50
The Sudbury Neutrino Observatory First Results and Implications Nick Jelley (University of Oxford) for the SNO Collaboration October 18th, 2001 CERN

The Sudbury Neutrino Observatory

  • Upload
    gasha

  • View
    39

  • Download
    0

Embed Size (px)

DESCRIPTION

The Sudbury Neutrino Observatory. First Results and Implications Nick Jelley (University of Oxford) for the SNO Collaboration October 18th, 2001 CERN. Nuclear Fusion. pp  2 H + e + + e 2 H + p  3 He + 3 He + 3 He  4 He + 2p. pep  2 H +  e. 3 He + 4 He 7 Be + - PowerPoint PPT Presentation

Citation preview

Page 1: The Sudbury Neutrino Observatory

The Sudbury Neutrino Observatory

First Results and Implications

Nick Jelley (University of Oxford)for the SNO Collaboration

October 18th, 2001

CERN

Page 2: The Sudbury Neutrino Observatory

2

Nuclear Fusion

pep 2H + e

pp 2H + e+ +e

2H + p 3He + 3He + 3He 4He + 2p

3He + 4He 7Be +e + 7Be 7Li +e7Li + p 2 4Hep + 7Be 8B +8B 8Be* + e+ +e8Be* 2 4He

Page 3: The Sudbury Neutrino Observatory

3

Angular Resolution

Page 4: The Sudbury Neutrino Observatory

4

The enemy…..s and s from decays in these chains interfere with our signals at low energies

And worse, s over 2.2 MeVcause d + n + p

Design called for: D2O < 10-15 gm/gm U/Th H2O < 10-14 gm/gm U/Th Acrylic < 10-12 gm/gm U/Th

Page 5: The Sudbury Neutrino Observatory

5

Sources of Activity in SNO

Page 6: The Sudbury Neutrino Observatory

6

Water Purification and AssayMnOx 224Ra, 226Ra extraction Purification

decay products counted Assay of in electrostatic counters 224Ra,226Ra

HTiO Th, Ra, & Pb extraction Purification chemically stripped and Assay of counted with counter 224Ra,226Ra,228Th

Vacuum & Membrane Radon removal PurificationDe-gassing Lucas Cells Assay of

222Rn

Reverse Osmosis conc. collection Purification liquid scintillator Assay

Ion Exchange & Ultrafiltration Purification

Page 7: The Sudbury Neutrino Observatory

7

SNO Water Assays

Targets for D2O represent a 5%background from d+n+p

Targets are set to reduce - events reconstructing inside 6m

Page 8: The Sudbury Neutrino Observatory

8

A Neutrino Event

Page 9: The Sudbury Neutrino Observatory

9

Instrumental BackgroundsNote Neck Tubes Fired

Electronic Pickup

Page 10: The Sudbury Neutrino Observatory

10

Instrumental Background Cuts

Page 11: The Sudbury Neutrino Observatory

11

External -ray background

r3

u•r <1%

Page 12: The Sudbury Neutrino Observatory

12

How do we know this worked?

Signal loss measured withcalibration sources

Contamination measured with independent cuts

Fraction of hits in a prompt time windowM

ean

angl

e be

twee

n ph

otot

ube

hits

Number of phototubes hit

Frac

tion

of g

ood

even

ts c

ut

Page 13: The Sudbury Neutrino Observatory

13

Solar Neutrino Spectrum

Page 14: The Sudbury Neutrino Observatory

14

Signal Extraction

Page 15: The Sudbury Neutrino Observatory

15

Signal Extraction ResultsData resolved into CC, ES, neutron components with Monte Carlo pdfs of Teff, cossun, (R/RAV)3 With the hypothesis of no neutrino oscillations

CC 975.4 ± 39.7 eventsES 106.1 ± 15.2 events

Tail of Neutrons 87.5 ± 24.7 events

240.9 live-days between 11/99-1/01

No statistically significant differences between Blind and Open data sets (75 days/166 days)

Page 16: The Sudbury Neutrino Observatory

16

Radial Distribution

Fiducial Volume Cut at 550 cm

Nhit 65 (no neutrons, no low energy backgrounds)

Edge of AV is quite sharp. Events from D2O clearly identified.

