Tire Stiffness and Damping Determined_NASA_Technical Paper 1671

Embed Size (px)

Citation preview

  • 8/10/2019 Tire Stiffness and Damping Determined_NASA_Technical Paper 1671

    1/47

    NASA Technical

    Paper

    1671

    NASA

    TP

    1 6 7 1

    c. 1

    Robert

    K.

    Sleeper

    and

    Robert C. Dreher

    JULY 1980

  • 8/10/2019 Tire Stiffness and Damping Determined_NASA_Technical Paper 1671

    2/47

    TECH

    LIBRARY KAFB, NM

    NASA

    Technical

    Paper 1671

    Tire Stiffness and Damping Determined

    From Static and Free-Vibration Tests

    Robert

    K.

    Sleeper

    and

    Robert

    C.

    Dreher

    Langley ResearchCenter

    Hatnpton Virginia

    National Aeronautics

    and Space Administration

    Scientific and Technical

    Information Office

    1980

  • 8/10/2019 Tire Stiffness and Damping Determined_NASA_Technical Paper 1671

    3/47

    SUMM RY

    Stiffness anddampingof a nonro lling ti r e a re determined experimentally

    from both s t a t i c force-displacement re la tio ns and thefree-vibration behavior

    of a cable-suspended platenpressedagainst he t i r e periphery.Lateral and

    fore-and-aftspringconstants and damping fac to rs of a 4 9

    x

    1 7 s i z e a i r c r a f t

    t i re fo r dif fer en t t i r e pr es su res and v ert ical loads are measuredassuming

    a rate-independent dampingorm.

    I n

    addition, a technique

    i s

    applied or

    estim ating he magnitude of the t i r e masswhich participates i n the vibratory

    motion of the dynamic te st s.Re sults show th at both the l a t e r a l and fore-and-

    a f t spring constants generally ncrease

    w i t h

    t i r e pressure

    b u t

    only the lat ter

    increased significantly

    w i t h

    v e rt ic a l ir e loading. The fore-and-aftspring

    con stan ts were gre ate r than those

    i n

    the a te ra ldir ec tio n. The static -spr ing -

    constan t variation s were s im ilar o t h e

    dynamic

    varia t ions

    b u t

    exhibited lower

    magnitudes. Dampingwas small and in se nsi ti ve o ir e oad in g . Furthermore,

    s t a t i c damping accounted for a sig ni fi ca nt po rt io n of th at found dynamically.

    Ef fec tiv e tir e masseswere a ls o small.

    INTRODUCTION

    Ti re stif fn ess anddamping i n the la te r a l and fore-and-aft dire ctio ns are

    important properties

    i n

    dynamic analyses of a i r c r a f t wheel

    shimmy

    and antiskid

    braking systems. S ta ti c e s ts on nonrolling t i r e s havebeenused for a number

    of years to measure ti r e s t i f fn ess (e.g. e f.

    1 ) .

    Tests on a ro ll in g ir ea r e

    preferred b u t equipnent and f ac ili ty lim it at io ns make such te st s d if f ic u lt to

    implement.

    As

    a resu l t , i reproper t i e sa regenerally measured

    us ing

    a platen

    loaded vert ical ly

    w i t h

    a t i r e and supported on bearings (e.g. re fs . 2 and 3

    where the propertiesar e deduced rom the response of the pl at en oapplied

    fo rc es . Such a support system, however, ty p ic a ll y n je c ts indeterm inant motion

    e f f e c t s

    and

    limits

    t e s t s os ta t i cap pl ica t io ns . While uch st a t i c e st s remain

    a primary source

    of

    stiffness anddamping information, measurements ob tained

    from vi br at io n es ts appear to be more rep res en tat ive of the operati ng

    environment.

    The objective of

    t h i s

    report i s todiscuss the re su lts of

    an

    experimental

    ef fo rt to measure s tif fn es s anddamping prop ert ies of a nonro lling t i r e

    us ing

    a cable-suspended platenpressedagainst the t i r e periphery. Both s t a t i c and

    dynamic t e s t s were performed t o determine spr ing cons tan ts anddamping factors

    of a large aircraft i re displace d

    i n

    ei ther the la te ra l orfore-and-aftdirec-

    tion. Damping is t rea ted i n a rate-independent form.Three pl at en s were

    employed

    i n

    the dynamic t e s t s to provide

    an

    in di ca tio n of t i r e mass involvement

    i n

    thevibratory motion. The

    s t u d y

    was conducted on

    a

    4 9 x 1 7

    s i ze t i r e over

    a range of v e r t i c a l loads and i nfl at io n pre ss ur es extending to th e i r maximum

    ratedvalues.

  • 8/10/2019 Tire Stiffness and Damping Determined_NASA_Technical Paper 1671

    4/47

    SYMBOLS

    Values are

    g i v e n n b o t h

    S I

    and U.S. CustomaryUnits.

    C

    damping forceo e f f i c i e n t ,

    N-sec/m

    ( lb f - sec / in . )

    c.

    g. c e n t e r of g r a v i t y

    F

    complex appliedo r c e ,

    N

    ( l b f )

    Fmaxaximum appliedorcemagni tude , N ( l b f

    1

    FO i n i t i a lp p l i e do r c ea g n i t u d e ,

    N

    ( l b f )

    F V

    t i r e v e r t i c a l load, N ( l b f )

    Fx=0 appliedor ce when displac ement

    i s

    zero ,

    N

    ( l b f )

    f o s c i l l a t i o nr e q u e n c y ,

    Hz

    - = / z i -

    k

    kC

    k t

    Q.

    m

    mP

    m t

    N

    t

    X

    X 0

    XN

    t o t a l

    s p r i n gc o n s t a n t , N/m ( l b f / i n . )

    c a b l e n t e r a c t i o ns t i f f n e s s ,

    N/m

    ( l b f / i n . )

    t i r e s p r i n gc o n s t a n t ,

    N/m

    ( l b f / i n . )

    cable

    l e n g t h , m ( f t )

    v i b r a t i n g

    mass,

    kg (lbm)

    p l a t e n

    mass,

    kg l h )

    e f f e c t i v e tire mass, kg lbm)

    number ofc y c l e s

    time, sec

    complexdisplacement, m ( i n . )

    or ig ina ld i sp lacementampl i tude ,

    m

    ( i n .

