13
Testing our ability to accurately measure nitrification rates in the oligotrophic ocean: Does adding ammonium affect the nitrifier community composition? Carly Buchwald Microbial Diversity 2011 Abstract In this mini‐project I’ve tested the effect of adding ammonium on the nitrifying community in coastal seawater. Water was collected from 22 meters from Great Harbor, Woods Hole MA and incubated for 2 days with 3 concentrations of ammonium (0, 0.1 and 5 μM). I found that the nitrifying community significantly changed over the 48 hour time period. Quantitative PCR showed that the there was a shift from 20% AOB to AOA community to an 80% AOB by the end of incubation in the highest ammonium addition. There wasn’t a significant change in the AOB to AOA ratio when no ammonium or 0.1 μM ammonium was added. Although the AOB to AOA ratio did not change there was still a shift in specific species of organisms, shown by DGGE in all three incubations. Clone libraries from the no ammonium addition also showed that a rare group of organisms out numbered the original, more diverse, community within 48 hours. Introduction The most common method for measuring nitrification rates in the ocean is to incubate with seawater with 15 N labeled ammonium for 24‐48 hours and then to measure the 15 N in the nitrite and nitrate produced. This method relies on the ability to add tracer levels of ammonium to not drastically change the chemical environment of the nitrifying community. In many areas of the ocean this is impossible. Ammonium, the most desired nitrogen compound in the ocean, exists in very low abundance in most of the water column. Many oceanographers continue with these rate measurements by adding the small amounts of ammonium, although not trace levels and inevitably they are stimulating the growth of a new and unnatural nitrifying community. Different species of nitrifiers, especially between bacterial and archaeal , have a wide range of affinities towards ammonium. Likely, by adding ammonium to the system we are stimulating the growth of certain species over others (Habbena et al 2009). Historically it has been much easier to isolate ammonia oxidizing bacteria (AOB) because they out grow ammonia oxidizing archaea (AOA) in high levels of ammonium and have a faster growth rate. Although AOA are in higher abundance in oligotrophic seawater because the have a higher affinity for ammonium (Habbena eta al, 2009). In this experiment we will test whether different ammonium additions to oligotrophic seawater will affect the nitrification rate overall as well as the microbial community, specifically the relative abundance of AOA and AOB. Methods

Testing our ability to accurately measure nitrification ...€¦ · Testing our ability to accurately measure nitrification rates ... ammonium affect the nitrifier community composition?

  • Upload
    hamien

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

Testingourabilitytoaccuratelymeasurenitrificationratesintheoligotrophicocean:Doesaddingammoniumaffectthenitrifiercommunitycomposition?

CarlyBuchwaldMicrobialDiversity2011

Abstract

Inthismini‐projectI’vetestedtheeffectofaddingammoniumonthenitrifyingcommunityincoastalseawater.Waterwascollectedfrom22metersfromGreatHarbor,WoodsHoleMAandincubatedfor2dayswith3concentrationsofammonium(0,0.1and5µM).Ifoundthatthenitrifyingcommunitysignificantlychangedoverthe48hourtimeperiod.QuantitativePCRshowedthatthetherewasashiftfrom20%AOBtoAOAcommunitytoan80%AOBbytheendofincubationinthehighestammoniumaddition.Therewasn’tasignificantchangeintheAOBtoAOAratiowhennoammoniumor0.1µMammoniumwasadded.AlthoughtheAOBtoAOAratiodidnotchangetherewasstillashiftinspecificspeciesoforganisms,shownbyDGGEinallthreeincubations.Clonelibrariesfromthenoammoniumadditionalsoshowedthatararegroupoforganismsoutnumberedtheoriginal,morediverse,communitywithin48hours.

Introduction

Themostcommonmethodformeasuringnitrificationratesintheoceanistoincubatewithseawaterwith15Nlabeledammoniumfor24‐48hoursandthentomeasurethe15Ninthenitriteandnitrateproduced.Thismethodreliesontheabilitytoaddtracerlevelsofammoniumtonotdrasticallychangethechemicalenvironmentofthenitrifyingcommunity.Inmanyareasoftheoceanthisisimpossible.Ammonium,themostdesirednitrogencompoundintheocean,existsinverylowabundanceinmostofthewatercolumn.Manyoceanographerscontinuewiththeseratemeasurementsbyaddingthesmallamountsofammonium,althoughnottracelevelsandinevitablytheyarestimulatingthegrowthofanewandunnaturalnitrifyingcommunity.

