95
The Wealth of Nations Jamie Brabston Matt Caulfield Mark Testa

The Wealth of Nations

  • Upload
    chaman

  • View
    47

  • Download
    3

Embed Size (px)

DESCRIPTION

The Wealth of Nations. Jamie Brabston Matt Caulfield Mark Testa. Overview. Introduction Regression of Individual Variables Multicollinearity Multiple Regression Stepwise Regression Final Model. Introduction. Collected data for 30 countries 12 variables - PowerPoint PPT Presentation

Citation preview

The Wealth of Nations

Jamie BrabstonMatt Caulfield

Mark Testa

Overview

Introduction Regression of Individual Variables Multicollinearity Multiple Regression Stepwise Regression Final Model

Introduction Collected data for 30 countries 12 variables

Life expectancy, median age, population growth, population density, literacy rate, unemployment rate, oil consumption – oil production, cell phone / land line, military expenditures, area, sex ratio, external debt

Goal: create a model to predict GDP per capita

Life Expectancy

50 55 60 65 70 75 80

01

02

03

04

05

0

life.expectancy

GD

P

-10 0 10 20 30

-10

010

20

Fitted values

Res

idua

ls

Residuals vs Fitted

84

6

-2 -1 0 1 2

-10

12

Theoretical Quantiles

Sta

ndar

dize

d re

sidu

als

Normal Q-Q

4

8

6

-10 0 10 20 30

0.0

0.5

1.0

1.5

Fitted values

Sta

ndar

dize

d re

sidu

als

Scale-Location4

8

6

0.0 0.1 0.2 0.3

-10

12

Leverage

Sta

ndar

dize

d re

sidu

als

Cook's distance0.5

0.5

1

Residuals vs Leverage

4

8

11

Life Expectancy

Analysis: R2: 0.45. P-value: Highly significant.

An outlier was identified using a Leverage-residual plot and removed.

Residuals vs. Fitted Values plot showed nonlinearity.

Tried a Box-Cox transform.

Life Expectancy

0.0 0.5 1.0 1.5 2.0 2.5

0.0

50

.10

0.1

50

.20

0.2

50

.30

0.3

5

Absolute value of externally studentised residuals

influ

en

ce

1

2

3

4

5

67

8

910

11

1213

14

15

1617

18

192021

22

232425

26

272829

30

Leverage-residual plot

- Top: Influential data points.

- Bottom: Non-influential data points.

- Left: Non-outliers.

- Right: Outliers.

Upshot: Eliminate points in the top right quadrant as influential outliers.

Life Expectancy

Box-Cox Transform: y -> (yp - 1)/p Produces linear fit if variables are

related by a power law.

-4 -2 0 2 4

10

01

50

20

02

50

30

03

50

Box-Cox plot

p

Pro

file

like

liho

od

This plot shows the goodness of the fit as a function of p. In this case, the optimal p is fairly small.

Life Expectancy Linear regression was done on the BC

transformed data. Significant nonlinearity remained.

60 65 70 75 80

02

46

81

01

2

life.expectancy.1

GD

P.1

bc

-2 0 2 4 6 8 10

-4-2

02

4

Fitted values

Res

idua

ls

Residuals vs Fitted

754

-2 -1 0 1 2

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Theoretical Quantiles

Sta

ndar

dize

d re

sidu

als

Normal Q-Q

745

-2 0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fitted values

Sta

ndar

dize

d re

sidu

als

Scale-Location7

4 5

0.00 0.05 0.10 0.15 0.20 0.25 0.30

-10

12

Leverage

Sta

ndar

dize

d re

sidu

als

Cook's distance0.5

0.5

1

Residuals vs Leverage

13

25

4

Life Expectancy

Conclusions: Clearly, there is a significant positive relationship between per capita GDP and life expectancy.

We could not identify the precise nature of the relationship.

This prevents extrapolation and prediction.

Median Age

20 25 30 35 40

01

02

03

04

05

0

median.age

GD

P

0 10 20 30 40

-20

-10

010

20

Fitted values

Res

idua

ls

Residuals vs Fitted

825 11

-2 -1 0 1 2

-10

12

Theoretical Quantiles

Sta

ndar

dize

d re

sidu

als

Normal Q-Q

8

2511

0 10 20 30 40

0.0

0.5

1.0

1.5

Fitted values

Sta

ndar

dize

d re

sidu

als

Scale-Location8

25 11

0.00 0.04 0.08 0.12

-2-1

01

2

Leverage

Sta

ndar

dize

d re

sidu

als

Cook's distance

0.5

Residuals vs Leverage

8

11

12

Median Age

Analysis: R2: 0.58. P-value: Highly significant.

