39
C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 1 The ANTARES Underwater Neutrino Telescope C.W. James, ECAP, University of Erlangen, on behalf of the ANTARES collaboration.

The ANTARES Underwater Neutrino Telescope

  • Upload
    kevlyn

  • View
    40

  • Download
    2

Embed Size (px)

DESCRIPTION

The ANTARES Underwater Neutrino Telescope. C.W. James, ECAP, University of Erlangen, on behalf of the ANTARES collaboration. Cosmic rays and neutrinos. What produces this spectrum? Standard model: acceleration at relativistic astrophysical shocks. R. Shellard , Braz. J. Phys 31 (2001) . - PowerPoint PPT Presentation

Citation preview

Page 1: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 1

The ANTARES Underwater Neutrino Telescope

C.W. James, ECAP, University of Erlangen,

on behalf of the ANTARES collaboration.

Page 2: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 2

Cosmic rays and neutrinos

• What produces this spectrum?

• Standard model: acceleration at relativistic astrophysical shocks

R. Shellard, Braz. J. Phys 31 (2001)

Page 3: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 3

Why look for neutrinos?• Flux unattenuated over cosmological distances

Image courtesy of NRAO/AUI Nature 432 (2004) 75 Image courtesy of

NRAO/AUI

• Travel in straight lines (unlike cosmic rays)• Signatures of hadronic processes in the high-energy universe

SNR AGN jets and lobes GRB

NASA/Swift/Stefan Immler

Page 4: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 4

Quick note: these are not Solar neutrinos!

• Production via cosmic-ray (~proton) interactions with:

• Much rarer than solar neutrinos – but more energetic (GeV-PeV: not MeV)– νμ and ντ CC interactions possible

low E proton

Hadronic matter (interstellar gas) Photon fields (CMB)

Page 5: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 5

m

42°

interaction

Earth’s crust(sea floor; Antarctic continent)

Cherenkov light from m

3D PMTarray

nm

Main detection channel: nm CC interactions (nm NC, and ne and n also).

Detection Principle

nm

p

nm

nmmp, a

5

Optically transparent material(water; deep ice)

Page 6: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 6

Let’s build it!

Page 7: The ANTARES Underwater Neutrino Telescope

7

CPPM, Marseille DSM/IRFU/CEA, Saclay APC, Paris LPC, Clermont-Ferrand IPHC, Strasbourg Univ. de H.-A., Mulhouse LAM, MarseilleCOM, MarseilleGeoAzur Villefranche INSU-Division Technique

Univ./INFN of Bari Univ./INFN of Bologna Univ./INFN of Catania LNS–Catania Univ./INFN of Pisa Univ./INFN of Rome Univ./INFN of Genova

IFIC, Valencia UPV, Valencia UPC, Barcelona

NIKHEF, Amsterdam Utrecht KVI Groningen NIOZ Texel

ITEP,Moscow Moscow State Univ

University of Erlangen• Bamberg Observatory• Univ. of Wurzeburg

ISS, Bucarest

8 countries31 institutes~150 scientists+engineers LPRM, Oujda

The ANTARES Collaboration

Page 8: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 8

ANTARES: Location

• 40km off the coast of Toulon

Page 9: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 9

V. B

ertin

- CP

PM -

AREN

A'08

@ R

oma

The ANTARES detector

70 m

450 m

JunctionBox

Interlink cables

40 km toshore

2500m• 12 lines • 25 storeys/line• 3 PMTs / storey• 885 10-inch PMTs• 10-20 Mton volume

Page 10: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 10

Sample events

• Maximum-likelihood fit to recorded photon hit times

http://www.pi1.physik.uni-erlangen.de/antares/online-display/online-display.php

Page 11: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 11

ANTARES ‘visibility’

• ANTARES at 43o N• Sensitive to the Southern sky• Includes the Galactic Centre

Mkn 501

RX J1713.7-39

GX339-4SS433

CRAB

VELA

GalacticCentre

Visible

Invisible

ANTARES: 43o N

Never visible

Always visible

Incr

easi

ng se

nsiti

vity

Page 12: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 12

n

m

ANTARES performance: angular resolution

• ~50% events reconstruct to better than 0.5o

• ~99% reconstruct to better than 10o

• Energy reconstruction is much harder (most is not ‘seen’)

Page 13: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 13

Muon and neutrino backgrounds

• Remove atmospheric muon background with quality cuts

• CR neutrino background irreducible

1% misreconstruction

from below from above

pnmmp, a

Muo

n flu

x at

250

0m d

epth Look for an

excess here!

