The Finite Element Method for Three-Dimensional ... Finite Element Method for Three-dimensional Thermomechanical Applications Guido Dhondt Munich, Germany

  • View
    220

  • Download
    3

Embed Size (px)

Text of The Finite Element Method for Three-Dimensional ... Finite Element Method for Three-dimensional...

  • The Finite ElementMethod for Three-dimensionalThermomechanical Applications

    Guido Dhondt

    Munich, Germany

    Innodata0470857625.jpg

  • The Finite ElementMethod for Three-dimensionalThermomechanical Applications

  • The Finite ElementMethod for Three-dimensionalThermomechanical Applications

    Guido Dhondt

    Munich, Germany

  • Copyright 2004 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,West Sussex PO19 8SQ, England

    Telephone (+44) 1243 779777

    Email (for orders and customer service enquiries): cs-books@wiley.co.ukVisit our Home Page on www.wileyeurope.com or www.wiley.com

    All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmittedin any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, exceptunder the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by theCopyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission inwriting of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, JohnWiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed topermreq@wiley.co.uk, or faxed to (+44) 1243 770620.

    This publication is designed to provide accurate and authoritative information in regard to the subject mattercovered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. Ifprofessional advice or other expert assistance is required, the services of a competent professional should besought.

    Other Wiley Editorial Offices

    John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

    Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

    Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

    John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

    John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

    John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

    Wiley also publishes its books in a variety of electronic formats. Some content that appearsin print may not be available in electronic books.

    British Library Cataloguing in Publication Data

    A catalogue record for this book is available from the British Library

    ISBN 0-470-85752-8

    Produced from LaTeX files supplied by the author, typeset by Laserwords Private Limited, Chennai, IndiaPrinted and bound in Great Britain by Antony Rowe Ltd, Chippenham, WiltshireThis book is printed on acid-free paper responsibly manufactured from sustainable forestryin which at least two trees are planted for each one used for paper production.

    http://www.wileyeurope.comhttp://www.wiley.com

  • To my wife Barbara and my children Jakob and Lea

  • Contents

    Preface xiii

    Nomenclature xv

    1 Displacements, Strain, Stress and Energy 11.1 The Reference State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 The Spatial State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3 Strain Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91.4 Principal Strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131.5 Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191.6 Objective Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221.7 Balance Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    1.7.1 Conservation of mass . . . . . . . . . . . . . . . . . . . . . . . . . 251.7.2 Conservation of momentum . . . . . . . . . . . . . . . . . . . . . . 251.7.3 Conservation of angular momentum . . . . . . . . . . . . . . . . . . 261.7.4 Conservation of energy . . . . . . . . . . . . . . . . . . . . . . . . 261.7.5 Entropy inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 271.7.6 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    1.8 Localization of the Balance Laws . . . . . . . . . . . . . . . . . . . . . . . 281.8.1 Conservation of mass . . . . . . . . . . . . . . . . . . . . . . . . . 281.8.2 Conservation of momentum . . . . . . . . . . . . . . . . . . . . . . 291.8.3 Conservation of angular momentum . . . . . . . . . . . . . . . . . . 311.8.4 Conservation of energy . . . . . . . . . . . . . . . . . . . . . . . . 311.8.5 Entropy inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    1.9 The Stress Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311.10 The Balance Laws in Material Coordinates . . . . . . . . . . . . . . . . . . 34

    1.10.1 Conservation of mass . . . . . . . . . . . . . . . . . . . . . . . . . 351.10.2 Conservation of momentum . . . . . . . . . . . . . . . . . . . . . . 351.10.3 Conservation of angular momentum . . . . . . . . . . . . . . . . . . 371.10.4 Conservation of energy . . . . . . . . . . . . . . . . . . . . . . . . 371.10.5 Entropy inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    1.11 The Weak Form of the Balance of Momentum . . . . . . . . . . . . . . . . 381.11.1 Formulation of the boundary conditions (material coordinates) . . . 381.11.2 Deriving the weak form from the strong form (material coordinates) 391.11.3 Deriving the strong form from the weak form (material coordinates) 411.11.4 The weak form in spatial coordinates . . . . . . . . . . . . . . . . . 41