No suspected outliers. The plot of Residuals vs. Fitted

values is approximately linear, but significantly deviated from normal.

Median Age Box-Cox Transform gives:

20 25 30 35 40

12

34

5

median.age

GD

P.2

bc

1 2 3 4 5

-2-1

01

2

Fitted values

Res

idua

ls

Residuals vs Fitted

25

7

12

-2 -1 0 1 2

-2-1

01

2

Theoretical Quantiles

Sta

ndar

dize

d re

sidu

als

Normal Q-Q

25

7

12

1 2 3 4 5

0.0

0.5

1.0

1.5

Fitted values

Sta

ndar

dize

d re

sidu

als

Scale-Location25

7

12

0.00 0.04 0.08 0.12

-2-1

01

2

Leverage

Sta

ndar

dize

d re

sidu

als

Cook's distance 0.5

0.5

Residuals vs Leverage

25

26

7

Median Age

Box-Cox transform significantly improved the normality of the residual distribution.

The Box-Cox p = 0.15. R2 is improved to 0.72. Final Model:

(GDP0.15 – 1)/0.15 = -2.1 + 0.17(Med.Age)

Population Growth

0 1 2 3 4

01

02

03

04

05

0

population.growth

GD

P

10 15 20 25

-20

-10

010

2030

Fitted values

Res

idua

ls

Residuals vs Fitted

25 11 8

-2 -1 0 1 2

-10

12

Theoretical Quantiles

Sta

ndar

dize

d re

sidu

als

Normal Q-Q

25

118

10 15 20 25

0.0

0.5

1.0

1.5

Fitted values

Sta

ndar

dize

d re

sidu

als

Scale-Location25

11 8

0.00 0.05 0.10 0.15 0.20 0.25 0.30

-10

12

Leverage

Sta

ndar

dize

d re

sidu

als

Cook's distance0.5

0.5

1

Residuals vs Leverage

25

811

Population Growth

Analysis: R2 = 0.058. p-value: 0.11. Correlation is very low, and the p-

value is outside any reasonable significance level.

An outlier was found and eliminated using a Leverage-Residual plot.

Population Growth

Box-Cox Transform:

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

12

34

population.growth.3

GD

P.3

bc 1.0 1.5 2.0 2.5 3.0 3.5 4.0

-1.5

-0.5

0.0

0.5

1.0

1.5

2.0

Fitted values

Res

idua

ls

Residuals vs Fitted

11

156

-2 -1 0 1 2

-10

12

Theoretical Quantiles

Sta

ndar

dize

d re

sidu

als

Normal Q-Q

11

156

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Fitted values

Sta

ndar

dize

d re

sidu

als

Scale-Location11

156

0.00 0.05 0.10 0.15 0.20

-2-1

01

2

Leverage

Sta

ndar

dize

d re

sidu

als

Cook's distance0.5

0.5

Residuals vs Leverage

5

25

12

Population Growth

A Box-Cox transform improved the nonlinearity slightly, and gave a significant p-value.

From this, we concluded that population growth has a slight negative relationship with GDP.

No detailed predictions are possible because significant nonlinearity remains.

Population Density

0 1000 2000 3000 4000 5000 6000

01

02

03

04

05

0

population.density

GD

P

20 25 30 35 40 45

-20

-10

010

2030

40

Fitted values

Res

idua

ls

Residuals vs Fitted

8

6

22

-2 -1 0 1 2

-10

12

Theoretical Quantiles

Sta

ndar

dize

d re

sidu

als

Normal Q-Q

8

6

11

20 25 30 35 40 45

0.0

0.5

1.0

1.5

Fitted values

Sta

ndar

dize

d re

sidu

als

Scale-Location8

6

11

0.0 0.2 0.4 0.6 0.8

-10

12

Leverage

Sta

ndar

dize

d re

sidu

als

Cook's distance

10.50.51

Residuals vs Leverage

11

8

6

Population Density

Analysis: The outlier on the far right corresponds to Singapore, a country with an exceptionally high population density.

A less extreme outlier is China. Both of these data points were removed.

