Upload
sonja-dragovic
View
223
Download
0
Embed Size (px)
8/9/2019 teorija plasticnosti
1/42
8/9/2019 teorija plasticnosti
2/42
Slide 2
Limit Analysis Theorems
The Upper Bound Theorem
A load for which a failure mechanism can be found that satisfies the flowrule is greater than or equal to the yield load.
The Lower Bound Theorem
A load for which a statically admissible stress distribution can be foundthat satisfies the yield condition is less than or equal to the yield load.
The Uniqueness Theorem
The lowest upper bound and the highest lower bound coincide, and
constitute the complete solution for the yield load.
8/9/2019 teorija plasticnosti
3/42
Slide 3
Limit Analysis: Gvozdev 1936
Gvozdev, A.A, Opredelenie velichinyrazrushayushchei nagruzki dlya statischeskineopredelimykh sistem, preterpevayushchikhplasticheskie deformatsii,Svornik trudov konferentsii po plasticheskimdeformatsiyam 1936, Akademia Nauk SSSR,Moscow-Leningrad, 1938, pp 19-30
English translation:The Determination of the Value of theCollapse Load for Statically IndeterminateSystems Undergoing Plastic Deformation,International Journal of MechanicalSciences, Vol 1, 1960, pp 322-333
8/9/2019 teorija plasticnosti
4/42
8/9/2019 teorija plasticnosti
5/42
Slide 5
Yield Line Theory: Gvozdev 1939
Gvozdev, A.A, Obosnovanie 33
norm proektirovaniyazhelezobetonnykh konstruktsii(Comments to 33 of the designstandard for reinforced concrete
structures),Stroitelnaya Promyshlenmost,Vol 17, No 3, 1939, pp 51-58
8/9/2019 teorija plasticnosti
6/42
Slide 6
Yield Line Theory: Johansen 1931 -
Johansen, K.W., Beregning afkrydsarmerede jernbetonpladersbrudmoment,Bygningsstatiske Meddelelser, Vol 3, No 1,
1931, pp 1-18
8/9/2019 teorija plasticnosti
7/42
Slide 7
Yield Line Theory: Johansen 1931 -
Ingerslev, A., Om en elementrberegningsmetode af
krydsarmerede plader,Ingeniren, Vol 30, No 69, 1921,pp 507-515. (See also:The Strength of Rectangular Slabs,
The Structural Engineer, JournalIStructE, Vol 1, No 1, 1923,pp 3-14)
Johansen, K.W., Beregning af krydsarmerede jernbetonpladersbrudmoment,Bygningsstatiske Meddelelser, Vol 3, No 1, 1931, pp 1-18
8/9/2019 teorija plasticnosti
8/42
Slide 8
Yield Line Theory: Johansen 1931 -
Johansen, K.W., Beregning af krydsarmerede jernbetonpladersbrudmomentBygningsstatiske Meddelelser, Vol 3, No 1, 1931, pp 1-18
Johansen, K.W., Bruchmomente der Kreuzweise bewehrtenPlatten,Memoirs, International Association for Bridge and Structural
Enginering (IABSE), Vol 1, 1932, pp 277-296Johansen, K.W., BrudlinieteorierGjellerup, Copenhagen, 1943, 189 pp
Johansen, K.W., Yield-Line Theory,Cement and Concrete Association, London, 1962
Johansen, K.W., Yield-Line Formulae for Slabs,Cement and Concrete Association, London, 1972
8/9/2019 teorija plasticnosti
9/42
Slide 9
Yield Line Theory vs Limit Analysis
Johansen, K.W., Yield-Line Theory,Cement and Concrete Association, London, 1962
Recent Developments in Yield-Line Theory,MCR Special Publication, Cement and Concrete Association,London, 1965 (Jones, Kemp, Morley, Nielsen, Wood)
Prager, W., The General Theory of Limit Design,Proc 8th International Congress of Theoretical and AppliedMechanics 1952, Vol II, 1955, pp 65-72
Nielsen, M.P., Limit Analysis of Reinforced Concrete Slabs,Acta Polytechnica Scandinavica, Civil Engineering and BuildingConstruction Series, No 26, 1964, 167 pp