    1

    displacement amplitude of Nthcycle, m ( i n . )

    5

    viscous damping fac tor

    T

    f requency period, sec

    w c i r c u l a ro r c i n grequency, sec-1

    2

  • 8/10/2019 Tire Stiffness and Damping Determined_NASA_Technical Paper 1671

    5/47

    APPROACH

    Tire

    sp r in g c o n s t a n t s anddamping f a c t o r s i n b o t h t h e

    l a t e r a l

    and ore-

    a n d - a f t d i r e c t i o n s were determined rom

    s t a t i c

    anddynamic tests using a cable-

    s u s p e n d e dp l a t e np r e s s e da g a i n s t h ep e r ip h e ry of t h e t i re . S t a t i cc h a r a c t e r -

    is t ics were derived rommeasurementsof platen d i s p l a c e m e n t r e s u l t i n g from

    s l o w l yapp l ie d o rc es . The s t a t i c s p r i n gc o n s t a n t was de te rmined rom hes lope

    of

    t h e a x i s of t h e h y s t e r e s i s loop des cr i bed by the o rce -d isp lacement re la t ion-

    ship , and

    a

    damping factor was der ived rom

    i t s

    width . Dynamic ch ar ac te r i s t ic s

    were obtained rom

    simple,

    s ing ledegreeof reedom ree-v ibra t ion tests of the

    t e s t p la t e n . Thus, fo r h e l a t t e r

    tests

    t h es p r i n gc o n s t a n t was derived rom

    t h ev i b r a t i o n a lf r e q u e n c ya n dp l a t e n mass sp ec i f ic a t io ns , and th e damping

    fac tor

    was de te rmined run hed isp lacementampl i tudedecay

    rate. Estimates

    o f th e

    e f f e c t i v e

    t i r e

    masses p a r t i c i p a t i n g i n t h e o s c i l l a t o r y m o t i o n s of thedynamic

    tests

    were determined romc ha ng es i n h e f r e q u e n c y r e s u l t i n g f r o m

    similar

    t es t s

    w i t h d i f f e r e n t mass platens.

    -PARATUS

    AND

    TEST

    PROCEDURE

    Figure 1 i s a photographof he

    t e s t

    apparatusand t e s t t i r e . The appara-

    t u s i s

    shown preparedf o r

    a

    l a t e r a l dynamic

    t es t .

    Test F i x t u r e

    Themain s t r u c t u r e of t h e t e s t f i x t u r e is conf igured as two three-bay

    por-

    t a l frames oinedoverhead by fo ur beams a n dalo ng he loo r by a t h i c k p l a t e .

    The frames,cons t ruc tedsfwelded 10-in. s t e e l H-beams, are nominally 3.0 m

    (10 f t ) deep,2.2

    m

    (7.1 f t ) highand a r e spaced a d i s t a n c eof 2.1

    m

    ( 7 f t )

    a p a r t . The p l a t e l o n g h e l o o r

    i s

    2.5

    c m

    (1

    in . ) h i ck . The

    t i r e rim

    i s

    s u p p o r t e don he ef t by a taperedwelded box s t ru c tu re , c o n s t r u c t e d from

    2.5-cm (1-in. ) t h i c k p l a t e

    s tee l

    which i s su sp e n d e d ru n h eu p p e rp a r t of t h e

    f i x t u r e and s t a b i l i z e d by 0.2-cm (4-in . )

    diameter

    pipe. A v e r t i c a l

    beam a l so

    suspended rom heupper par t o f h e f i x t u r es u p p o r t s h e r i g h t s i d e of t h e

    rim

    and

    clamps it to

    t h e f i x t u r e

    t o

    preven t t i r e r o t a t i o n .

    T h e sp e c i a l f ea tu re o f h ea p p a ra tu s

    i s

    t h e s u p p o r t i n g of t h e t e s t p l a t e n

    by fourcables . Each ca bl e i s 1/2-in.

    s t ee l wire rope

    and i s suspended rom

    a

    force-measuring oad

    ce l l

    connected t o

    a

    h y d r a u l i c c y l i n d e r as shown i n f i g -

    u r e

    1. The cab le ree -sw ing e n g th 8 i s approximately .83 m ( 6 t ) . Ti re

    load ing is accomplished by ene rg iz in g he h y d r a u l i cc y l i n d e r s

    to

    l i f t t h e p l a t e n

    v e r t i c a l l ya g a i n s t h e

    t i r e ;

    i n d i v i d u a lc y l i n d e rc o n t r o l

    i s

    a v a i l a b l e

    t o

    equal-

    i z e h e c a b l e o a d i n g or l e v e l h e p l a t e n .

    A l l

    t e s t

    platens

    were 66

    cm

    (26 in . )s q u a r ew i t hd i f f e r e n t h i c k n e s s e s and

    mater ia l compositions. The t w o l i g h t e rp l a t e n s

    were

    made of aluminum p la t e .

    They

    were

    7.6

    cm

    (3 n.)and13.2 cm (5.19 n.) hickandweighed102.1 kg

    (225

    lh

    and

    1

    73.3 kg (382

    lh ,

    e sp e c t iv e ly . The h e a v ie s tp l a t e n was a

    15.4-cm (6.06-in. ) t h i c k

    s t e e l

    p l a t e andweighed536.1 kg (1 182 lh). The

    p l a t e n t e s t weigh ts nc luded 4.5 kg 1 0 l h ) or c a b le s a n dattachments. The

    3

  • 8/10/2019 Tire Stiffness and Damping Determined_NASA_Technical Paper 1671

    6/47

    upper su rfa ce of each pl at en was painte d i n the center w i t h a g r i t - f i l l e d

    enamel toprevent

    t i r e

    slippage.

    A separ ate hyd raulic cylind er was used to displa ce he platen durin g he

    s t a t i c t e s t s . A mechanical ratcheting device and a quick-release mechanism

    wereemployed t o provide the i n i t i a l displacement

    and

    rel ea se fo r he dynamic

    te st s. The d ir ec ti on of t e s t motion was varied

    by

    changing theorientation of

    the hydra ulic cy linder or the di sp lac ing mechanism depending on the type of

    tes t .

    Test Tire

    The te s t s were conducted w i t h a na tur al rubber, recapped, si ze 4 9

    x

    1 7 ,

    type V I I , 26-ply ra te d a ir cr a ft t i re of bias-ply construction having a rated

    inf latio n pre ssu re of

    1220

    kPa

    17 7

    ps i ) and a ra te d maximum v e r t i c a l load of

    1 7 8 kN 4 0 000 l b f ) . The nominal t i r e masswas 7 9 .4 kg 7 75 I h . The t i r e

    was the same t i r e used

    i n

    reference 2.