Page 14: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 14

Science with ANTARES

• High-energy Neutrino Astrophysics– Galactic sources: SN & SNR, micro-quasars, CR in molecular clouds– Extra-galactic sources: AGN, GRB, GZK processes

• Search for new physics:– Dark matter annihilation, nuclearites, monopoles

• Earth sciences:– Oceanography, marine biology, seismology, environment monitoring…

GeV-100 GeV GeV-TeV TeV-PeV PeV-EeV > EeV

Oscillations DM SNR, μQSO AGN Exotics, GZK Marine biology

GUT???

Page 15: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 15

Results!

Page 16: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 16

All-sky point-source search

• Sky map in equatorial coordinates:– 2007-2010 data (813 days livetime)– 3058 candidates after cuts: expect 14% down-going muon contamination

Most significant cluster: 2.2σ

No strong evidence for a point-source excess

Page 17: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 17

Search from suspected sources

• 51 pre-defined ‘suspect’ sources (mostly based on gamma-ray flux and visibility)

• Top 11 sources: most significant first

WR20a & b: hot, massive stars

HESS, Astronomy & Astrophysics 467 (2007) 1075

Page 18: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 18

Neutrinos from gamma-ray bursts

• ‘Fireball’ model for GRBs:

– Explains long-duration bursts– Predicts neutrinos!

• Search criteria:– Direction (2o from source)– Time (~1 minute)– Upcoming events only

• Results from 2007 data (40 GRBs): no detection

Page 19: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 19

Neutrino Oscillations

• Two-flavour mixing approximation:

– Measureable: ‘Unknown’: – World data: 1st minimum at , (120 m max muon range)

• Expectations for 863 days’ data:

Events seen with two lines

Events seen with one line

No oscillations

Best world data

Page 20: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 20

Oscillation analysis: results

• After a Chi2 minimisation to and two systematic variables:

– 1st measurement of its type– Accepted July 2nd by Physics Letters B– Promising for next-generation larger detectors

DataNo oscillations

Best fit

Combined single and multi-line data ANTARESK2K

MINOSSuper-K

68% C.L.

90% C.L.

Page 21: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 21

Search for Dark Matter Annihilation in the Sun

21

nPRELIMINARY

Angular distance from sun

• Lack of excess: => model limits (apologies: I do not have these plots here!)

• A search for an excess from the galactic centre is ongoing

Page 22: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 22

Search for magnetic monopoles

• Relativistic monopoles emit VC radiation– 8550 times brighter than a muon– Look for extremely bright events!

• ANTARES search space– Relativistic – ‘intermediate mass’ (< 1014 GeV)

• Search performed on data from 2008:– 1 event– 0.13 bkgd– 1.5 σ significance

Page 23: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 23

Multi-Messenger astronomy

Alerts

• Strategy:– Increase discovery potential (different probes)– Increase significance via coincidence

• Ligo/Virgo (grav. waves)– Dedicated analysis chain– GW trigger • GCN (GRB)

– Global burst network– GRB burst alert– ANTARES trigger and

coincident analysis

• TAROT (optical)– Follow-up search for SN– 10s repositioning

Page 24: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 24

Summary

• ANTARES underwater neutrino telescope:– Largest neutrino telescope in the Northern Hemisphere– Proven ability to detect neutrino-induced muons– Good performance in bread & butter science: neutrino astrophysics– Sensitivity optimised for the galactic centre region

• Diverse physics program:– Dark matter– Neutrino oscillations– Exotics (magnetic monopoles, nuclearites)

• Entering ‘mature’ phase:– First round of results published (~1 year’s data)– Analyses on 3+ years of 12-line data in progress– More results on their way!