Bgnd

Rise

Acceptance drop

Page 17: The Sudbury Neutrino Observatory

17

SNO cos distribution

Electron Angle with respect to the direction from the Sun

ES: strongly peakedCC: 1-1/3cosNeutrons: isotropic

Page 18: The Sudbury Neutrino Observatory

18

SNO energy spectrum from unconstrained fit

Data points derived by fitting each energy bin independently

Monte Carlo ofundistorted 8Bspectrum normalizedto the data

Page 19: The Sudbury Neutrino Observatory

19

SNO CC spectrum normalised to undistorted 8B spectrum

Ratio to BP2001:0.347 ± 0.029

(Adding syst. bin by bin in quadrature give 2 of ~12 for 11 D.O.F.)

No evidence forshape distortion

Page 20: The Sudbury Neutrino Observatory

20

Systematic UncertaintiesSource CC (%) ES (%)Energy scale +6.1, -5.2 +5.4, -3.5Energy resolution 0.5 0.3Energy scale non-linearity 0.5 0.4Vertex accuracy 3.1 3.3Vertex resolution 0.7 0.4Angular resolution 0.5 2.2High energy +0, -0.8 +0, -1.9Low energy background 0.0 –0.2 0.0 –0.2Instrumental background +0.0, -0.2 +0.0, -0.5Trigger efficiency 0.0 0.0Live Time 0.1 0.1Cut acceptance +0.7, -0.6 +0.7, -0.6Earth orbit eccentricity 0.2 0.217O, 18O 0.0 0.0Experimental uncertainty +7.0, -6.2 +6.8, -5.7Cross section 3.0 3.0Solar model +20, -16 +20, -16

80

60

40

20

0

141210864Energy (MeV)

N(HE events): <10 events (68% CL)

Page 21: The Sudbury Neutrino Observatory

21

Solar Neutrino “Fluxes” Absolute fluxes from constrained fit:

CC (8B) = 1.75 ± 0.07 ± 0.05 (stat) (sys.) (theory)ES (8B) = 2.39 ± 0.34 (stat) (sys.)

+0.12- 0.11

+0.16- 0.14

SNO:

SNO:

+0.08- 0.07ES (8B) = 2.32 ± 0.03

(stat) (sys.)

Super-K*

*S. Fukuda, et al., hep-ex/0103032

Page 22: The Sudbury Neutrino Observatory

22

“Flux” Differences

• CC at SNO vs ES at SK

ES - CC = 0.57 ± 0.17 3.35 effectSK SNO

The hypothesis that this is a downwardstatistical fluctuation is ruled out at 99.96%

• CC at SNO vs ES at SNO

ES - CC = 0.64 ± 0.40 1.6 effect SK SNO

Page 23: The Sudbury Neutrino Observatory

23

CC/SSM ratios for various solutions

From Bahcall, Krastev, and Smirnov; hep-ph/0103179

SNO 3 For a Teff = 6.75 MeV threshold!

Page 24: The Sudbury Neutrino Observatory

24

Energy Distortion in the Sterile VAC solution

Sterile VAC predictslarge energy distortion

Page 25: The Sudbury Neutrino Observatory

25

SNO + Ga + Cl + S-K

To Active Neutrinos To Sterile Neutrinos

Page 26: The Sudbury Neutrino Observatory

26

Post-SNO 2 Active Oscillation Analysis

Fogli et al. 21 June 2001

Page 27: The Sudbury Neutrino Observatory

27

Implications of Neutrino Oscillations

Massive Neutrinos:

• Will contribute a small component to the Missing Dark Matter in the Universe.

Extension of Standard Model to Include Massive Neutrinos and Mixing

=e

Uml

Flavour Oscillations:

Probe of models for new physics

Page 28: The Sudbury Neutrino Observatory

28

Implications for 7Be Neutrinos

SNO 8B rate = 0.347 0.029 SSM

37Cl rate = 0.34 0.03 SSM 8B contribution 76% 7Be contribution 15%

So from SNO+Cl alone expect 7Be flux ~ 0.3 SSM

Page 29: The Sudbury Neutrino Observatory

29

vs. e

+1.01- 0.81SSM (8B) = 5.05 106 cm-2s-1

The StandardSolar Modelsare correct

SNO (8B) = 5.44 ±0.99 106 cm-2s-1 +SK

Page 30: The Sudbury Neutrino Observatory

30

Ratio of CC to ES

If SSM = 1000 produced and e = 340 detected

Then since + = SSM e

CC = 340 & ES = 340 + 0.154(660) = 442 SNO S-K

)(14.0ESCC

e

e

0.154

Page 31: The Sudbury Neutrino Observatory

31

Implications for Cosmology

M(e) < 2.8 eV (Bonn et al. - Mainz)

m (atmospheric ) ~ 50 meV (assuming oscillations)(Toshito et al. Super-K)

~10-5 ≤ m (solar ) ≤ ~30 meV (SNO + Apollonio et al.)