    Instrumentation

    Cable loads determined from load c e l l s were monitored p ri or to te st in g and

    a lin ea r potentiometer was i n st a ll e d to measure l a t e r a l or fore-and-aft d i s -

    placements during testing. A l inea rs t ra in gage accelerometer was mployed i n

    the dynamic t e s t s o measure pl ate naccele ration . For s ta ti c e s ti n g an addi-

    t ional load ce l l

    w a s

    ut i l i ze d to measure external forces that displaced the

    platen.

    Tape record ings of the pla ten ac ce le ra tion and displacement weremade dur-

    ing

    the dynamic tests

    and

    a time-code generator was incorporated t o provide a

    millisecond time reference.

    Test Procedure

    After i nf lat in g the unloaded t i r e to the test pressu re thepl aten was pre-

    pared fo r either the s t a t i c or dynamic te st s by centering heplaten beneath

    the t i re and uniformly raising it ag ain st he ire periphery. ndividual

    hydrauliccylinde r adjustm ents weremade to equa lize he cable oad ing and le ve l

    theplaten. I n general,ve rtica l oad ing s were w i t h i n

    3

    percent of spe ci fie d

    nominal loadings.Plate n displacements were kept small to minimizeboth t i re

    slippage

    and

    nonlinear effects.

    .- The s t a t i c te s ts wereperformed

    by

    slowly forcing he platen

    from

    i t s

    ne utra l po sitio n a distan ce of approximately 0 . 6 4 cm (0.25 i n . ) both

    la ter a l l y and fore and a f t through two complete cycles. Corresponding fo rc es

    and displacements were recorded du ring he t e s t s whichwere repeate d for each

    combination of t i r e pres sur e,vertical load, and motion dir ec tio n. For the se

    tes ts , hree i re pressu res ranging f rm 6 8 9

    (1

    00) t o 1 2 4 1 kPa 1 8 0 psi) and

    the ollowing our v e r ti c a l loads were xamined:

    2 2 . 2

    5 0 0 0 ) , 4 . 51 0

    000),

    8 9 . 0

    20 0 0 0 ) , and

    1 7 7 . 9 kN 4 0 0 0 0 l b f ) .

    4

  • 8/10/2019 Tire Stiffness and Damping Determined_NASA_Technical Paper 1671

    7/47

    Dynam c t est s. - The dynamc t est i ng was perf or med by di spl aci ng t he pl at e

    appr oxi mat el y 0 . 6 4 cm 0.25 i n.), r el easi ng i t , and r ecor di ng t he r esul t i ng

    damped f r ee- vi br at i on di spl acement and accel erat i on t i me hi st ori es. Test s wer e

    conduct ed f or several combi nat i ons of pl at en masses, t i r e pr essures, and ver -

    t i cal l oads wi t h bot h l at er al and f or e- and- af t mot i on. W t hi n t he dynam c test

    t he t i r e was i nf l at ed t o one of t hr ee t i r e pr essur es r angi ng f r om8 9 1 00)

    t o 1 2 4 1 kPa 1 8 0 psi ) and was subj ect ed t o ei ght ver t i cal l oads r angi ng f r om

    22.2 5000)

    t o 1 7 7 . 9 kN 4 0

    000

    l bf ) .

    DATA REDUCTI ONAND ANALYSES

    The t echni ques f or comput i ng t he spr i ng const ant and dampi ng f act or f r o

    t he f or ce- di spl acement r el at i onshi ps of t he st at i c t est s and t he mot i on of t

    dynam c t est s ar e gi ven i n t hi s sect i on. Al so descr i bed

    s

    t he met hod devel oped

    f or r emovi ng t he ef f ect of cabl e i nt er act i ons w t h t he comput ed spr i ng con-

    st ant s. I n addi t i on, a t echni que f or comput i ng t he ef f ect i ve t i r e mass f r om

    dynam c t est s wi t h di f f er ent mass pl at ens i s gi ven.

    Spr i ng Const ant

    Cabl e i nt er act i on. - The f ol l owi ng sket ch shows t he f or ces act i ngn the

    di spl aced pl at en and i ndi cat es t hat t hey are der i ved f r om a combi nat i on

    f

    t he

    t i r e st i f f nes s

    kt

    and a component of t he cabl e f or ces whi ch maye t r eat ed as

    a cabl e i nt er act i on st i f f ness kc def i ned by

    5

  • 8/10/2019 Tire Stiffness and Damping Determined_NASA_Technical Paper 1671

    8/47

    wher e Fv i s t he ver t i cal l oad and & i s t he f r ee- swi ng cabl e l engt h. Thus,

    t he t ot al spr i ng const ant

    k

    act i ng on t he pl aten may

    e

    r esol ved i nt o

    k = kt + kc

    or

    where t he t i r e spr i ng const ant s kt deri ved f r om t he syst em must be r educed b

    t he cabl e i nt er act i on st i f f ness kc. I n t hi s paper i t i s assumed t hat cabl e

    i nt er act i on does not af f ect t he dampi ngr t he ef f ecti ve t i r e mass.

    St at i c t est s. - Typi cal f or ce- di spl acement cur ves f or bot h l at er al and f

    and- af t t est s ar e pr esent ed i n f i gur e These hyst er esi s l oops or i gi nat e at

    t he or i gi n and af t er t wo l oadi ng cycl es t er m nat e at zer o l oad. The l oad di s

    cont i nui t y at t he ext r eme posi t i ons

    s

    at t r i but ed t o t i r e creep t hat occur ss

    t he l oadi ng di r ect i ons ar e manual l y swi t ched.

    For t hese t est s t he sl ope of t he f or ce- di spl acement hyst er esi s- l oop ax

    ( t he dashed l i ne connect i ng t he l oop extr emes) def i nes t he t ot al st i f f ness

    appl i ed t o t he pl at en. The t i r e spr i ng const ant kt

    i s

    f ound by subt r act i ng t he

    cabl e i nt er act i on st i f f ness kc f r om t he t ot al spr i ng const ant k.

    Dynam c t est s. -

    A

    t ypi cal t i me hi st or y of a dynam c t est

    s

    di spl ayed i n

    f i gure

    3.