8/9/2019 teorija plasticnosti
10/42
Slide 10
Yield Line Theory vs Limit Analysis
Recent Developments in Yield-Line Theory,MCR Special Publication, Cement and
Concrete Association, London, 1965
such a criterion is useless within
the strict framework of limitanalysis, which must develop itsown idealised criteria of yield.Until yield-line theory and limit
analysis employ the samecriterion of yield, they must gotheir own separate ways
8/9/2019 teorija plasticnosti
11/42
Slide 11
Concrete Plasticity: Slabs
Nielsen, M.P., Limit Analysis of Reinforced Concrete Slabs,Acta Polytechnica Scandinavica, Civil Engineering andBuilding Construction Series, No 26, 1964, 167 pp
Yield conditionOrthotropic slabs
8/9/2019 teorija plasticnosti
12/42
Slide 12
Concrete Plasticity: Slabs
02)())(( + FxyMxyMFyMyMFxMxM 0>n
0
8/9/2019 teorija plasticnosti
13/42
Slide 13
Concrete Plasticity: Walls (Discs, Disks)
Nielsen, M.P., On the Strength of Reinforced Concrete Discs,Acta Polytechnica Scandinavica, Civil Engineering and Building
Construction Series, No 70, 1971, 261 pp
02)())(( +Fxy
NxyNFyNyNFx
NxN
02))(( +++ xyNchfyNchfxN
0>n
0
8/9/2019 teorija plasticnosti
14/42
Slide 14
Concrete Plasticity: Shells
Moment Axial Force Interaction
Linearised Interaction Curve
Generalised yield line
8/9/2019 teorija plasticnosti
15/42
Slide 15
Concrete Plasticity: Beam Shear (w/ Stirrups)
Failure Mechanisms
Rotation Translation
8/9/2019 teorija plasticnosti
16/42
Slide 16
Coulomb Failure Criterion
= c -tan
Coulomb, C.A., Essai sur une application des rgles de maximis& minimis quelques problmes statique, relatifs alarchitecture, Mmoires de Mathmatique & de Physiqueprsents a lAcadmie Royale des Sciences, 7, 1773, pp 343-382. (English translation:Note on an Application of the Rules of
Maximum and Minimum to some Statical Problems, Relevant toArchitecture, In Heyman, J.,Coulombs Memoir on Statics: AnEssay in the History of Civil Engineering, Cambridge UniversityPress, 1972, 212 pp.)
8/9/2019 teorija plasticnosti
17/42
Slide 17
Modified Coulomb Failure Criterion
fc = 2ckk = (1 + sin)/(1 - sin)
Coulomb Friction = c -tanRankine Separation = ft
8/9/2019 teorija plasticnosti
18/42
Slide 18
Concrete Yield Surface
tan= 0.75ft 0fc = fcyl
fc
Plane Stress, ft = 0:
Square Yield Locus
8/9/2019 teorija plasticnosti
19/42
8/9/2019 teorija plasticnosti
20/42
Slide 20
Beams with Shear Reinforcement
Upper Bound Solution:
V = rfy bhcot + fc (1 cos ) bh/ sin
Optimal yield line inclination:
cot = ( fc - rfy)/ [rfy(fc rfy)]1/2 0
8/9/2019 teorija plasticnosti
21/42
Slide 21
Beams with Shear Reinforcement
cot = ( fc - rfy)/ [rfy(fc rfy)]1/2 0
V = bh [rfy (fc rfy)]1/2 for rf y fc
V = bhfc
for rfy f
c
Plasticity Solution(Web Crushing Criterion)
fc = /2
8/9/2019 teorija plasticnosti
22/42
Slide 22
Beams with Shear Reinforcement
cot = ( fc - rfy)/ [rfy (fc rfy)]1/2
0
V/bh
rfy
fc
fc
= /2
V = bh[rfy(fc rfy)]1/2 for rfy fc
V = bhfc for rfy fc
Plasticity Solution(Web Crushing Criterion)
8/9/2019 teorija plasticnosti
23/42
Slide 23
Beams with Shear Reinforcement
Leonhardt, F., and Walther, R.,Schubversuche an Plattenbalkenmit unterschiedlicherSchubbewehrung, DeutscherAusschuss fr Stahlbeton,
Heft 156, 1963, 84 pp
= 2.8%
fc = 0.86 fcyl
fcyl = 0.8 fcube
V/bhfcyl
rfy
/fcyl
