33
Future of [More] Electrical Aircraft Dr Askin T. Isikveren Head, Visionary Aircraft Concepts ICAS Biennial Workshop – 2013 The Lord Charles Hotel & Conference Centre Cape Town, South Africa, 02 September 2013

The future of more electrical aircraft

Embed Size (px)

Citation preview

Page 1: The future of more electrical aircraft

Future of [More] Electrical Aircraft

Dr Askin T. Isikveren

Head, Visionary Aircraft Concepts

ICAS Biennial Workshop – 2013 The Lord Charles Hotel & Conference Centre

Cape Town, South Africa, 02 September 2013

Page 2: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Agenda

Bauhaus Luftfahrt – An Introduction

Socio-economic Drivers & Top Level Requirements

Advanced Electrical Technologies

Electric Flight Feasibility Assessment

Hybrid-Electric Architectures

Typical Power Demand of Sub-systems

Design & Integration for Electro-mobility

Evolution of More-Electric & All-Electric Aircraft

Hybrid-Energy Engineering for Motive Power

Ce-Liner: Zero Emissions Concept

Interesting Engineering Trade-studies

Future of [More] Electrical Aircraft, 02.09.2013 Seite 2

Page 3: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Agenda

Bauhaus Luftfahrt – An Introduction

Socio-economic Drivers & Top Level Requirements

Advanced Electrical Technologies

Electric Flight Feasibility Assessment

Hybrid-Electric Architectures

Typical Power Demand of Sub-systems

Design & Integration for Electro-mobility

Evolution of More-Electric & All-Electric Aircraft

Hybrid-Energy Engineering for Motive Power

Ce-Liner: Zero Emissions Concept

Interesting Engineering Trade-studies

Future of [More] Electrical Aircraft, 02.09.2013 Seite 3

Page 4: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

The Bauhaus Luftfahrt Approach

Future of [More] Electrical Aircraft,

Founded in November 2005 by

The Bavarian Ministry of Economic Affairs,

Infrastructure, Transport and Technology

EADS (inc. Airbus, Cassidian & Eurocopter)

IABG mbH

Liebherr Aerospace

MTU Aero Engines

A non-profit research institution

with long-term time horizon

Strengthening the cooperation between

industry, science and politics

Developing new approaches for the future

of aviation with a high level of technical

creativity

Optimizing through a holistic approach in

science, economics, engineering and

design

Going “New Ways“ for the

mobility of tomorrow

02.09.2013 Seite 4

Page 5: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Emphasis on Inter-disciplinary Research

02.09.2013 Seite 5 Future of [More] Electrical Aircraft,

Visionary Aircraft Concepts

Future Technologies and

Ecology of Aviation

Knowledge Management

Economics and Transportation

Core Competencies

Page 6: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Agenda

Bauhaus Luftfahrt – An Introduction

Socio-economic Drivers & Top Level Requirements

Advanced Electrical Technologies

Electric Flight Feasibility Assessment

Hybrid-Electric Architectures

Typical Power Demand of Sub-systems

Design & Integration for Electro-mobility

Evolution of More-Electric & All-Electric Aircraft

Hybrid-Energy Engineering for Motive Power

Ce-Liner: Zero Emissions Concept

Interesting Engineering Trade-studies

Future of [More] Electrical Aircraft, 02.09.2013 Seite 6

Page 7: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Socio-Economic Drivers

02.09.2013 Seite 7 Future of [More] Electrical Aircraft,

Megacities

Urban Living, growing middle-class

Demographic & Anthropometric

Increasing world-wide average age

Increasing passenger size and weight

Hybrid cultures, gender empowerment

Environment

Environmental degradation

Mass transportation vs. individual

motorised transport

Socio-political pressure placed on

reducing emissions and noise

Cities with more than

10. mio inhabitants

Inhabitants in Million

Inhabitants / km 2

World Population

Megacities in 2025

2025

Exposure to particulate matter with an aerodynamic diameter of 10 m or less (PM10) in 1100 urban areas*, 2003-2010