Differentspeciesofnitrifiers,especiallybetweenbacterialandarchaeal,haveawiderangeofaffinitiestowardsammonium.Likely,byaddingammoniumtothesystemwearestimulatingthegrowthofcertainspeciesoverothers(Habbenaetal2009).Historicallyithasbeenmucheasiertoisolateammoniaoxidizingbacteria(AOB)becausetheyoutgrowammoniaoxidizingarchaea(AOA)inhighlevelsofammoniumandhaveafastergrowthrate.AlthoughAOAareinhigherabundanceinoligotrophicseawaterbecausethehaveahigheraffinityforammonium(Habbenaetaal,2009).

Inthisexperimentwewilltestwhetherdifferentammoniumadditionstooligotrophicseawaterwillaffectthenitrificationrateoverallaswellasthemicrobialcommunity,specificallytherelativeabundanceofAOAandAOB.

Methods

ExperimentalDesign

Forthisexperimentwaterwascollectedfrom22metersusinganiskinbottleonasmallboattiedtothebackoftheWHOIdockonJuly8,2011.5different4Lpolycarbonatebottleswerefilledwithseawater.Table1showsthebottlenamesandconditions.

Table1.

BottleName AddedLabeledAmmonium(µM)1a 0.11b 0.12a 52b 5

Control 0

Labeledammoniumwasaddedtobottlesimmediatelyaftersampling,within1hourofreturningtolaboratory.Thensubsamplesweretakenfromeachbottleinitiallyandat12,24and48hoursaftertheammoniumaddition.Eachsubsampleconsistedoffiltering200mLsplitontotwodifferent0.2µmisoporemembranefiltersandfrozenat‐80˚C.50mLofthefiltratewasalsocollectedformeasuringtheisotopesofnitriteandnitrate.Also15mLofseawaterfixedand3and10mLofwaterwerefilteredonto0.2µmisoporemembranefiltersforcellcounts.Alsobeforetheadditionoflabeledammoniumsampleswastakenformeasuringtheinitialnutrientconcentrations(ammonium,nitrite,andnitrate)oftheseawater.Thebottleswereincubatedinthelaboratory,withatempof22˚C,inthedarkforthe48hours.

DNAandRNAExtraction

Filterswereaddedto15mLfalcontubeswith6mLofextractionbuffer.Extractionbufferwasmadewith0.6mLofastockbuffer(250mMEDTAand100mMTrisHCl),30µLof20%SDS,60µL5MNaClandPCRgradewater.Beadswereaddedandthetubeswerebeadbeatedfor5minutesandthenplaceina60˚Cwaterbath.Afterbeingheatto60˚Ctubesweredroppedinliquidnitrogen.Theywereheatedandfrozen3times.ThelysisbufferwasnowwashedwithPCI(phenolchloroforminisoamylalcohol)andcentrifugedfor10minutesat5000rpm.ThePCIwaspouredoffandthelysisbufferwasaddedtoanewconicaltube.SamplesthatstilllookedcloudyafterfirstwashingwerewashedasecondtimewithPCI.NextthelysisbufferwasaddedtoanAmpliconultra‐4centrifugaldevicetocollecttheDNAonthefilter.TheAmplicontubeswerecentrifugedat3000rpmfor7minutes.Bufferhadtobeaddedmultipletimesbecausenotallthematerialcouldfitintothefiltertube.Oncethebufferwasfilteredthefilterswerewashed3timeswith1XTEcentrifugingbetweeneachwashing.ThevolumeofDNAleftinthetopofthefilterwasmeasuredasitwastransferredintoPCRtubesandputinthefreezer.

TheDNAwasthenrunonageltovisualizethatextractionwassuccessful.TheDNAwasalsothenquantifiedusingPicoGreenandafluorometer.1µLofDNAwasaddedwith198.5µLof1xTEand0.5µLPicoGreen.