    The recor d shows t he accel erat i on and di spl acement r esponse of t he

    pl at en t o a f r ee- vi br at i on t est . Fi nal r ef er ence di spl acement and accel er at i on

    l evel s are i ndi cat ed al ong wi t h t he di spl acement envel opes. The anal og out put

    of t he t i me- code gener at or i s al so shown.

    The di spl acement r esponse exhi bi t ed a shi f t i n equi l i br i um l evel , at t r

    ut ed t o t i r e creep. Even af t er account i ng f or t he shi f t , vi br at or y per i ods of

    t he accel er at i on were more uni f orm t han t hose of t he di spl acement . Hence, t h

    accel er at i on t i me hi st or i es, speci f i cal l y t he aver agef

    3 or 4

    Cycl es, were

    used t o comput e t he vi br at i on f r equenci es.

    For a l i ght l y- damped si mpl e spr i ng- mass syst em t he f r equency of vi br at

    i s r el at ed t o t he pr oper t i es of t he system by t he equat i on

    1

    27

    f = I/G

    or

    k

    m

    2

    -

    =

    (27rf)2

    =

    (

    6

  • 8/10/2019 Tire Stiffness and Damping Determined_NASA_Technical Paper 1671

    9/47

    where f is t h e s c i l l a t i o n r e q u e n c y , T

    i s

    therequency e r iod , ndhe

    r a t i o

    k/m

    is term ed i n h i s t u d y

    a

    frequencyparameter. The assumption of

    small

    damping is s u b s e q u e n t l y u s t i f i e d by experiment.

    To compute the t i r e s p r i n gc o n s t a n t , h e r e q u e n c yp a r a me t e r i s f i r s t

    de te rmined rom heper iod of Vibra t ionand hen he t o t a l s p r i n g c o n s t a n t

    i s

    computed rom th ep r o d u c t

    of

    t h ep l a t e n

    mass

    and the reque ncy

    parameter.

    The

    s p r i n g c o n s t a n t i s fou nd by s u b t r a c t i n g t h e c a b l e i n t e r a c t i o n s t i f f n e s s from

    t h e

    t o t a l

    s p r i n g c o n s t a n t .

    Damping Factor

    E n e r g y d i s s i p a t i o n

    i s

    m a n i f e s t e d n h e s e

    tests

    by t h e h y s t e r e t i c c h a r a c -

    te r of the t i r e s ta t ic - force-displacementcurvesand by th edecay ingampl i tudes

    of t h e r e e - v i b r a t i o n response. To account for t h i s damping i n s t a t i c applica-

    t i o n s a rate-independent orm i s r e q u i re d . One s u c h e p r e s e n t a t i o nc a l l e d

    s t r u c t u r a l

    damping e.g. r e f .

    4 ) is

    u sed i n

    s t r u c t u r a l

    v i b r a t i o na n a l y s e s

    ( r e f .

    5).

    This damping

    i s

    e s p e c i a l l yu s e f u l o r h i ss t u d y n h a ts i n c e

    damp-

    i n g

    i s

    smal l

    it

    c a nr e a d i l y be r e l a t e d

    t o

    t h e

    more

    conventionalviscous ormof

    damping t y p i ca l ly assumed inv i b r a t i o na n a l y s e s .S i n c e n r e e - v i b r a t i o n time

    h i s t o r i e s s t r u c t u r a l damping

    is

    ind i s t ingu i shab le romviscous damping, a l l

    damping i s t r e a t e d as s t r u c t u r a l damping in h is p a p e rb u te x p r e s s e d n terms

    of heviscous damping fac tor .

    S t a t i c

    tests . -

    Ligh t s t r u c t u r a l damping may be mathematicallyformula ted

    i n terms of heviscous damping f ac t o r 5 by the o l low ingc o mp l e x t i f f n e s s

    express ion

    where F

    i s

    the omplex ppl iedorce ,

    C

    i s the i scous damping fa c t o r ,

    k is the onven t iona l

    ( t o t a l )

    spr ing ons tan t , and

    x

    i s theomplex

    displacement .

    I n s i g h t n t o h i s f o r c e - d i s p l a c e m e n t r e l a t i o n s h i p may

    be

    ga ined by so lv ing

    f o r h ed i s p l a c e m e n t r e s u l t i n g from the complex s inuso ida l force

    F = Foeiwt

    where Fo is t h e n i t i a l p p l i e d o r c ema g n i t u d e a n d

    W

    i s t h e ci rcu lar f o r c -

    ing reque ncy. When th e o r c e

    is

    i n t r o d u c e d n t o h ee q u a t i o n h ed i s p l a c e me n t

    response

    becomes

    Fo k (wt-2r)

    x =

    1 + 4 5 2

    which when pl ot te d w it h

    respect

    t o t h e a p p l i e d f o r c e y i e l d s a t i l t e d e l l i p se

    whose wi dth ncr eas esw i t h

    C

    and or

    s m a l l

    damping the major a x i s

    slope

    approx imates hespr ingcons tan t .

    7

  • 8/10/2019 Tire Stiffness and Damping Determined_NASA_Technical Paper 1671

    10/47

    T h e r e l a t i o n s h i p of t h e e l l i pse width to the damping fac tor may be d e r i v e

    u s i n g h e r ea l par t of the complex applied f o r c e a n dcomplexdisplace-ment,

    i.e.

    and

    F d k

    1 +

    452

    x = cos ( U t - 25)

    For x = 0

    l 31T

    2

    u t

    = -

    +

    25, - + 25, ..

    and

    for

    small

    damping

    a t

    corresponding

    times

    theapp l ied o rcemagnitude may

    be approximated by

    or

    Thus, th e damping factor f o r small va lues

    i s

    one-half

    t h e

    r a t i o of the o rce

    a t

    zerodisplacement

    t o

    t h e maximum a p p l ie d

    force.

    The followingske tchgraph i -

    c a l l y d e p i c t s these q u a n t i t i e s :

    Dynamic tests.- Damping frcan thedynamic

    t e s t s

    was soughtf rom he oga-

    rithmic decrement

    of

    thedecayingdisplacementampl i tude of t h e f r e e - v i b r a t i o n

    time

    hi s t or y . However, the ogar i th micdec rementcanno t be d e t e r m i n e dd i r e c t l y

    from he

    displacement time

    h i s t o r y because of

    i t s

    d r i f t i n ge q u i l i b r i u m e v e l .