Population Density

0 100 200 300 400 500

01

02

03

04

05

0

population.density.4

GD

P.4

17 18 19 20 21

-20

-10

010

2030

Fitted values

Res

idua

ls

Residuals vs Fitted

7

6

12

-2 -1 0 1 2

-10

12

Theoretical Quantiles

Sta

ndar

dize

d re

sidu

als

Normal Q-Q

7

6

12

17 18 19 20 21

0.0

0.5

1.0

1.5

Fitted values

Sta

ndar

dize

d re

sidu

als

Scale-Location7

6

12

0.0 0.1 0.2 0.3

-10

12

Leverage

Sta

ndar

dize

d re

sidu

als

Cook's distance0.5

0.5

1

Residuals vs Leverage

7

18

15

Population Density

The p-value for the data without outliers is a very insignificant 0.68.

A Box-Cox transform was attempted, but the p-value did not get close to significance.

Conclusion: Population density and GDP are essentially unrelated.

Literacy Rate

Final model: GDP= -3.320 + .0657(literacy rate)

Unemployment Rate

Final model: GDP= 1.388 -.0236(unemployment rate)

Oil Consumption – Production

Final model: GDP= -3.320 + .0657(literacy rate)

Cell phones vs. Landlines

Final model: GDP= 1.52811 - .0928(cells vs landlines)

Military Expenditures

Analysis

Doesn’t pass conditions for regression Data isn’t linear Residuals aren’t random Q-Q plot is curved Outliers

Analysis of Box-Cox Model

Doesn’t pass conditions for regression Data isn’t linear

Area

Analysis

Doesn’t pass conditions for regression Data isn’t linear Residuals aren’t random Q-Q plot is curved Outliers

Analysis of Box-Cox Model

Doesn’t pass conditions for regression Data isn’t linear Residuals are not random Q-Q plot isn’t normal

Sex Ratio

Analysis

Doesn’t pass conditions for regression Data isn’t linear Residuals aren’t random Q-Q plot is curved Outliers

Analysis of Box-Cox Model

Doesn’t pass conditions for regression Data isn’t linear Residuals are not random Q-Q plot isn’t normal

External Debt

Analysis

Doesn’t pass conditions for regression Data isn’t linear Residuals aren’t random Q-Q plot is curved Outliers

Analysis of Box-Cox Model

Doesn’t pass conditions for regression Data isn’t linear Residuals are not random Q-Q plot isn’t normal

Multicollinearity Multicollinearity occurs when two

explanatory variables are linearly related. A stepwise regression will conclude both

are significant, even though the model would work just as well with only one.

Variance inflation factors between each pair of explanatory variables were found, and none were too high.

There is no significant multicollinearity.

Multiple Regression

Taking into account all 12 variables at once

High R2

Not accurate In our data:

Too many variables Too few observations

Stepwise Regression

Stepwise regression model: predicted GDP = -6.499e+01 +

2.296(median age) + 9.385(population growth) + 9.723e-04(external debt) + 1.808e-03(population density)

R-squared 80.78% of the variability in GDP per capita

is accounted for by the linear association with median age, population growth, external debt, and population density

Removing Outliers

One influential outlier Singapore

Very high population density Small country with a lot of people

financially well to do

Stepwise Model w/o Outlier

New model after removing Singapore predicted GDP = -6.277e+01 +

2.257(median age) + 8.885(population growth) + 9.274e-04(external debt) + 2.232e-03(population density)

R-squared 83.89% of the variability in GDP per capita

is accounted for by the linear association with median age, population growth, external debt, and population density

Box-Cox Transformation

Box-Cox Model New Model (all data points)

((predicted GDP)^(0.5)-1) / (0.5) = -1.388e+01 + 5.560e-01(median age) + 1.915(population growth) + 1.665e-04(external debt) + 2.228e-04(population density)

R-squared 82.8% of the variability in GDP per capita

is accounted for by the linear association with median age, population growth, external debt, and population density

Box-Cox w/o Outlier New model after removing Singapore

((predicted GDP)^(0.5)-1) / (0.5) = -1.258e+01 + 5.382e-01(median age) + 1.686(population growth) + 1.682e-04(external debt) – 3.106e-03(population density)

R-squared 87.35% of the variability in GDP per capita is

accounted for by the linear association with median age, population growth, external debt, and population density

Final Model

Box-Cox model without outlier ((predicted GDP)^(0.5)-1) / (0.5) = -

1.258e+01 + 5.382e-01(median age) + 1.686(population growth) + 1.682e-04(external debt) – 3.106e-03(population density)

Greece Observed GDP: 30.6 Predicted GDP: 34.6