QuantitativePCR(qPCR)

DNAsamplesweredilutedtenfoldpriortoPCRreaction.PCRreactionwassetupusingamastermixwhichincludedPicomaxxenzyme,Picomaxxextractionbuffer,SYBRgreen,dNTPs(aconcentrationofdivalentions),magnesiumchloride,DNAandprimers.qPCRwasdoneusing3differentprimers:1)amoAinarchaea,clusterA(Francisetal,2005;BemanandFrancis,2008)2)amoAinbacteria(Rotthauweetal,1997)and3)amoAinarchaea,clusterB(Francisetal,2005;BemanandFrancis,2006).StandardsforeachPCRproductwereobtainedfromCorneliaWuchteratWoodsHoleOceanographicInstitution(WHOI).Theywereplacedinathermocyclerusingatemperatureprogramof95˚Cforinitialmelting,58˚Cforprimerannhiling,72˚Cforprimerextensionand80˚Cforfluorescencemeasurement.Also,inhibitiontestswerecarriedoutwithE.coliandfoundthatthe1/10dilutionofourDNAextractdidnotcauseanyinhibition.

DenaturingGradientGelElectrophoresis(DGGE)andSequencing

DGGEwasperformedintheCoolenlaboratoryatWHOIonaIngenyPhorUsystem.Firsttheacrylimidegelwasmadewithagradientfrom20to70%ureumanddeionizedformamidesolutions.Thegelneeds3to4hourstosetupbeforerunning.TheDGGEchamberisfilledwith1xTAEbufferatpH8.Thegelisloadedwitha5µLofloadingdyeand5µLofthePCRproduct.ThePCRisdonewithaspecialreverseprimerwithaGCclamp.Thegelisrunat60˚Cand200Vforatleast5hours,butupto12hours.

Attheendoftherun,thegelisremovedandstainedfor20minutesusingSYBRgold(2µLin8mL1xTAE).Thenitisdestainedinwaterfor30minutes.Thebandsareviewedandphotographedonadarkreader.

Bandscanbeisolatedandsequencedbycuttingcarefullyandthenplacingin75µLof1xTEatpH8.Thebandsareplaced4˚CovernighttoeluteandthentheproductisreamplifiedusingPCRusingnormalprimers.ThisPCRproductwasthenpurifiedusingtheMinElutesystemandthenquantifiedonthenanodropspectrophotomer.TheDNAwasdilutedto20ng/µLandthensubmittedforSangersequencing.ThesesequencesareanalyzedbyBLASTinglocallytoafunctionalgenedatabaseforamoAdownloadedfromFunGene.

CloneLibraryConstructionandPhylogenicAnalysis

Iattemptedtoconstruct8differentclonelibraries,withonly2beingsuccessful.PCRproductsfromarchaealamoAandbacterialamoAfunctionalgeneprimerswerecutandpurifiedusinggelpurification.The8differentsamplesattemptedweretheinitialtimepointinthecontrolandthe348timepointsin1a,

2aandthecontrol,oneforeachcondition.OncetheDNAwaspurified,4µLofDNAwasaddedtoatubewith1µLofTOPOvectorand1µLofsaltsolution.Thesetubeswereallowedtositatroomtemperaturefor15‐30minutes.Then2µLoftheDNAmixturewasaddedto70µLofelectrocompetentE.colicells.Thecellsweretheneletroporatedat2250V.Immediatelyafterelectroporation250µLofcellswereaddedto250µLofSOCmediuminatube.Thetubewasplacedontheshakerfor1hourandthen2and20µLaliquotswereplatedonLBplateswithampicillinandincubatedat37˚Cfor12‐18hours.Platesweremonitoreduntilthereweremanysmallcolonies.Oncetherewerecoloniestheywerepickedandplacedinagrowthblockwith1.2mLofsuperbroth.

NutrientMeasurements

NitritemeasurementsweremadeusingthespectrophotometricdescribedinStricklandandParsons1968.100µLofasulfanilamidereagent(1gsulfanilamidein100mL10%HCl)and100µLof1‐naphthylethylenediaminereagent(0.1gin100mLwater)wereaddedtoa2mLsample.Standardswereruninparallelatconcentrationsof0,0.25,0.5,1and5µM.Standardsweremadeusingsodiumnitritestocksolutionvolumetrically. Ammoniameasurementswerealsomadespectrophotometricallyusingthephenolmethod.100µLofphenol,100µLnitroprussideand200µLofasodiumcitrateandbleach(5:1)reagentwereaddedtoa5mLsamples.Standardsofconcentrations0,0.1,.2,.5,1,2,and5µMwereruninparallel.Thedetectionofthismethodwasonlyabout0.2µMsincetherewasablankofatleast0.1 µM.CatalyzedAutoReporterDeposition­FluorescenceInSituHybridization(CARDFISH)