    This nonsymmetry is removed fran hed i s p l a c e m e n t data by computing

    a double

    amplitude der ived from t h e d i f f e re nce be tween sp l i ne c u r v e - f i t t e dd i s p l a c e m e n t

    e n v e l o p e s h a t

    pass

    through hedisplacementextremes. Fran thedouble-

    8

  • 8/10/2019 Tire Stiffness and Damping Determined_NASA_Technical Paper 1671

    11/47

    ampl i tudeva lues ,damping ac to r s o reach t e s t

    were

    computedover

    a

    few

    rep-

    r e s e n t a t i v ec y c l e s u s i n g h e e q u a t i o n

    where 2xN is thedoub le mpl i tudeof heNt h yc le and 2x0 is t h eo r i g i n a l

    double mpl i tude .Shouldh e damping f o r c e o e f f i c i e n t C

    be

    d e s i r e d ,

    it

    may

    becomputed rom th e f o l l o wi n ge q u a t i o n :

    Because

    of ensormeasurement imi ta t ions ,def lec t ionsbelow 0 . 2 5 cm

    (0.1

    i n . )

    were d is rega rded .

    E f f e c t i v e Tire Mass

    The so lu t ion for t h ee f f e c t i v e t i r e mass assumes t h a t h e mass m of he

    vi br a t in g body of quat ion

    ( 1 ) is

    composed

    of

    t h ep l a t e n

    mass

    mp and the

    e f f e c t i v e t i r e mass m t , t h a t i s

    m = mp + m t

    By re pl ac in g he v i b r a t i n g mass with heproductof he t o t a l s p r i n gc o n s t a n t

    and the ec ip roca lo f h e r e q u e n c ypar ame ter , he o l l owi ng e la t ion may be

    der ived :

    mP = k g ) -

    m t

    Th e e f f e c t i v e

    t i r e mass is

    then ound from

    a

    c o e f f i c i e n to b t a i n e df r o m a l i n e a r

    r e g r e s s i o na n a l y s i so fe q u a t i o n 8).

    RESULTS AND DISCUSSION

    S t a t i c anddynamic

    t es t s were

    c o n d u c t e d n h e l a t e r a l and ore-and-aft

    d i r e c t i o n s

    t o

    determine t i r e s p r i n gcons tan t s anddamping f a c t o r s . Dynamic

    t es t s

    w i t h d i f f e r e n t

    mass

    p l a t e n s p r o v i d e d n s i g h t n t o h e amountof t i r e mass

    p a r t i c i p a t i n g n h e d yn am icmotion. n he o l lowing ec t ionsdynamic esul ts

    are d isc uss ed and s t a t i c r e s u l t s are presen ted o rcompar i son . To c o n f i r m h a t

    thecable-suspended s y s t e m e x h i b i t e d no s i g n i f i c a n tc o u p l i n gb e t we e n h ep i t c h -

    ing and t r an s la t ing m o t i o n so f i t s p l a t e n , a two-degree-of-freedomanalysis of

    t h e s ep l a t e nmo t i o n s i s p r e s e n t e d n h e a p p e n d i x .

    Summaries of he t e s t cond i t ions and r e s u l t s f o r h e

    l a t e r a l

    and ore-and-

    a f t r e e - v i b r a t io n tes ts are g i v e n n a b l e s I and

    11.

    Test

    c o n d i t i o n sa n d

    r e s u l t s

    f o r h e s t a t i c tests are g iven

    i n

    t a b l e

    111.

    As shown i n he ab le s ,

    l a t e r a l

    and ore-and-aftdynamic

    tests were

    c o n d u c t e du s i n g h r e e p l a t e n s

    9

  • 8/10/2019 Tire Stiffness and Damping Determined_NASA_Technical Paper 1671

    12/47

    r a n g i n g n

    mass

    from

    1 0 2 2 2 5 ) t o 5 3 6

    kg

    1 82

    lbm . The

    t i r e

    was i n f l a t e d

    to

    one of t h r e ep r e s s u r e sr a n g i n gf r o m

    6 8 9 1

    00) to

    1 2 4 1 kPa

    (1

    80 ps i )

    where the

    rated

    i n f l a t i o n

    pressure was 1 2 2 0 kPa 1 7 7 p s i ) .

    The

    t i r e

    was a lso

    loaded w i t h

    one of e i g h t n o m i n a l )v e r t i c a l loads ranging from

    2 2 . 2 kN

    5000 l b f )

    to

    t h e

    rated maximum

    load

    of

    1 7 7 . 9 kN 4 0 000

    l b f )

    .

    One

    of

    the easons oremploying

    small amplitudes

    i n t h e

    tes ts is

    t o mini-

    m ize n o n l i n e a r i t i e s h a t c a n occur f o rs y s t e msu n d e r g o i n g a r g ed e f l e c t i o n s .

    Some i n s i g h t i n t o t h e e x t e n t o f t h i s type o f n o n l i n e a r i t y c a n be gained from

    t h e data. The dynamic

    tests

    revea led a s l i g h t r e q u e n c y n c r e a s ew i t h

    ampli-

    tude decay .Th i snon l inea reffect, however, was deemed i n s i g n i f i c a n t i n c en o

    c u r v a t u r eo f h es p i n e

    of

    t h e

    s t a t i c

    h y s t e r e s i s

    loop

    was apparent e .g . ig .

    2 ) .

    Thus, when frequencyv a r i a t i o n s

    occurred

    dur ing

    a t e s t

    t h e y

    were

    averaged.

    The determinat ion of s p r i n gconstants , damping

    fac tors ,

    a n d e f f e c t i v e

    t i r e

    masses

    is

    discussed i n h e s e c t i o n s h a t

    follow.

    Spr ing Cons tan t s

    Latera l

    andfore -and-a f t f requencyparamete r s de r ivedf r o m h eosc i l l a t ion

    periods o f h ea c c e l e r a t i o n

    time

    h i s t o r i e sf o re a c hp l a t e n mass, t i r e pressure ,

    andn o mi n a l v e r t i c a l load are t abu la t ed i n a b l e s

    I

    and

    11,

    r e s p e c t i v e l y .

    S p r i n g constants computed from f requency parameters and t h e i r p l a t e n mass are

    also

    g i v e n n h e tables . S p r i n gc o n s t a n t sd e t e r m i n e ds t a t i c a l l y are g i v e n n

    t a b l e 111.