0.001 ≤ ≤ 0.18

.05 ≤ ≤ 8.4ev

Page 32: The Sudbury Neutrino Observatory

32

SNO’s Immediate AnalysisNC from lower analysis threshold Shape Analysis from pure D2O data

Seasonal and other Exotica

hep-neutrino analysis

Day/Night analysis

Muons

Page 33: The Sudbury Neutrino Observatory

33

SNO’s Immediate Future

NC Salt (BP98)

Conductivity Measurements Taken During Salt Addition

Salt Injected28 May 2001

Page 34: The Sudbury Neutrino Observatory

34

SNO’s Future Analysis

The separation of CCand NC events usingthe pdfs for the mean angle betweenhit PMTs

Page 35: The Sudbury Neutrino Observatory

35

SNO Schedule • Now- Summer 2002 Salt data• Summer 2002- Autumn 2002 Pure D2O run• January 2003 - 2005 Neutral Current detectors• Summer 2005 SN-2005A

Page 36: The Sudbury Neutrino Observatory

36

Conclusions The SNO detector is working and taking beautiful

data. The CC rate measured in SNO is incompatible

with the Super-K ES rate. This is strong evidence (>99.8% c.l.) for the

appearance of or neutrinos from the Sun. Sterile and Just-So2 oscillations are excluded by

these results at >99.8% c.l. The 8B flux from the Sun is now measured to be

in agreement with the predictions of Standard Solar Models.

+Super-K+T2 decay 0.001 < < 0.18

Page 37: The Sudbury Neutrino Observatory

37

Outlook These results are just the first of what SNO will

produce. The conclusions listed on the preceeding slide

are systematics dominated. They will be severely tested by new measurements: NC measurements in pure D2O Day/night in pure D2O

The same measurements with NaCl added The same measurements with the NCDs It will be a very exciting time!

Page 38: The Sudbury Neutrino Observatory

38

Solar Neutrino Problem1968 Homestake 600 tonnes C2Cl4

e + 37Cl 37Ar+ e 1989 Kamiokande 2000 tonnes H2O e + e e + e 1990 Sage 1992 Gallex 90 tonnes Gae + 71Ga 71Ge+ e 1998 Super-K 30000 tonnes H2O e + e e + e

Solar Model, ExperimentsOr Neutrino Physics Wronge or ?

Page 39: The Sudbury Neutrino Observatory

39

J. Boger, R. L Hahn, J.K. Rowley, M. YehBrookhaven National Laboratory

 I. Blevis, F. Dalnoki-Veress, W. Davidson, J. Farine, D.R. Grant, C. K. Hargrove, I. Levine, K. McFarlane, C. Mifflin,

T. Noble, V.M. Novikov, M. O'Neill, M. Shatkay, D. Sinclair, N. Starinsky

Carleton University 

J. Bigu, J.H.M. Cowan, E. D. Hallman, R.U. Haq, J. Hewett, J.G. Hykawy, G. Jonkmans, A. Roberge, E. Saettler, M.H.

Schwendener, H. Seifert, R. Tafirout, C. J. Virtue.Laurentian University

 Y. D. Chan, X. Chen, M. C. P. Isaac, K. T. Lesko, A. D.

Marino, E. B. Norman, C. E. Okada, A. W. P. Poon, A. R. Smith, A. Schülke, R. G. Stokstad.

Lawrence Berkeley National Laboratory

T. J. Bowles, S. J. Brice, M. Dragowsky, M.M. Fowler, A. Goldschmidt, A. Hamer, A. Hime, K. Kirch, G.G. Miller, J.B.

Wilhelmy, J.M. Wouters. Los Alamos National Laboratory

E. Bonvin, M.G. Boulay, M. Chen, F.A. Duncan, E.D. Earle, H.C. Evans, G.T. Ewan, R.J. Ford, A.L. Hallin, P.J. Harvey, J.D. Hepburn, C. Jillings, H.W. Lee, J.R. Leslie, H.B. Mak, A.B. McDonald, W. McLatchie, B. Moffat, B.C. Robertson,