Source: modified from Cole, BHL Symposium 2013

Page 8: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

The Top-level Requirements

Flightpath 2050

75% less CO2 emissionsa

90% less NOx emissionsa

65% reduction in perceived noisea

Aircraft is designed and manufactured to be

recyclable

Emission-free taxiing

80% less accidentsb

90% of all journeys (door-to-door within the

EU) within 4 hrs

Flights arrived within 1 min. of planned time

regardless of weather

ATM should handle at least 25M flights

02.09.2013 Seite 8 Future of [More] Electrical Aircraft,

Strategic Research & Innovation Agenda

abased on a typical aircraft with 2000 technology bbased on 2000 traffic

Page 9: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Granualising SRIA 2050 Required Strategy

02.09.2013 Seite 9 Future of [More] Electrical Aircraft,

0.4 0.5 0.6 0.7 0.8

0.65

0.7

0.75

0.8

0.85

0.9

0.95 ov

= in

pr

[-]

Thermal or Inner Efficiency ( in

) [-]

Pro

pu

lsiv

e E

ffic

ien

cy (

pr )

[-]

ReferenceTechnology

State-of-the-Art

IR Turbofan

Adv. Open Rotor

Technology

50% Hybrid-ElectricTurbofan Study(Schmitz & Hornung11)

Full-ElectricFan Study(Seitz et. al.12)

Black Contours: Propulsion System Overall Efficiency (ηov) in cruise relative to Year 2000 Reference

25%

43%

7%

airframe

propulsion/ engines

operations/ ATM

Hybrid-Energy approach in conjunction with:

> Distributed Propulsion

> Active very flexible polyhedral wings

B757/767

Re

lati

ve F

ue

l Bu

rn

A320 Neo& B737 MAX

Advanced Turbofan(studies)

Flightpath 2050

Hybrid Electro-MobilityFull Electro-Mobility

Improved aero-structural andtightly-coupledpropulsion

Year Entry-into-Service

SRIA 2020

SRIA 2035

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%Source: Hornung et al, AIAA 2013

derived from Seitz et al., JPC 2013

Page 10: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Agenda

Bauhaus Luftfahrt – An Introduction

Socio-economic Drivers & Top Level Requirements

Advanced Electrical Technologies

Electric Flight Feasibility Assessment

Hybrid-Electric Architectures

Typical Power Demand of Sub-systems

Design & Integration for Electro-mobility

Evolution of More-Electric & All-Electric Aircraft

Hybrid-Energy Engineering for Motive Power

Ce-Liner: Zero Emissions Concept

Interesting Engineering Trade-studies

Future of [More] Electrical Aircraft, 02.09.2013 Seite 10

Page 11: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Electric Flight Feasibility Assessment

Exergy (useable energy):

The energy density is insufficient as

feasibility assessment criterion

Ragone metrics:

Exergy and power densities are the key

indicators for electric aircraft feasibility

in the comparison of alternative power

sources

Seite 9 02.09.2013 Future of [More] Electrical Aircraft, Alle Rechte bei / All rights with Bauhaus Luftfahrt

1

10

100

1000

10000

100000

0 20 40 60 80 100 120 140 160 180 200

Super

Capacitors

Lead Acid

Lead Acid(spirally wounded)

NiCd

NiMH

NaCl

Li-Ion

High Power

Li-Ion

High Energy

Li-Ion

Very High Power

Li-M

Polymer

Sp

ecif

icP

ow

er

at

Cell

Le

ve

l /

W/k

g

Specific Energy at Cell Level / Wh/kg

Source: Kuhn and Sizmann, DLRK 2012

Page 12: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Electric Flight Feasibility Assessment

Exergy (useable energy):

The energy density is insufficient as

feasibility assessment criterion

Ragone metrics:

Exergy and power densities are the key

indicators for electric aircraft feasibility

in the comparison of alternative power

sources

0.1

1.0

10.0

0.01 10.0 1.0 0.1 Relative Exergy Density

Rel

ativ

e P

ower

Den

sity

Seite 9 02.09.2013 Future of [More] Electrical Aircraft, Alle Rechte bei / All rights with Bauhaus Luftfahrt

Page 13: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Electric Flight Feasibility Assessment

Exergy (useable energy):

The energy density is insufficient as

feasibility assessment criterion

Ragone metrics:

Exergy and power densities are the key

indicators for electric aircraft feasibility

in the comparison of alternative power

sources

Hybridization:

energy storage devices each inadequate

may be an enabling energy system in

combination

Seite 10 02.09.2013 Future of [More] Electrical Aircraft, Alle Rechte bei / All rights with Bauhaus Luftfahrt

Sources:

Sizmann, 2010

Kuhn et al., CEAS 2011

H. Kuhn et al., ICAS 2012

Page 14: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Electric Flight Feasibility Assessment

Exergy (useable energy):

The energy density is insufficient as

feasibility assessment criterion

Ragone metrics:

Exergy and power densities are the key

indicators for electric aircraft feasibility

in the comparison of alternative power

sources

Hybridization:

energy storage devices each inadequate

may be an enabling energy system in

combination

0.1

1.0

10.0

0.01 10.0 1.0 0.1 Relative Exergy Density

Rel

ativ

e P

ower

Den

sity

Combination (tbd)

Subsystem 1

Subsystem 2

Seite 10 02.09.2013 Future of [More] Electrical Aircraft, Alle Rechte bei / All rights with Bauhaus Luftfahrt

Sources:

Sizmann, 2010

Kuhn et al., CEAS 2011

H. Kuhn et al., ICAS 2012

Page 15: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Hybrid-Electric Power System Architectures

Future of [More] Electrical Aircraft, 02.09.2013 Seite 15

Page 16: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

0

10000

20000

30000

40000

Po

wer

[kW

]

Flight Phase

Power Demand of Propulsion System

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

Po

we

r d

em

and

[kW

]

Flight Phase

Power Demand of Subsystems

Thermal Management

Landing Gear

Flight Controls

Lighting

ECS

Cockpit

Avionic

Instruments & Ice Protection

Cabin

Typical Power Demand of Sub-systems

Maximum required power at different flight phases

Propulsion system = electric motor, motor controller, battery control unit

02.09.2013 Seite 16 Future of [More] Electrical Aircraft,

33.5 MW

red line: normal operation

blue line: abnormal ops = excl. non-essential customers

950 kW

660 kW x

Page 17: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Agenda

Bauhaus Luftfahrt – An Introduction

Socio-economic Drivers & Top Level Requirements

Advanced Electrical Technologies

Electric Flight Feasibility Assessment

Hybrid-Electric Architectures

Typical Power Demand of Sub-systems

Design & Integration for Electro-mobility

Evolution of More-Electric & All-Electric Aircraft

Hybrid-Energy Engineering for Motive Power

Ce-Liner: Zero Emissions Concept

Interesting Engineering Trade-studies

Future of [More] Electrical Aircraft, 02.09.2013 Seite 17

Page 18: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

ATA 24 MEA State-of-the-Art

02.09.2013 Seite 18 Future of [More] Electrical Aircraft,

G

230 VAC

28 V Essential

28 V Vital

28 V Non-Essential

270 VDC

SSPC

SSPC

BTB

BTB

BTB

AC

AC

G

SSPC

AC

AC

115 VAC

AC

AC

MEA System Architecture based on Boeing 787* (hybrid voltage system)

System Power*:

System Power [kW]

230 VAC 272

115 VAC 153

270 VDC 324

28 VDC 27

APU

GPU

G

230 VAC

SSPC

SSPC

AC

AC

G

AC

AC

AC

AC

G G

SSPC

ACDC

SSPC

SSPC SSPC

SSPC

SSPC

SSPC

AC

DC

AC

DC

SSPC

AC

DC

DC

DC

SSPC

Loads:-ECS/Pressurization-ECS Fans- Hydraulics-Cooling

Loads:- ICS-Various

Avionics

Loads:- Ice Protection-Galleys-Fuel pumps-Forward Cargo AC

Engine #1 Engine #2

RAT

SSPC

Source: Vratny, 2012

adapted from Chick, Flug Revue 2012

Page 19: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

G

270 V Essential

28 V Essential

28 V Vital

28 V Non-Essential

270 V Non-Essential

Fuel Cell

SSPC

SSPC

BTB

BTB

Components list:

Component Numbers Voltage

Inverter 2 540

Converter 3 540

SSPC 9 540

BTB 2 28

270 V Essential

270 V Non-Essential

SSPC GPU

SSPC

BTB

AC

DC

G

AC

DC

SSPC

DC

DC

DCDC

DCDC

SSPC

SSPC SSPC

SSPC

SSPC

Advanced MEA System Architecture (only DC)