    Latera l d i r e c t i o n . - The lateral-frequency-parameter va luesde r ivedf r o m

    v i b r a t i o n periods us ingequa t ion

    (1) are

    d i s p l a y e d n i g u r e

    4. As

    expected,

    t h e l a t e r a l

    f requency parameter

    decreases

    w i t h n c r e a s i n gp l a t e n

    mass. For

    each

    p l a t e n

    mass

    the requency parameter i n c r e a s e s w i t h n f l a t i o n

    pressure.

    The t i r e

    l a t e r a l

    s p r i n gc o n s t a n t s computed f rom hese data, and l i s t e d i n

    t a b l e

    I

    are noted t o be e s s e n t i a l l y n s e n s i t i v e t o p l a t e n mass. Thus, he

    dynamic l a t e r a l s p r i n gc o n s t a n t sp r e s e n t e d nf i g u r e5 ( a )

    as

    a func t ionofve r -

    t i c a l load were ob ta ined

    for

    e a c hp r e s s u r ea n d o a d i n gcon di t ion by averaging

    t h e data o b t a i n e d o re a c hpl at en . The averageddynamic

    l a t e r a l

    sp r i ng con-

    s t a n t s whi ch a ng e from

    9 3 7 5 3 5 0 ) t o 1471

    kN/m

    8 4 0 0

    l b f / i n . ) , o r h e

    t e s t

    c o n d i t i o n s

    described

    i n h i s p a p e r ,

    are

    shown

    t o

    i n c r e a s e w i t h n f l a t i o n

    pres-

    sure. When t h ep r e s s u r e i s h e l dc o n s t a n t h es p r i n gc o n s t a n t s e a c h a maximum

    value a t

    some

    i n t e r m e d i a t e v e r t i c a l o a d i n g .

    The spr ingc o n s t a n t s o b t a i n e d

    from

    s t a t i c

    t es t s

    are

    p r e s e n t e d i n f i g -

    u r e5(b) . The

    s t a t i c

    va lues

    are

    shown to e x h i b i t r e n d s similar

    t o

    thedynamic

    va lues for e q u i v a l e n t t e s t cond i t ions ,bu t are 1 0 t o 2 0 p e r c e n t lower t h a n h o s e

    found i n t h e dynamic

    tests.

    For

    purposes ofcompar ing hese da ta wi t h h o s e from o t h e rs o u r c e s ,s p r i n g

    c o n s t a n t s

    are

    d i s p l a y e d

    as

    f u n c t i o n so f

    t i r e

    v e r t i c a l d e f l e c t i o n n f i g u r e

    6 .

    T h e v e r t i c a l

    t i r e

    d e f l e c t i o n s are l i s t e d i n

    t a b l e

    IV Data t r e n d s n i g u r e

    6

    are

    similar to

    t h o s eo f e f e r e n c e 1 ; however , th e in e a r

    empirical

    equa t ion

    of

    t h e e f e r e n c e does no t

    describe

    t h e s e r e n d s n h e

    low

    d e f l e c t i o n a n g eo f h e

    s tudy.

    1 0

  • 8/10/2019 Tire Stiffness and Damping Determined_NASA_Technical Paper 1671

    13/47

    Fore -and-a f tdir ecti on. - The dynamicfore-and-aftfrequency

    parameters

    are

    d i s p l a y e d n f i g u r e 7 and, as expected , he requencyparameter is shown to

    i n c r e a s ew i t hd e c r e a s i n gp l a t e n mass. Ingenera l , he o re -and-a f t r equency

    parameter i s less s e n s i t i v e to v a r i a t i o n s n n f l a t i o n p r e s s u r e and more s e n s i -

    t i v e

    t o

    v a r i a t i o n s n h e v e r t i c a l o a d h a n h e

    l a t e r a l

    frequencyparameters.

    S i n c e h e

    t i r e

    f o r e - a n d - a f ts p r i n gcon sta nts computed rom th es e da ta were

    a l s o

    found

    to

    be

    e s s e n t i a l l y n s e n s i t i v e

    t o

    p l a t e n

    mass

    (see

    t a b l e

    11 ,

    thedynamic

    s p r i n g c o n s t a n t s f o r h e h r e e p l a t e n s

    were

    averaged oreach pressure and oad-

    i n g c o n d i t i o n ( f ig . 8 ( a ) ) .

    The averageddynamic ore-and-af t i re -spr ing-constantvalues ange rom

    201 4

    1

    1 500)

    t o 3677 kN/m

    (21 000 l b f / i n . )a n d are c o n s i d e r a b l y a r g e r h a n h e

    l a t e r a l - s p r i n g - c o n s t a n tv a l u e s o rc o mp a r a b l e

    test

    c o n d i t i o n s . The d a t a

    o

    f i g -

    u r e8 ( a ) show t h a t h e s e s p r i n g c o n s t a n t s n c r e a s e w i t h n f l a t i o n p r e s s u r e

    a t

    t h e h i g h e r v e r t i c a l o a d s and g e n e r a l l y n c r e a s e w i t h ve r t i ca l oad when th e

    i n f l a t i o n p r e s s u r e i s h e l d c o n s t a n t .

    The s t a t i c fore-and-af tspr ing-constantvalues ,which are presen ted as a

    f u n c t i o no fv e r t i c a l o a d n i g u r e8( b) , show t r en ds

    s imi lar to

    thedynamic

    da ta . However, the ta t i c -sp r ing -co nsta ntv a l u e s are 20 t o 35 p e r c e n t l ess

    than hedynamicvalues.This eduction i s a t t r i b u t e d , n par t ,

    t o

    thev i sco-

    e l a s t i c n a t u r eo f h e t i r e .

    Fore-and-aft t i r e s p r i n gc o n s t a n t s are presen ted as a f u n c t i o n of t i r e ver-

    t i c a l d e f l e c t i o n n i g u r e 9.

    Data

    fromboth hedynamic tes ts ( f i g .9 ( a ) ) a n d

    the s t a t i c tes ts ( f i g .9 ( b ) ) n d i c a t e h a t h e o r e - a n d - a f t t i r e s p r i n gc o n s t a n t

    g e n e r a l l y n c r e a s e sw i t hv e r t i c a ld e f l e c t i o n s .

    Reference 3 c o n t a i n s

    l a t e r a l

    s t a t i c sp r ingcons tan t smeasured rom he same

    type of t i r e

    used

    i n h i s r e p o r t , and r e f e re n c e

    2

    c o n t a i n s o r e - a n d - a f t s t a t i c -

    sp r ing-cons tan tda ta rom he

    same

    t i r e

    used

    i n h i s

    report .