Filterswith3mLoffixedcellswerefirstembeddedin0.1%agarose.Theneachfilterwascutand2smallpieceswereusedforFISHwithaneubacteriaprobe(Eub338,Eub338II,andEub338III)andacrenarchaealprobe(Cren537,Cren554).Forthebacterialprobethefilterwaspermeabilizedinlysozyme(100mglysozyme,1000µL1MTrisHCl,1000µL0.5MEDTA,8mLwater)at40˚Cfor1hour.Forthecrenarchaealprobethefilterwaspermeabilizedinproteinase‐K(100µLproteinase‐Kand1mL1MTrisHCland1mL0.5MEDTAand8mLwater).Followingpermeabilizationfilterswereaddedto0.01MHClfor20‐25minutes,andthenwashedtwiceinwater.Thenfiltersweredippedin95%ethanolanddried.Hybridizationwasdonein0.7mLeppindorftubes.300µLofhybridizationbufferand15µLofprobewereaddedtothetubes.Theywerehybridizedat35˚Cfor12to15hoursinthedark.

FilterswerethenmountedonaslideusingaDAPImountingsolution.Foreachslide10gridsof0.1mmwerecountedforDAPIandbothprobesat100XonaZeissmicroscope.

ResultsandDiscussionHarborwaterchemicalcomposition

Watercollectedfrom22metersdeepoftheWHOIdockhadnitriteandammoniumconditionsbelowthedetectionlimit,<0.05µMfornitriteand<0.2µMforammonium.Thisisexpectedforseawateratthisdepthduringthesummersincetherearemanyorganismsusinginorganicnutrients.Nitratehasnotbeenmeasuredyetbutwillbeinthefuture.CellAbundanceofBacteriaandCrenarchaea Initiallyinthecontrol,1aand2atherewas2.63±0.25*106cellsbutbythe48hourstheaveragewasonly1.77±0.11*106cellsinthethreedifferentconditions.Thetotalcelldecreasewasnotdependentontheammoniumaddition(Fig1a).Thenumberofbacterialandcrenarchaealcellsalsodecreasedfrom0to48hoursinalltreatments(Fig1bandc).Thetotalbacterialpercentagerangedfrom38to56%intheinitialand48hourtimepointsforall3conditions.Thelargestdropinbacterialpercentageoccurredinbottle2a,the5µMammoniumaddition)betweenthe0and48hours,from56to39%bacteria.Thecrenarchaealpercentagewasonly1to2%ofcells,whichweremoredifficulttocountbecausetheywererareontheslides.Thedecreaseincellsismostlikelyduetograzerstrappedinthebottlessincetherewasnopre‐filtering.RelativeabundancesofAOBandAOA QuantitativePCRwasperformedwithprimersforbacterialandarchaealamoA.ThecopynumberwasthennormalizedtongofDNAthatwasextracted.FromthisnumberthepercentageofAOBandAOAwascalculatedandplottedforthethreeconditionsat4differenttimepoints(exceptintheinitialconditionofbottle1asinceDNAextractionwasnotsuccessful).Figure2a‐cshowstherelativeabundanceofAOBandAOAfortheincubations.Forthenoammoniumadditionand0.1µMammoniumadditiontheewasnosystematicchangeinpercentabundanceoverthe48hourincubation.TheaverageAOBpercentwas25%andAOA75%.Inthe5µMammoniumaddition(2a)therewasasystematicincreaseinAOBpercentageat12,24and48hours.AttheendoftheincubationAOBnowdominatedthesystemat70%. TheseresultsaresimilartowhatIhadexpected.IthasbeenknownthatAOBflourishinareaswithhigherammoniumconcentrationslikesoils,coastalwatersandestuaries(Wardetal,1984;Starketal,1996;Santoroetal,2008)soitmakessensethatinthehighestammoniumconcentrationstherewasadominanceofAOB.Iwassurprisedthatby12hourstheywereabletodetecttheammoniumandgrowfastenoughtooutnumberAOA.IhadalsoexpectedthestartingcommunitywouldhavealargerpercentageofAOAbecausenowmultipletimestheyhavebeenshowntobethedominantammoniaoxidizerintheocean(Francisetal,2005;Wuchteretal,2006;MosierandFrancis,2008).Itwasinterestingthatinthe0.1µMammoniumadditiontherewaslittlechangeinthecommunityover48hours.Thiscouldbeforacoupleofreasons.Firstthatamountofammoniumcanonlystimulateasmallamountofgrowthwhichislikelynotdetectableinthattimeperiod.Also,sincemy

methodformeasuringammoniumhadadetectionlimitgreaterthan0.1µMIcan’tbesurethattheammoniumintheoceanwasalreadyhigherthan0.1µM.Communitycompositionchange