Avionics

G

SSPC

AC

DC

GA

CD

C

SSPC

Engine #1 Engine #2

Loads 270 VDC:- Ice Protection-Galleys-Fuel pumps-Forward Cargo AC- ICS-ECS/Pressurization-ECS Fans- Hydraulics-Cooling

ATA 24 AEA Evolution circa 2025 (mod. risk)

02.09.2013 Seite 19 Future of [More] Electrical Aircraft,

Source: Vratny, 2012

Page 20: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

ATA 24 AEA Evolution circa 2035 (higher risk)

02.09.2013 Seite 20 Future of [More] Electrical Aircraft,

Source: Pornet et al., AIAA 2013

540 VDC non-essential 28 VDC non-essential

28 VDC vital

28 VDC essentialDCDC

SSPC

BTB

BTB

BTB

SS

PC

Avionics

540 VDC essential

SS

PC

DCDC

SSPC

G1

SS

PC

AC

DC

G2

SS

PC

AC

DC

SS

PC

SSPCSSPC

DC

DC

Subsystems #1 Subsystems #2

SSPC

540 VDC essentialGPU.

Fuel Cell

540 VDC non-essential

DCDC

G

ACDC

Converter

Rectifier

Solid State Power Controller /

Bus Tie Breaker

Engine Generator

Battery

Page 21: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Combining Energy Sources for Motive Power

02.09.2013 Seite 21 Future of [More] Electrical Aircraft,

Alternative Figures-of-Merit

Thrust Specific Power Consumption

Energy Specific Air Range

E-Motor

PT

ICE

PFuel PElectric

PInflow

POutflow PShaft

PThrust

Hybrid Cycle Engine

ICE = Internal Combustion Engine, PT = Power Turbine

Pro

pu

lsiv

e D

evic

e

Pro

pu

lsiv

e D

evic

e

E-Motor

PThrust PInflow

POutflow

PShaft

PSupply = PElectric

Fully Electric Propulsion

ICE

PT

PThrust PInflow

POutflow

PShaft

PSupply = PFuel

Gas Turbine Engine

ICE = Internal Combustion Engine, PT = Power Turbine

Pro

pu

lsiv

e D

evic

e

100% usable energy ~60% usable energy

prtrecov

VV

F

PTSPC

00

0

supply

gm

DL

gmTSPC

DLV

dE

dRESAR

CA

ov

CA

//

0

Source: Schmitz, 2012 & Seitz et al., DLRK 2012

Page 22: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Hybrid-Energy Engineering for Motive Power

02.09.2013 Seite 22

Serial Hybrid Solutions

Parallel Hybrid Solutions

DC

Controller

AC

Controller

G

M

ACDC

AC

Controller

+-

M/G

AC

Controller

ACDC DC

Controller

+-

Future of [More] Electrical Aircraft,

DC

Controller

DC

Controller

M

+-

Controller

M/G

AC

Controller

ACDC DC

Controller

Page 23: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Hybrid-Energy Aircraft Study

Medium-range Single-Aisle

Reference aircraft EIS 2035

180 PAX with max range of 3300 nm

Retrofit Hybrid Aircraft concept

Installation of advanced elec. system

Battery energy density 1500 Wh/kg

No-resizing of the combustion engines

MTOW and OMLs kept fixed

Performance outcomes

Max PAX Range -530 nm (-16%)

900 nm stage length

Cruise-only: -13% block fuel

Climb and Cruise: -16% block fuel

Up to -3% ESAR drop Ref. Retrofit

02.09.2013 Seite 23 Future of [More] Electrical Aircraft,

-13%

-16%

Source: Pornet et al., AIAA 2013

Page 24: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Zero-emissions Concept – The Ce-Liner

02.09.2013 Seite 24 Future of [More] Electrical Aircraft,

Page 25: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

540 VDC non-essential 28 VDC non-essential

28 VDC vital

28 VDC essentialMotor Bus 540 VDC essential

540 VDC Flight Controls 540 VDC Flight ControlsBCU BCU

BCU

ACDC

ACDC

Hot. Bat

DCDC

DCDC

DCDC

BCU BCU

BCU

DCDC

GPU.