P. Skensved, B. Sur. Queen's University

S. Gil, J. Heise, R. Helmer, R.J. Komar, T. Kutter, C.W. Nally, H.S. Ng,Y. Tserkovnyak, C.E. Waltham.University of British Columbia

T.C. Andersen, M.C. Chon, P. Jagam, J. Law, I.T. Lawson, R. W. Ollerhead, J. J. Simpson, N. Tagg, J.X. Wang

University of Guelph J.C. Barton, S.Biller, R. Black, R. Boardman, M. Bowler, J. Cameron,

B. Cleveland, X. Dai, G. Doucas, J. Dunmore, H. Fergani, A.P. Ferraris, K.Frame, H. Heron, C. Howard, N.A. Jelley, A.B. Knox, M. Lay, W. Locke, J. Lyon, S. Majerus, N. McCaulay, G. McGregor, M.

Moorhead, M. Omori, N.W. Tanner, R. Taplin, M. Thorman, P. Thornewell. P.T. Trent, D.L.Wark, N. West, J. Wilson

University of Oxford

E. W. Beier, D. F. Cowen, E. D. Frank, W. Frati, W.J. Heintzelman, P.T. Keener, J. R. Klein, C.C.M. Kyba, D. S. McDonald,

M.S.Neubauer, F.M. Newcomer, S. Oser, V. Rusu, R. Van Berg, R.G. Van de Water, P. Wittich.

University of Pennsylvania 

Q.R. Ahmad, M.C. Browne, T.V. Bullard, P.J. Doe, C.A. Duba, S.R. Elliott, R. Fardon, J.V. Germani, A.A. Hamian, R. Hazama, K.M.

Heeger, M. Howe, R. Meijer Drees, J.L. Orrell, R.G.H. Robertson, K. Schaffer, M.W.E. Smith, T.D. Steiger, J.F. Wilkerson.

University of Washington

R.G. Allen, G. Buhler, H.H. Chen*University of California, Irvine

 * Deceased

Page 40: The Sudbury Neutrino Observatory

40

Reactions in SNO

-Good measurement of e energy spectrum-Weak directional sensitivity 1-1/3cos()- e only.

CC -eppd e

-Measure total 8B flux from the sun.- Equal cross section for all types

NCxx npd

ES -- eνeν x x

-Low Statistics -All n types but enhanced sensitivity to e

-Strong directional sensitivity

Page 41: The Sudbury Neutrino Observatory

41

Signals in SNO

NC Salt (BP98)

Page 42: The Sudbury Neutrino Observatory

42

The SNO Detector

1700 tonnes InnerShielding H2O

1000 tonnes D2O

5300 tonnes Outer Shield H2O

12 m Diameter Acrylic Vessel

Support Structure for 9500 PMTs, 60% coverage

Urylon Liner andRadon Seal

Page 43: The Sudbury Neutrino Observatory

43

Construction

Page 44: The Sudbury Neutrino Observatory

44

Signals in SNO

Charged-current spectrumis more sensitive to shape

distortions!

ES

CC

Page 45: The Sudbury Neutrino Observatory

45

Signals in SNO

e

e

NCCCCharged-Current to Neutral Current

ratio is a direct signature for oscillations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.8

No oscillations

MSW oscillations

SNO’s Anticipated CC/NC Sensitivity

Page 46: The Sudbury Neutrino Observatory

46

Signals in SNO

)(14.0ESCC

e

e

CC/ES Could also show

significant effects! 0.154

Bahcall et al.

Page 47: The Sudbury Neutrino Observatory

47

Evidence for Neutrino Oscillations

3.3

Page 48: The Sudbury Neutrino Observatory

48

SNO CalibrationsElectronics Calibration

Electronic pulsersOptical Calibration

Pulsed laser ~2ns (337, 365, 386, 420, 500 and 620 nm)Attenuation, Reflection, Scattering, Relative QE

Energy Calibration• 16N 6.13 MeV ’s• p,T 19.8 MeV ’s• neutrons 6.25 MeV ’s• 8Li spectrum endpoint

Low Energy BackgroundsEncapsulated Th and U sources

Page 49: The Sudbury Neutrino Observatory

49

SNO Energy Calibrations

’s from 8Li ’s from 16N and t(p,)4He

252Cf neutrons

Page 50: The Sudbury Neutrino Observatory

50

SNO Event Reconstruction

Reconstruction position of 8Li events

Reconstruction Resolution