InthisstudyIwasabletousetwodifferentmethodstoassessthecommunitycompositionchangebetweenthebeginningandendoftheincubations.ThefirstmethodIusedwasDGGE,inwhichIcouldvisualizethechangeinfragmentGCcontentfromrunningthroughadenaturinggel.Fig3depictsthegelthatIloadedthePCRproductsforbothbacterialandarchaealamoA.ThebacterialamoAfragmentschangedforeachtimepointandinthedifferentammoniumadditions.Fig4ashowsthebands,whichweresequencedandthenBLASTedagainstanamoAfunctionalgenedatabasedownloadedfromFunGene.Ofthe16bandsBLASTedtherewereonlytwoclosesthitseitherbeta_proteobacterium_enrichment_culture_clone_SF06E‐BC11‐B02(MosierandFrancis,2008)orbacterium_amoA.26.Sali.kµLtur(Eilmusetal,unpublished).ThelowerbandsallhadthecloserhittothesecondAOB.Thepercentidentitiesofthesehitsrangedfrom83to97%.

IalsosequencedthebandsinthearchaelamoADGGEgel(Fig4b)andeverybandBLASTedtothecrenarchaeote_enrichment_culture_clone_SF06E‐BC11‐D01(MosierandFrancis,2008).Theseagainhadrangingpercentidentitiesfrom87to98%.Thebandsinthesamepositiononthegelmostlyhadasimilarpercentidentitytothecrenarchaeoteenrichmentculturesuggestingtheyareasimilarorganism.OverallthebandsinthearchaeaamoAgelwereallclusteredclosertogether.ItishardtoknowwhetherthisisduetolessdiversityinAOA’sorthatAOA’singenerallyhavefewerdifferencesinGCcontent.Also,AOAamoAisashortersequence,whichwouldalsocontributetocloserclusteringontheDGGEgel.

BottleEffectsonthecommunitycomposition

SinceDGGEhasonlyacourseresolutionincommunitychangeIplannedtomakeclonelibrariesforAOAandAOBtheinitialandfinaltimepointsforeachammoniumaddition.Intheendonly2clonelibrariesworked,fortheinitialandfinaltimepointinthecontrolforAOB.Interestingly,evenwhennoammoniumwasaddedtherewasachangeintheAOBcommunityjustduetoputtingseawaterina4Lpolycarbonatebottle.

ThefirstanalysisIdidontheclonelibrarieswastoBLASTthesequencesagainstthesamelocalfunctionalgenedatabasefromFunGenementionedpreviously.TheseresultsareshowninFigure5.SincethedatabaseisnotdetailedenoughIfoundthatintheinitialtimepointeverysequencehadaclosesthittobeta_proteobacterium_enrichment_culture_clone_SF06E‐BC11‐B02(MosierandFrancis,2008).Thenthe48hourclonelibraryonlynowhasaclosesthitfortobeta_proteobacterium_enrichment_culture_clone_SF06E‐BC11‐B02for40%andtheother60%ofsequencesbestmatchbacterium_amoA.26.Sali.kultur(Eilmusetal,unpublished)Thisshowsthatthereisanewgroupoforganismsthatthriveinthebottleconditionsovertheinitialdominantcommunity.

SincethedatabasewaslimitedandcouldnotcapturethediversityinmyclonelibraryIdecidedtoalsoalignallmysequencesagainsteachothertoseehowthediversitychangedbetweenthetwolibraries.IalignedthesequencesusingMUSCLEandthenmadeatreeusingFastTree.Also,priortoaligningIremovedthevectorfromthesequencesandmadesuretheywereallinsertedinthesamedirectionandifnotIflippedthearrangement.AfterconstructingthetreeIusedITOL(InteractiveTreeofLife)tovisualizethetreeassigningadifferentcolortoeachclonelibrary(Fig.6).Thetreeshowsthattherewasnooverlapinclusteringbetweenthetwolibraries.Thisindicatesthatthe2mainclustersthatwereinthebottleat48hourswereraremembersofthenitrifyingcommunityoriginally.Therealsoappearstobemorediversityintheinitialclonelibrary,whichdivergedonlyinto2mainclustersafter48hours.Conclusions

• Thetotalnumberofcells,includingbacteriaandcrenarchaea,decreasedinthebottlesovera48hourincubationinallbottles.