    1.12 The Weak Form of the Energy Balance . . . . . . . . . . . . . . . . . . . . 421.13 Constitutive Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

  • viii CONTENTS

    1.13.1 Summary of the balance equations . . . . . . . . . . . . . . . . . . 431.13.2 Development of the constitutive theory . . . . . . . . . . . . . . . . 44

    1.14 Elastic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471.14.1 General form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471.14.2 Linear elastic materials . . . . . . . . . . . . . . . . . . . . . . . . . 491.14.3 Isotropic linear elastic materials . . . . . . . . . . . . . . . . . . . . 521.14.4 Linearizing the strains . . . . . . . . . . . . . . . . . . . . . . . . . 541.14.5 Isotropic elastic materials . . . . . . . . . . . . . . . . . . . . . . . 58

    1.15 Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    2 Linear Mechanical Applications 632.1 General Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632.2 The Shape Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    2.2.1 The 8-node brick element . . . . . . . . . . . . . . . . . . . . . . . 682.2.2 The 20-node brick element . . . . . . . . . . . . . . . . . . . . . . 692.2.3 The 4-node tetrahedral element . . . . . . . . . . . . . . . . . . . . 712.2.4 The 10-node tetrahedral element . . . . . . . . . . . . . . . . . . . 722.2.5 The 6-node wedge element . . . . . . . . . . . . . . . . . . . . . . 732.2.6 The 15-node wedge element . . . . . . . . . . . . . . . . . . . . . . 73

    2.3 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752.3.1 Hexahedral elements . . . . . . . . . . . . . . . . . . . . . . . . . . 762.3.2 Tetrahedral elements . . . . . . . . . . . . . . . . . . . . . . . . . . 782.3.3 Wedge elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782.3.4 Integration over a surface in three-dimensional space . . . . . . . . 81

    2.4 Extrapolation of Integration Point Values to the Nodes . . . . . . . . . . . . 822.4.1 The 8-node hexahedral element . . . . . . . . . . . . . . . . . . . . 832.4.2 The 20-node hexahedral element . . . . . . . . . . . . . . . . . . . 842.4.3 The tetrahedral elements . . . . . . . . . . . . . . . . . . . . . . . . 862.4.4 The wedge elements . . . . . . . . . . . . . . . . . . . . . . . . . . 86

    2.5 Problematic Element Behavior . . . . . . . . . . . . . . . . . . . . . . . . . 862.5.1 Shear locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872.5.2 Volumetric locking . . . . . . . . . . . . . . . . . . . . . . . . . . . 872.5.3 Hourglassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

    2.6 Linear Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912.6.1 Inclusion in the global system of equations . . . . . . . . . . . . . . 912.6.2 Forces induced by linear constraints . . . . . . . . . . . . . . . . . 96

    2.7 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 972.8 Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

    2.8.1 Centrifugal loading . . . . . . . . . . . . . . . . . . . . . . . . . . . 1032.8.2 Temperature loading . . . . . . . . . . . . . . . . . . . . . . . . . . 104

    2.9 Modal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062.9.1 Frequency calculation . . . . . . . . . . . . . . . . . . . . . . . . . 1062.9.2 Linear dynamic analysis . . . . . . . . . . . . . . . . . . . . . . . . 1082.9.3 Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

    2.10 Cyclic Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1142.11 Dynamics: The -Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

  • CONTENTS ix

    2.11.1 Implicit formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 1202.11.2 Extension to nonlinear applications . . . . . . . . . . . . . . . . . . 1232.11.3 Consistency and accuracy of the implicit formulation . . . . . . . . 1262.11.4 Stability of the implicit scheme . . . . . . .