    The scant

    d a t a

    f r o m h e e f e r e n c e s n d i c a t e s imi lar t r e n d sb u t h es t i f f n e s sv a l u e s r o mb o t h

    s e t s of da ta

    were

    beow t h e s t a t i c va lues

    of

    t h i sstudy. One cause f o r h e s e

    d i f f e r e n c e s may be t h a t t h e t e s t a mp li t ud e s of t h i s s t u d y were a p p r e c i a b l y lower

    than hose of r e fe renc es 2 and 3 .

    As

    ment ioned in e fe re nc e 1 , s p r i n gc o n s t a n t s

    inc reasewi th educed t e s t amplitude. Other causes may

    be

    due to t i r e age,

    mater ia l , and c o n s t r u c t i o n n c o n s i s t e n c i e s h a t may occur i n h e

    same t i r e

    as

    well

    as

    i n d i f f e r e n t

    t i r e s

    o f h e same s i z e .

    Damping Factor

    Latera l

    and for e-a nd- aft damping fa cto rsde r ived rom hed i sp lacement

    am pli tud es of the damped fr e e v i b r a t i o no f e a c h t e s t are t a b u l a t e d n a b l e s . 1

    and 11, re sp ec t i ve ly . Damping fac torsde te rmined rom s t a t i c tests are g iven

    i n t a b l e 111.

    Latera l d i r e c t i o n . - Th edamping f a c t o r s d e r i v e d f r a n v i b r a t o r y m o t i o n i n

    the l a t e r a l d i r e c t i o n ,p r e s e n t e d n f i g u r e 1 0 ( a ) , are

    small

    and ange rom 2

    to 7 percen t o f c r i t i c a l damping. The dynamic

    l a t e r a l

    damping fac torsg e n e r a l l y

    appear to

    be

    i n s e n s i t i v e

    t o

    v e r t i c a l o a d v a r i a t i o n s

    and

    n oc o n s i s t e n t r e n d s

    11

  • 8/10/2019 Tire Stiffness and Damping Determined_NASA_Technical Paper 1671

    14/47

    are

    n o t e dw i t hv a r i a t i o n s n t i r e i n f l a t i o np r e s s u r e .

    The

    da ta do i n d i c a t e

    a

    t endency fo r he l a t e r a l damping fac tors

    to

    decrease w i t h n c r e a s i n g p l a t e n

    mass.

    The l a t e r a l damping fac to r s ob ta inedf rom he s t a t i c tests are p r e s e n t e d

    i n f i g u r e

    1 0 ( b )

    and

    are

    approx ima te lyequal nmagn i tude

    to

    t h e dynamic-damping-

    f a c t o rv a l u e s of theheavywe igh tp la ten .These e su l t s would in d i ca t e ha t he

    increaseddynamicdamping fac tors

    associated

    w i t h h e two l i g h t e r p l a t e n s may be

    t h e r e s u l to f some a d d i t i o n a lviscous damping.

    Fore -and-a f td i rec t ion . - The damping fa c t or s de r i ve d

    from

    thefore-and-

    a f t

    tests

    are

    shown i n f i g u r e 11. The dynamic ore-and-a ftdamping actors

    ( f i g . l ( a ) ) r a n g e b et we enapproximately

    4

    and

    9

    p e r c e n t

    of

    c r i t i c a l

    damping

    andno c o n s i s t e n t r e n d s are o b s e r v e dw i t hv a r i a t i o n s n h e

    t e s t

    c o n d i t i o n s .

    The fore -and -aft damping fa ct o rs o b t a i n e d

    from

    t h e s t a t i c tests

    are

    pre-

    s e n t e d n f i g u r e l ( b ) and are noted

    to

    b e c o n s i s t e n t l y lower than hedynamic

    damping f ac to r s , he re by nd ic a t i ng ha t

    some

    viscous damping

    i s

    p r e s e n td u r i n g

    fore-and-af t

    t i r e

    v i b r a t i o n s . A comparison

    of

    t h e s t a t i c damping f a c t o r s f rom

    t h e

    l a t e r a l

    tests and t he ore-a nd-a f t tests i n d i c a t e s l i g h t l y higher damping

    i n h e f o r e - a n d - a f t d i r e c t i o n s .

    The f indings

    from

    the damping

    tes ts

    i n

    b o t h

    d i r e c t i o n s n d i c a t e h a t damp-

    i n g

    was

    s u f f i c i e n t l y

    small t o

    j u s t i f y h e d e l e t i o n ofdamping e f f e c t s i n t h e

    s t i f f n e s sc o m p u t a t i o n s .

    E f f e c t i v e

    T i re

    Mass

    E f f e c t i v e

    t i r e

    masses

    are

    computed rom

    t h e l a t e r a l

    and ore-and-af t

    dynamic tes ts for each t i re pressure a n d v e r t i c a l

    load

    combination.

    Latera l

    d i r e c t i o n . - The e f f e c t i v e t i r e

    mass

    i n t h e l a t e r a l d i r e c t i o n

    was

    computed

    us ing a l l t h r e e d i f f e r e n t mass p la t ensa n d i s g i v e n n t a b l e

    I

    f o re a c h

    t i r e

    pressure and loadingcondi t ion .

    The re su l t s

    are

    shown

    t o

    vary rom 2.7 6.0) to 13.9 kg 30.7

    lbm)

    andhave

    anaveragevalueof

    7.5

    kg

    16.5

    lbm). when

    compared t o

    t h e

    t o t a l t i r e

    mass of

    79.4

    kg

    175 lbm)

    t h ea v e r a g ee f f e c t i v e t i r e

    mass i s small.

    One re as on or he

    v a r i a t i o n s n h e e f f e c t i v e - t i r e - m a s s

    da t a

    i s

    a t t r i b u t e d to

    a l ack of nstrumen-

    t a t i o n p r e c i s i o n

    as i l l u s t r a t e d

    i n h e f o l l o w i n g

    error

    a n a l y s i s .