• QuantitativePCRoftheamoAgeneinAOBandAOA,showedtherewasashifttoamoredominantAOBcommunityin5µMammoniumaddition.Whennoammoniumoronly0.1µMammoniumwasaddedtherewasnosystematicchangeintheratioofAOAtoAOB.

• DGGEshowedthattherewasashiftincommunitycompositioninallbottles.SequencingoftheDGGEproductsshowedthatthereweremultiplespeciesalthoughthesmalldatabaselimitedtheanalysis,sinceallbandsclosesthitwaseitheroneoftwodifferentammonia‐oxidizingbacterialsequences.

• Clonelibrariesfromtheinitialand48hourtimepointinthecontrolshowedthatevenwithoutaddingammoniumthereweredistinctchangesintheAOBcommunity.ThemainAOBgroupfoundinthe48hourtimepointdidnotoccurinitially,meaningitwasoriginallyararememberofthenitrifyingcommunity.

• ForfutureworkonthisprojectIplantomeasurethenitrateandnitriteisotopicratiostoseeifthenitrificationratewasdifferentdependingontheamountofammoniumadded.

ReferencesBeman,J.M.,Popp,B.N.,andC.AFrancis.2008.MolecularandbiogeochemicalevidenceforammoniaoxidationbymarineCrenarchaeotaintheGulfofCalifornia.ISMEJ2:429‐441.Eilmus,S.,Roesch,C.andH.Bothe.Prokaryoticdiversityofaninlandsalthabitatinvestigatedbyusingtwodifferentmolecularapproaches.Unpublished.Francis,C.A.,K.J.Roberts,J.M.Beman,A.E.Santoro,andB.B.Oakley.2005.Ubidquityanddiversityofammonia‐oxidizingarchaeainwatercolumnsand

sedimentsoftheocean.Proc.Natl.Acad.Sci.102:14683‐14688,doi:10.1073/pnas.0506625102

Martens‐Habbena,W.Berube,P.M.Urakawa,H.delaTorre,J.R.andD.Stahl.2009Ammoniumoxidationkineticsdeterminenicheseparationofnitrifyingarchaeaandbacteria.Nature461:976‐979,doi:10.1038/nature08465Mosier,AandC.A.Francis.2008.Relativeabundanceanddiversityofammonia‐oxidizingarchaeaandbacteriaintheSanFranciscoBayestuary.Environ.Micrbiol.10,11:3002‐3016.DOI:10.1111/j.1462‐2920.2008.01764.xRotthauwe,J.H.,Witzel,K.P.,andW,Liesack.1997.TheammoniamonooxygenasestructuralgeneamoAasafunctionalmarker:Molecularfine‐scaleanalysisofnaturalammoniaoxidizingpopulations.ApplEnvironMicrobiol63:4704‐4712.Santoro,A.E.,Francis,C.A.,deSieyes,N.R.,andBoehm,A.B.2008.Shiftsintherelativeabundanceofammonia‐oxidizingbacteriaandarchaeaacrossphysicochemicalgradientsinasubterraneanestuary.EnvironMicrobiol10:1068–1070.Stark,J.M.andM.K.Firestone.1996.Kineticcharacteristicsofammonium‐oxidizercommunitiesinaCaliforniaoakwoodland‐annualgrassland.SoilBiol.Biochem.28:1307–1317.Strickland,J.D.H.,andT.R.Parsons.1972.Apracticalhandbookofseawateranalysis.Bull.Fish.Res.Bd.Can.167:1‐310.

Ward,B.B.,Talbot,M.C.andM.J.Perry.1984.Contributionsofphytoplanktonandnitrifyingbacteriatoammoniumandnitritedynamicsincoastalwaters.Cont.ShelfRes.3,383–398.Wuchter,C.,Abbas,B.,Coolen,M.J.L.,Herfort,L.,vanBleijswijk,J.,Timmers,P.,Strous,M.,Teira,E.,Herndl,G.J.,Middelburg,J.J.,Schouten,S.andJ.S.S.Damsté.2006.Archaealnitrificationintheocean.Proc.Natl.Acad.Sci.103:12317‐12322.

a.

b.

c. Fig1.CellcountsusingDAPI(a)andCARDFISHbacterialprobe(b)andcrenarchaealprobe(c)forthecontrol,1aand2abottlesforthe0and48hourstimepoints.Thecrenarchaealprobedidnotworkforthe1abottleat0hours.