8/9/2019 teorija plasticnosti
24/42
Slide 24
Beams with Shear Reinforcement
= 6.0%fc = 0.74 fcyl
V/bhfcyl
rfy/fcyl
8/9/2019 teorija plasticnosti
25/42
Slide 25
Beams with Shear Reinforcement
Failure Mechanism
fc
8/9/2019 teorija plasticnosti
26/42
Slide 26
Beams without Shear Reinforcement
Failure Mechanism
8/9/2019 teorija plasticnosti
27/42
Slide 27
Beams without Shear Reinforcement
Upper Bound Solution
V = - Ty cos(+ ) + fc (1 sin) bh/ sin
8/9/2019 teorija plasticnosti
28/42
Slide 28
Beams without Shear Reinforcement
V = ([(bafc)2+4Ty(bhfc-Ty )]
1/2 - bafc) for Ty bhfc
V = bfc([a2
+h2
]1/2
- a) for Ty bhfc
cot = a/h
Plasticity Solution
8/9/2019 teorija plasticnosti
29/42
Slide 29
Beams without Shear Reinforcement
V/bhfcyl Shear FailureFlexural Failure
=Ty/bhfcyl = fc/fcyl
V/bhfcyl
8/9/2019 teorija plasticnosti
30/42
Slide 30
Beams without Shear Reinforcement
V/bhfcyl V/bhfcyl
8/9/2019 teorija plasticnosti
31/42
Slide 31
Beams without Shear Reinforcement
V = ([(bafc)2+4Ty(bhfc-Ty )]
1/2 - bafc) for Ty bhfc
V = bfc([a2+h2]1/2 - a) for Ty bhfc
Shear failureFlexural failure
fc
fc
fc
Stress Distribution
8/9/2019 teorija plasticnosti
32/42
Slide 32
Beams without Shear Reinforcement
Hyperbolic yield line
Jensen, J.F., Discussionof An Upper Bound Rigid-
Plastic Solution for theShear Failure of ConcreteBeams without ShearReinforcement by K.O.
Kemp & M.T. Safi,Magazine of ConcreteResearch, Vol 34,No 119, June 1982,
pp 96-104
8/9/2019 teorija plasticnosti
33/42
Slide 33
Beams without Shear Reinforcement
Hyperbolic yield lineBottom steel only
Reinforcement not yielding
fc
fc
fc
8/9/2019 teorija plasticnosti
34/42
Slide 34
Beams without Shear Reinforcement
8/9/2019 teorija plasticnosti
35/42
Slide 35
Shear in Construction Joints
Failure in joint: Plane strainFailure outside joint: Plane stress
8/9/2019 teorija plasticnosti
36/42
Slide 36
Shear in Construction Joints
Jensen, B.C., SomeApplications of PlasticAnalysis to Plain and
Reinforced Concrete,Institute of BuildingDesign, Report No 123,1977, 129 pp
Hofbeck, J.A. & al, ShearTransfer in ReinforcedConcrete,ACI Journal, Vol 66, No 2,Feb 1969, pp 119-128
8/9/2019 teorija plasticnosti
37/42
Slide 37
Punching Shear in Slabs
Axisymmetric failure: Plane strain
8/9/2019 teorija plasticnosti
38/42
Slide 38
Punching Shear in Slabs
Optimal failure surface generatrix: Catenary
Hess, U., Udtrkningaf Indstbte Inserts,DIA-B, Rapport No 75:541975, 25 pp
ft = fc/400
8/9/2019 teorija plasticnosti
39/42
Slide 39
Punching Shear in Slabs
Failure load prediction
Taylor, R. & Hayes, B., Some Tests on the Effect of EdgeRestraint on Punching Shear in Reinforced Concrete Slabs,Magazine of Concrete Research, Vol 17, No 50, pp 39-44
8/9/2019 teorija plasticnosti
40/42
Slide 40
Punching Shear in Slabs
Failure load prediction
Code approach
ft
= 0
8/9/2019 teorija plasticnosti
41/42
Slide 41
Concrete Plasticity: Overview
Nielsen, M.P., Limit Analysis and Concrete Plasticity,
2nd ed, CRC Press, Boca Raton, Florida, 1998
Braestrup, M.W. & Nielsen, M.P., Plastic Methods of Analysis andDesign,Handbook of Structural Concrete (ed F.K. Kong & al), Pitman,
London 1983, Ch 20, 54 pp
Beams and FramesSlabsWallsShellsBeam Shear (w/ & w/o stirrups)Joints
CorbelsTorsion
Punching ShearDome EffectAnchorageConcentrated Load
8/9/2019 teorija plasticnosti
42/42