SSPC

SSPC

SSPC

SSPC

SSPC

BT

BB

TB

BT

B

SS

PC

SS

PC

SS

PC

SS

PC

SS

PC

SS

PC

SS

PC

SS

PC

SS

PC

SS

PC

SS

PC

SS

PC

SS

PC

Propulsion System Subsystems Avionics

Universally-Electric Systems Architecture

02.09.2013 Seite 25 Future of [More] Electrical Aircraft,

Source: Isikveren et al., 2013

Page 26: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Power and Battery Performance Profiles

02.09.2013 Seite 26 Future of [More] Electrical Aircraft,

0 50 100 150 200 2500

5

10

15

20

25

30

35

Time [min]

Sh

aft P

ow

er

De

ma

nd

[M

W]

Ta

xi-O

ut

& T

ake

-Off

&T

ake

-Off

Cruise Cli

mb

Des

cen

t

Ho

ld

Div

ersi

on

La

nd

ing

& T

axi

-In

0 50 100 150 200 2500

20

40

60

80

100

State of Charge of of the Ce-Liner Battery

Sta

te o

f C

ha

rge

[%

]

Time [min]

0 50 100 150 200 2502700

2800

2900

3000

3100

3200

3300

Voltage of

of the Ce-Liner Battery

Vo

lta

ge

[V

]

Time [min]

0 50 100 150 200 2500

100

200

300

400

500

600

700

800

900

1000

Electric Current and Discharge Rate of

of the Ce-Liner Battery

Ele

ctr

ic C

urr

en

t [A

]

Time [min]0 50 100 150 200 250

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CR

ate

[1

/h]

0 50 100 150 200 25096.5

97

97.5

98

98.5

99

99.5

100

Efficiency Development of

of the Ce-Liner Battery

Effic

ien

cy [%

]

Time [min]

Ta

xi-O

ut

&T

ake

-Off

&T

ake

-Off

Cruise Cli

mb

Des

cen

t

Ho

ld

La

nd

ing

& T

axi

-In

Div

ersi

on

Ta

xi-O

ut

&T

ake

-Off

&T

ake

-Off

Cruise

Cli

mb

Des

cen

t

Ho

ld

La

nd

ing

& T

axi

-In

Div

ersi

on

Ta

xi-O

ut

&T

ake

-Off

&T

ake

-Off

Cruise

Cli

mb

Des

cen

t

Ho

ld

La

nd

ing

& T

axi

-In

Div

ersi

on

Ta

xi-O

ut

&T

ake

-Off

Cruise Cli

mb

Des

cen

t

Ho

ld

La

nd

ing

& T

axi

-In

Div

ersi

on

0 50 100 150 200 2500

20

40

60

80

100

State of Charge of of the Ce-Liner Battery

Sta

te o

f C

ha

rge

[%

]

Time [min]

0 50 100 150 200 2502700

2800

2900

3000

3100

3200

3300

Voltage of

of the Ce-Liner Battery

Vo

lta

ge

[V

]

Time [min]

0 50 100 150 200 2500

100

200

300

400

500

600

700

800

900

1000

Electric Current and Discharge Rate of

of the Ce-Liner Battery

Ele

ctr

ic C

urr

en

t [A

]

Time [min]0 50 100 150 200 250

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CR

ate

[1

/h]

0 50 100 150 200 25096.5

97

97.5

98

98.5

99

99.5

100

Efficiency Development of

of the Ce-Liner Battery

Effic

ien

cy [%

]

Time [min]

Ta

xi-O

ut

&T

ake

-Off

&T

ake

-Off

Cruise Cli

mb

Des

cen

t

Ho

ld

La

nd

ing

& T

axi

-In

Div

ersi

on

Ta

xi-O

ut

&T

ake

-Off

&T

ake

-Off

Cruise

Cli

mb

Des

cen

t

Ho

ld

La

nd

ing

& T

axi

-In

Div

ersi

on

Ta

xi-O

ut

&T

ake

-Off

&T

ake

-Off

Cruise

Cli

mb

Des

cen

t

Ho

ld

La

nd

ing

& T

axi

-In

Div

ersi

on

Ta

xi-O

ut

&T

ake

-Off

Cruise Cli

mb

Des

cen

t

Ho

ld

La

nd

ing

& T

axi

-In

Div

ersi

on

0 50 100 150 200 2500

20

40

60

80

100

State of Charge of of the Ce-Liner Battery

Sta

te o

f C

ha

rge

[%

]