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

3.00E+06

3.50E+06

Noadd 0.1uM 5uM

Total#ofCells/mL

0hrs

48hrs

0.00E+002.00E+054.00E+056.00E+058.00E+051.00E+061.20E+061.40E+061.60E+061.80E+06

Noadd 0.1uM 5uM

BacterialCells/m

L

0hrs

48hrs

0.00E+005.00E+031.00E+041.50E+042.00E+042.50E+043.00E+043.50E+044.00E+044.50E+045.00E+04

Noadd 0.1uM 5uM

CrenarchaealCells/m

L

0hrs

48hrs

a.

b.

c. Fig2.PercentageofAOAandAOBat0,12,24and48hoursforthecontrol,1aand2a.PercentagecalcµLatedfromcopiesofamoAperngDNAmeasuredusingqPCR.

0%

20%

40%

60%

80%

100%

0 12 24 48

Hours

Control(noNH4+)

AOB

AOA

0%

20%

40%

60%

80%

100%

0 12 24 48

Hours

1a:0.1µMNH4+addition

AOB

AOA

0%

20%

40%

60%

80%

100%

0 12 24 48

Hours

2a:5µMNH4+addition

AOB

AOA

Fig3.DGGEgelloadedwithPCRproductsamplifiedusingthebacterial(left)andarchaeal(right)amoAprimers.

a. b. Fig4a­b.DepictionofbandsthatwerecutandsequencedfromaDGGEgelforbacterial(a)andarchaeal(b)amoA.ThebacterialamoAgelalsoshowstheBLASThitforeachband.

a.

b.Fig5a­b.ClosetBLASThitstoanamoAfunctionalgenedatabasefor2clonelibrariesinthecontrolat0hours(a)and48hours(b).

Beta proteobacterium enrichment SF06E-BC11-B02

Bacterium amoA.26.Sali.kultur

Fig6.TreeconstructedusingFastTreeandthenvisualizedusingITOLforthe2clonelibrariesforthecontrolat0hours(blue)and48hours(purple).

0.01

Legend:

env_fixed

T0 C04

T0 D12

T0 F04

T0 A11

T0 B

12T0 G

12T0 H

01T0 B

03

T0 E

02

T0 E

04

T0 H

12

T0 E

05

T0 F

08

T0 F06

T0 C

05

T0 E

12

T0 H

03

T0 A

01

T0 H

05

T0 C

07

T0 D

09

T0 F

10

T0 G

02

T0 H

08

T0 C

06

T0

B08

T0 A

04

T0 B

09

T0 E

08

T0 B

10

T0 D

10

T0 G

07

T0 C

03

T0 H

06

T0

A09

T0 G

05

T0 A06

T0 A08

T0 G06

T0 D03

T0 A02

T0 D04

T0 H07

T0 A10

T0 G08

T0 G11

T0 D01

T0 E06

T0 E07

T0 H10

T0 A05

T0 G10

T0 F07

T0 C09

T0 G09T0 F12

T0 B07

T0 B04T0 E01

T0 H04

T0 D06T0 A12

T0 E09

T0 B05

T0 H11

T0 B01

T0 G01T0 A07

T0 C02

T0 C12

T0 E03

T0 D08

T48 C

05

T48 E

09

T48

A07

T48 E08

T48 G07T48 G

01

T48 H03

T48 B06T48 D03T48 F04

T48 A10

T48 B08

T48 A05

T48 E12

T48 H06

T48 G12

T48 C08

T48 F01

T48 H07

T48 E05T48 H11

T48 B02T48 F02

T48 G09

T48 G11

T48 D08

T48 F

12

T48 A

03T48

A12

T48

F06

T48

B04

T48 D

10

T48 C

10

T48 B

11

T48 A

06

T48 H

10

T48 B

03

T48 A

02

T48 F

10

T48 A

11

T48 G

06

T48 B

05

T48 G

04

T48 D

07

T48 D

06

T48 F

11

T48 H

09

T48 B

12

T48 G

05

T4

8 G

08

T48 E

07

T48 D

11

T48 D

09

T48 C

11

T48 C

12

T48 H

12

T48 D

12

T48 H

08

T48 C03

T0 C08

T0

D07

T0 C

10

T0 F01

T0 F09

T0 F03