    The mass

    error

    Am o c c u r r i n g

    from

    a period inaccuracy AT can

    be

    de r ived

    fromequat ion

    1 t o be

    12

  • 8/10/2019 Tire Stiffness and Damping Determined_NASA_Technical Paper 1671

    15/47

    Thus, for a

    period

    inaccuracyof 1 msec, t h ee q u a t i o n n d i c a t e s h a t Am

    w i l l

    bewi th in hefo l lowingrange :

    3 . 0 kg 6 . 6 lbm)

    Am

    9.1 kg 2 0 . 1 lbm

    For-e-and-aftdirect ion.- Upon ex am ina tio nof hefo re -and-a f tda ta , he

    s p r i n g c o n s t a n t s f o r h e h e a v y p l a t e n

    were

    found

    t o

    be changingwith requency;

    hence, no e f f e c t i v e t i r e mass was computed f o r t h a t p l a t e n

    i n

    the o re -and-a f t

    d i r e c t i o n . The e f f e c t i v e t i r e masses a s s o c i a t e dw i t h h e t e s t d a t a r o m h e

    remaining two p l a t e n s are g iven i n t a b l e 11. These masses were g e n e r a l l yh i g h e r

    t h a n h o s ea s s o c i a t e dwi t h h e

    l a t e r a l tes ts

    and anged rom 7 . 8 17 . 2 )

    t o

    2 5 . 9 kg 5 7 . 2

    lbm

    with

    an

    averagevalueof 1 5 . 6 kg 3 4 . 4

    lbm .

    Equation 9 )

    p r e d i c t s

    mass er ro rs

    i n h e a n g eo f

    4 . 4 5 kg 9 . 8 lbm

    1 2 4 118 0 ) w 1 2 4 1 (18 0 )

    P l a t e n mass,

    536 kg (1182 1bm)

    T i r ep r e s s u r e ,

    k P a ( p s i )

    0

    689

    (100 )

    17

    965

    (140 )

    0

    1241

    (180 )

    L I 1

    0 30 60 90 1205080

    V e r t i c a l o a d , kN

    L I ,

    I I

    I

    I I

    I

    0

    10

    20

    30 40 x 103

    V e r t i c a l o a d ' ,

    1

    b f

    (a ) Dynamic te s t s .

    Figure 1 1 .-Va ria tio n of fore-and-aft damping fa ct or w i t h platen mass,

    t i re pressure ,

    and

    vertical loading.

    42

  • 8/10/2019 Tire Stiffness and Damping Determined_NASA_Technical Paper 1671

    45/47

    .08

    L

    c

    0

    2 .06

    n

    E

    m

    -o .04

    4 2

    0

    Tire pressure,

    kPa ( p s i )

    1 2 4 11 8 0 )

    0

    30 60 90

    120

    150 180

    Vertical load, kN

    1 I I I

    I I I I

    0

    10

    20

    30

    40

    x

    l o 3

    Vertical load,

    l b f

    b)

    S t a t i c

    tests

    Figure

    1 1

    .- Concluded.

    43

  • 8/10/2019 Tire Stiffness and Damping Determined_NASA_Technical Paper 1671

    46/47

    1 . Reporto. 2. Governmentccession No.

    3.

    Recipients

    a t a l o g

    No.

    NASA TP 1671

    4. Title and Subtitle I 5. Report Date

    TIRE STIFFNESS AND DAMPING

    DETERMINED FROM

    STATIC AND FREE-VIBRATION TESTS

    7. Author(4 8. Performingrganizationeport No.

    Robert

    K.

    Sleeper and

    Robert

    C.

    Dreher

    I

    L-13500

    10. Work Unit No.

    9. Performing Organization Name and Address

    505 44 33 01

    NASA Langley

    Research

    Center

    Hampton, VA 23665

    11.Contract or Grant N o .

    ~~~~ ~

    13.Type of R e p o r t and Period Covered

    2. Sponsoringgencyame Address

    Technical Paper

    14. SponsoringAgency code

    ational Aeronautics and Space Administration

    Washington, DC 20546

    I

    5. Supplementary Notes

    16.

    Abstract

    Stiffness anddamping ofa nonrolling t i r e are determinedexperimentally fran both

    s t a t i c force-displacementrelati ons and the free-vibrationbehaviorof a cable-

    suspended platenpressedagainst t h e t i r e perip hery. La tera l and ore-and-aft

    spring constan ts anddamping

    factors

    of

    a

    49

    x

    17 s i z e

    a i r c r a f t

    t i r e

    or

    dif fe ren t

    t i r e

    pressures and ver ti ca l loads

    are

    measured as sm in g a rate-independe nt damping

    form. Inaddi t ion ,

    a

    technique i s applied for esti mat ing he magnitudeof the

    t i r e mass which pa rti cip ate s n he vi bra to ry motion of

    t h e

    dynamic tests. R e s u l t s

    show th at bo th he

    l a t e r a l and ore-and-aft

    spr ing constants general ly ncrease

    w i t h

    t i r e pressure but only he

    l a t t e r

    inc reased s igni f icant ly wi th ve r t ica l t i r e

    loading. The fore-and-aftspringconstants were greater han those i n h e l a t e r a l

    direct ion. The sta t ic-spr ing-constantvar ia t ions were similar t o the dynamic

    var ia t ionsbutexhibi ted

    laver

    magnitudes. Damping

    was small

    and insensitive t o

    t i r e

    loading.Furthermore,

    s t a t i c

    damping accounted

    for

    a

    s igni f icantpor t ion

    of

    that found dynamically.Effective t i r e masses

    were

    also small.

    17.

    Key WordsSuggested byuthor(s) ) 18.istributiontatement

    Tires

    -

    Unlimited

    T i r e vibra t ion

    Tire damping

    Tire

    spring constant

    Subject Category 03

    19. Security Qassif. of this report) 20. Securitylassif. (of this p a g e )

    I

    21. o P

    Unclassified

    For

    sale

    by

    the National Technical

    In fo rmat ion

    Service, Sprlnefield. Virglnla 22161

    NASA-Langley, 980

  • 8/10/2019 Tire Stiffness and Damping Determined_NASA_Technical Paper 1671

    47/47

    Nat ional Aeronaut icsnd THIRD-CLASS BULK R A T E

    Space Administ rat ion

    Washington, D.C.

    20546

    Postage and Fees Paid

    National Aeronautics and

    Space Admi nist ration

    N A S A 4 5 1

    USMAIL

    Official Business

    Penalty for PrivateUse, 300

    3

    1U,B,

    062080 S00903DS

    DEPT OF THE AIR FORCE

    AP blEBP0HS

    LABORATORY

    ATTB: TECHHICAL

    LIBRARY

    SUL)

    KIBTLAND

    AF3

    I B 87117

    I

    msn

    POSTMASTER: If Undeliverable Section 1 5 8

    Postal Manual) Do Not Return