Page 25: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 25

EXTRA SLIDES

(in case of tricky questions)

Page 26: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 26

Background and diffuse flux sensitivity

• High energies favour source spectra– Background from atmospheric neutrinos: Enu

-3.7

– Sources: order Enu-2

• Look for a high-energy excess!E2F(E)90%= 5.3×10-8 GeV cm-2 s-1 sr-1

20 TeV<E<2.5 PeVEnergy estimation: the ‘R’ parameter

Limits on an E-2 flux

Page 27: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 27

Standard data pipeline

• ‘hit’: send PMT data to shore when one or more photons are observed

• Raw data rate: too high to record• Trigger: Record data to disk if it looks `interesting’.• Standard trigger requirements:

– Large ( ) hits OR hits on neighbouring PMTs (600 Hz)– Clusters of >=5 hits– Trigger hits must be causally connected

• Many other triggers (GRB alert, monitoring info, GC etc)

Threshold: 0.3 Vphoton

PMT voltage

25 ns integration

Shore triggering and data acquisition

Page 28: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 28

Candidate List Search – 90%CL Flux Limits

28

Assumes E-2 flux for a possible signal

ANTARES 2007-2010 813 days

ANTARES has the most stringent limits for the Southern Sky

Page 29: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 29

• Bioluminescence: large seasonal fluctuations– Bacteria– Vertebrates

Optical Background

• Potassium 40 decay: constant background

Image courtesyWolfram Alpha

Spring 2006 Spring 2007

Page 30: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 30

Trigger effective area

• (preliminary plot: officially updated version will be out shortly)

Page 31: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 31

Data reduction for point-source search

• Cut on angular-error estimate, and on fit quality

Page 32: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 32

Resolution: use the Moon’s shadow

• The Moon blocks CR: expect reduction in the upcoming-event rate

• 884 days’ livetime• 2.7 sigma defecit• Agrees with Monte Carlo expectations

Page 33: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 33

Sea currents and acoustic positioning

Storey 1Storey 8

Storey 14Storey 20Storey 25

Radial displacement

Measure every 2 min:Distance line bases to 5 storeys/line

and also storeyheadings and tilts

Precision ~ few cms

Page 34: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 34

2006 – 2008: Building phase of the Detector

• Junction box 2001• Main cable 2002• Line 1, 2 2006• Line 3, 4, 5 01 / 2007• Line 6, 7, 8, 9, 10 12 / 2007• Line 11, 12 05 / 2008

~70 m

Page 35: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 35

Search for Neutrinos from Fermi Bubbles

For 100% hadronic models:Fn ~1/2.5 F (Vissani)E2dFn/dE=1.2*10-7 GeV cm-2s-1sr -1

E cutoff protons: 1PeV-10 PeV (Croker&Aharonian)E cutoff neutrinos = 1/20 cutoff protons

Background estimated from average of three ‘OFF’ regions (time shifted in local coordinates)

galactic coords detector coords

Page 36: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 36

Dark Matter Simulation

MAIN

ANNIHILATION

CHANNELS

36

MWIMP = 350 GeV

τ leptons regeneration in the Sun mUED particular case…

Page 37: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 37

Dark matter – detector performance

• ANTARES effective area to muon neutrinos incident on Earth– Most neutrinos do not produce detectable muons– Most muons are very low in energy

Page 38: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 38

Magnetic Monopoles: data reduction

• Magnetic monopoles…– Theoretical prediction (quantisation of charge, guage theories…)– Have not been observed (various limits exist)– Have a magnetic charge g: will emit Vavilov-Cherenkov radiation– VC radiation: 8550 times brighter than that of a muon with similar velocity– Acceleration in cosmic magnetic fields

Page 39: The ANTARES Underwater Neutrino Telescope

C. W. James, The ANTARES Underwater Neutrino Telescope, SEWM, Swansea, 13th July 2012 39

Search for Dark Matter Annihilation in the Sun

39

n

PRELIMINARY

Angular distance from sunPRELIMINARY