Time [min]

0 50 100 150 200 2502700

2800

2900

3000

3100

3200

3300

Voltage of

of the Ce-Liner Battery

Vo

lta

ge

[V

]

Time [min]

0 50 100 150 200 2500

100

200

300

400

500

600

700

800

900

1000

Electric Current and Discharge Rate of

of the Ce-Liner Battery

Ele

ctr

ic C

urr

en

t [A

]

Time [min]0 50 100 150 200 250

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CR

ate

[1

/h]

0 50 100 150 200 25096.5

97

97.5

98

98.5

99

99.5

100

Efficiency Development of

of the Ce-Liner Battery

Effic

ien

cy [%

]

Time [min]

Ta

xi-O

ut

&T

ake

-Off

&T

ake

-Off

Cruise Cli

mb

Des

cen

t

Ho

ld

La

nd

ing

& T

axi

-In

Div

ersi

on

Ta

xi-O

ut

&T

ake

-Off

&T

ake

-Off

Cruise

Cli

mb

Des

cen

t

Ho

ld

La

nd

ing

& T

axi

-In

Div

ersi

on

Ta

xi-O

ut

&T

ake

-Off

&T

ake

-Off

Cruise

Cli

mb

Des

cen

t

Ho

ld

La

nd

ing

& T

axi

-In

Div

ersi

on

Ta

xi-O

ut

&T

ake

-Off

Cruise Cli

mb

Des

cen

t

Ho

ld

La

nd

ing

& T

axi

-In

Div

ersi

on

Source: Vratny et al., CEAS 2013

Page 27: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Benchmarking Ce-Liner

Aircraft Properties Units Ce-Liner B787-3+ ∆ (B787-3+)

MTOW [kg] 109300 73700 +49.1%

MLW [kg] 109300 70360 N/A

OEW / MTOW [%] 54.4 65.4 -16.8%

OWE / PAX kg/PAX 314 253 +24.0%

Max Energy(Fuel) Weight / MTOW [%] 27.5 24.3 +13.2%

Reference Area (Sref) [m²] 172.3 115.2 +49.6%

Aspect Ratio (planar wing) [-] 7.1 10.8 -34.2%

MTOW / Sref [kg/m²] 635 636 ~0.0%

Power / MTOW [kW/kg] 0.407 N/A N/A

Thrust / MTOW (M0.20, SL) [-] 0.233 0.310 -24.8%

TOFL@ISA,SL [m] 2245 1830 +22.7%

LFL@ISA,SL [m] 1875 1770 +5.9%

Approach Speed (MLW) KCAS 149 146 +2.1%

Des.Range, LRC, ICA, Max-PAX [nm] 900 nm, M0.75, FL330

(L/D) @ LRC, TOC, ISA+10C (-) 20.5 18.4 +11.4%

ESAR, 900 nm, LRC, ISA+10C [km/kWh] 0.0473 0.0374 +26.4%

02.09.2013 Future of [More] Electrical Aircraft, Seite 27

Page 28: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Operational Aspects and Performance

Loadability and Turn-around

Little flexibility for manipulating

loading loops

Specialised procedures for handling

heavy 3Cs and high voltages

Less autonomy during turn-around

Abnormal Mode Performance

PMAD system driven limitations

OEI during en route conditions – no

change in SEP, buffet limitations

Impact of actual operating ambient

conditions plus EMI/HIRF effects

Servicing and Maintenance

Specialised procedures when handling

power electronic systems

Greatly improved MTBF, MTBUR

Need to maximise component/sub-

system DSGs

Normal Mode En route Perform.

