & UJK KIelce, Poland in collaboration

Summary and Outlook

Summarya dynamic and non-equilibrium description of a plasma consisting of confining gluons(obtained from the Gribov quantization of SU(3) YM theory) introduced for the firsttime

the expressions for the shear and bulk viscosities of the Gribov-Zwanziger plasma werederived

ζ/η T-scaling which is in line with the strong-coupling methods results was found

Outlookinclude the running γG(T )

use our formula in the hydrodynamic symulations

Wojciech Florkowski (IFJ PAN) Oct. 7, 2015 11 / 11