Simpler flight planning, “low-and-

slow” design is not inevitable

Fixed SEP, no step-cruise

“Stepped” payload-range trade

Lower noise attributes

02.09.2013 Future of [More] Electrical Aircraft, Seite 28

Page 29: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Design and Integration of Adaptive Top-Wing

Critical trim/control cases

Cruise, take-off rotation, landing de-

rotation and go-around

Variable stiffness, adaptive

hybrid-compliant system

02.09.2013 Seite 29 Future of [More] Electrical Aircraft,

Structural Health Monitoring

Utilised for maintenance scheduling

and actuation monitoring

Specially embedded OFDR and

adoption of so-called „smart skin“

-0,32-0,30-0,28-0,26-0,24-0,22-0,20-0,18-0,16-0,14-0,12-0,10-0,08-0,06-0,04-0,020,000,020,040,060,080,100,120,140,160,180,200,220,240,260,280,300,32

EMC + MorphCore Skin,

bonded to stringers, spars

and leading edge

WS11 – 8% camber

(max. low-speed set.)

WS10 – 8% camber

WS05 – 5% camber

(max. en route set.)

WS04 – 3% camber

WS00 – 1% camber

(neutral setting)

Front Spar (CFRP)

Auxiliary Spar (CFRP)

Plain Flap (CFRP)

neutral setting shown

Warren Girder (CFRP)

between all adaptive ribs

Electro-strictive

Inchworm Actuator,

5-off per rib

Stringers (Al 7000-

series), also mounting

for all fixed joints

along periphery

Port TW Root

Port TW Tip

Fixed leading edge as

inner lining (CFRP)

Articulated pins joints,

7-off per rib

Complaint hinge,

6-off at each sparTruss member

(Al 7000-series)

Complaint hinge,

2-off upper and

lower lining

1% camber (neutral setting)

8% camber (max. low-speed setting)

Source: Lorenz et al., IWSHM 2013

Page 30: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Engineering Trade-study: EF vs EOR

1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 22001700

1800

1900

2000

2100

2200

2300

2400

2500

2600

Study Settings:

Transport Task: 189Pax, 900nm

Technology Status: EIS 2035

Cruise Conditions: ISA, FL330, M0.75

T/O Conditions: ISA, SL, M0.2

Max. Wing Loading 634kg/m2

Aircraft Thrust/Weight at T/O: 0.233 (AEO), 0.178 (OEI)

DProp

at Optimum for max. ESAR at TOC

Vtip,des,Fan

at Optimum for max. ESAR at TOC

Max. Nozzle Area Extension for EF at T/O: 15%

Required Battery Energy Density (EDBatt,req

) [Wh/kg]

Re

qu

ire

d B

att

ery

Po

we

r D

en

sity (

PD B

att

,re

q)

[W/k

g]

[-]

02.09.2013 Seite 30 Future of [More] Electrical Aircraft,

1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 22001700

1800

1900

2000

2100

2200

2300

2400

2500

2600

360 @ 2.20

337 @ 2.30

319 @ 2.40

303 @ 2.50

290 @ 2.60

278 @ 2.70

268 @ 2.80259 @ 2.90

250 @ 3.00

243 @ 3.10

Optimum Vtip,des,Fan

[m/s]

@ D

Fan [m]

Electric Fan (EF)

Powered Aircraft

4.66 @ 180

4.48 @ 200

4.37 @ 220

4.30 @ 240

Optimum DProp

[m] @ Vtip,Prop

[m/s]

Electric Open Rotor (EOR)

Powered Aircraft

Study Settings:

Transport Task: 189Pax, 900nm

Technology Status: EIS 2035

Cruise Conditions: ISA, FL330, M0.75

T/O Conditions: ISA, SL, M0.2

Max. Wing Loading 634kg/m2

Aircraft Thrust/Weight at T/O: 0.233 (AEO), 0.178 (OEI)

DProp

at Optimum for max. ESAR at TOC

Vtip,des,Fan

at Optimum for max. ESAR at TOC

Max. Nozzle Area Extension for EF at T/O: 15%

Required Battery Energy Density (EDBatt,req

) [Wh/kg]

Required B

attery

Pow

er

Density (

PD

Ba

tt,r

eq)

[W/k

g] [-

]

1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 22001700

1800

1900

2000

2100

2200

2300

2400

2500

2600

360 @ 2.20

337 @ 2.30

319 @ 2.40

303 @ 2.50

290 @ 2.60

278 @ 2.70

268 @ 2.80259 @ 2.90

250 @ 3.00

243 @ 3.10

Optimum Vtip,des,Fan

[m/s]

@ D

Fan [m]

Electric Fan (EF)

Powered Aircraft

4.66 @ 180

4.48 @ 200

4.37 @ 220

4.30 @ 240

Optimum DProp

[m] @ Vtip,Prop

[m/s]

Electric Open Rotor (EOR)

Powered Aircraft

Study Settings:

Transport Task: 189Pax, 900nm

Technology Status: EIS 2035

Cruise Conditions: ISA, FL330, M0.75

T/O Conditions: ISA, SL, M0.2

Max. Wing Loading 634kg/m2

Aircraft Thrust/Weight at T/O: 0.233 (AEO), 0.178 (OEI)

DProp

at Optimum for max. ESAR at TOC

Vtip,des,Fan

at Optimum for max. ESAR at TOC

Max. Nozzle Area Extension for EF at T/O: 15%

Required Battery Energy Density (EDBatt,req

) [Wh/kg]

Required B

attery

Pow

er

Density (

PD

Ba

tt,r

eq)

[W/k

g] [-

]

–10.8%

–3.9%

Source: Seitz et al., JPC 2013

Page 31: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Engineering Trade-study: Propulsive Fuselage

02.09.2013 Seite 31 Future of [More] Electrical Aircraft,

Source: Steiner et al., ICAS 2012

A: Classic podded power plant arrangement w/o fuselage wake-filling

B: Geometrically uncontrained propulsive fuselage device applied to overall aircraft thrust requirements including ideal fuselage wake-filling

C: Propulsive fuselage device applied to overall aircraft thrust requirements including ideal fuselage wake-filling under geometric constraints

D: Propulsive fuselage device applied to ideal fuselage wake-filling only, required residual aircraft thrust provided by podded power plants

Fuselage boundary layerLegend:

Propulsion system jet flow field

Jet momentum equivalent for ideal fuselage wake compensation

Jet momentum equivalent for aircraft residual thrust requirement

V0Vw(x,z) V0+ΔVP

z

x

Source: Van Dyck, 2012

Source: adapted from Seitz & Gologan, CEAS 2013 A: Classic podded power plant arrangement w/o fuselage wake-filling

B: Geometrically uncontrained propulsive fuselage device applied to overall aircraft thrust requirements including ideal fuselage wake-filling

C: Propulsive fuselage device applied to overall aircraft thrust requirements including ideal fuselage wake-filling under geometric constraints

D: Propulsive fuselage device applied to ideal fuselage wake-filling only, required residual aircraft thrust provided by podded power plants

Fuselage boundary layerLegend:

Propulsion system jet flow field

Jet momentum equivalent for ideal fuselage wake compensation

Jet momentum equivalent for aircraft residual thrust requirement

V0Vw(x,z) V0+ΔVP

z

x

Page 32: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Key Observations and Future Research Work

Key Observations

To realise Flightpath 2050 goals for emissions a hybrid-energy approach is necessary

MEA-AEA evolution will not be sufficient some means of electrical energy generation

and/or storage for propulsion is key

Indications that single energy storage approach will be limiting for commercial transportation

Short-haul operations Universally-Electric solution

Medium-to-long-haul operations Hybrid-Electric solution

Even with relatively aggressive specifc weights, electrification yields significant degradation

in vehicular efficiency distributed propulsion and advanced, active wings could offset this

Future Research Work

Hybrid Electrical Power Systems – dual energy storage approach

Integration schemes that accommodate retro-fit/upgrades between UESA and HE

without extensive re-design

02.09.2013 Seite 32 Future of [More] Electrical Aircraft,

Page 33: The future of more electrical aircraft

Alle Rechte bei / All rights with Bauhaus Luftfahrt

Contact

Bauhaus Luftfahrt e.V.

Lyonel-Feininger-Strasse 28

80807 Munich

Germany

Tel.: +49 (0) 89 3 07 48 49 - 0

Fax: +49 (0) 89 3 07 48 49 - 20

[email protected]

http://www.bauhaus-luftfahrt.net

02.09.2013 Seite 33 Future of [More] Electrical Aircraft,