38
TEKNIK PERMESINAN KAPAL II (Minggu – 3) LS 1329 ( 3 SKS) Jurusan Teknik Sistem Perkapalan ITS Surabaya

TEKNIK PERMESINAN KAPAL II (Minggu – 3)

  • Upload
    lilia

  • View
    113

  • Download
    11

Embed Size (px)

DESCRIPTION

TEKNIK PERMESINAN KAPAL II (Minggu – 3). LS 1329 ( 3 SKS) Jurusan Teknik Sistem Perkapalan ITS Surabaya. Gas Cycles. Carnot Cycle. 1-2 - ADIABATIC COMPRESSION (ISENTROPIC) 2-3 - HEAT ADDITION (ISOTHERMAL) 3-4 - ADIABATIC EXPANSION (ISENTROPIC) 4-1 - WORK - PowerPoint PPT Presentation

Citation preview

Page 1: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

TEKNIK PERMESINAN KAPAL II(Minggu – 3)

LS 1329 ( 3 SKS)

Jurusan Teknik Sistem Perkapalan

ITS Surabaya

Page 2: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Gas Cycles

Carnot Cycle

T2

T1

s1 s2

Work W

1

2 3

4

1-2 - ADIABATIC COMPRESSION (ISENTROPIC)2-3 - HEAT ADDITION (ISOTHERMAL)3-4 - ADIABATIC EXPANSION (ISENTROPIC)4-1 - WORK (ISOTHERMAL)

Heat Q

Page 3: TEKNIK PERMESINAN KAPAL II (Minggu – 3)
Page 4: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Carnot Cycle

Carnot cycle is the most efficient cycle that can be executed between a heat source and a heat sink.

However, isothermal heat transfer is difficult to obtain in reality--requires large heat exchangers and a lot of time.

2

1

T

T-1

Page 5: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Carnot Cycle

Therefore, the very important (reversible) Carnot cycle, composed of two reversible isothermal processes and two reversible adiabatic processes, is never realized as a practical matter.

Its real value is as a standard of comparison for all other cycles.

Page 6: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Gas cycles have many engineering applications

Internal combustion engineOtto cycleDiesel cycle

Gas turbines Brayton cycle

RefrigerationReversed Brayton cycle

Page 7: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Some nomenclature before starting internal combustion engine cycles

Page 8: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

More terminology

Page 9: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Terminology

Bore = d Stroke = s Displacement volume =DV = Clearance volume = CV Compression ratio = r

4

ds

2

CV

CVDVr

TDC

BDC

V

V

Page 10: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Mean Effective Pressure

Mean Effective Pressure (MEP) is a fictitious pressure, such that if it acted on the piston during the entire power stroke, it would produce the same amount of net work.

minmax VV

WMEP net

Page 11: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

The net work output of a cycle is equivalent to the product of the mean effect pressure and the displacement volume

Page 12: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Real Otto cycle

Page 13: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Real and Idealized Cycle

Page 14: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Otto Cycle P-V & T-s Diagrams

Pressure-Volume Temperature-Entropy

Page 15: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Otto Cycle Derivation

Thermal Efficiency:

For a constant volume heat addition (and rejection) process;

Assuming constant specific heat:

Q

Q - 1 =

Q

Q - Q =

H

L

H

LHth

T C m = Q vin

1-TT

T

1 - TT

T-1 =

)T - T( C m

)T - T( C m - 1 =

2

32

1

41

23v

14vth

T C m = Q v Rej

Page 16: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

For an isentropic compression (and expansion) process:

where: γ = Cp/Cv

Then, by transposing,

T

T = V

V = V

V = T

T

4

3

3

4

1-

2

1

1-

1

2

T

T = T

T

1

4

2

3

Otto Cycle Derivation

T

T-1 = 2

1thLeading to

Page 17: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Differences between Otto and Carnot cycles

Page 18: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

The compression ratio (rv) is a volume ratio

and is equal to the expansion ratio in an otto cycle engine.

Compression Ratio

V

V = V

V = r3

4

2

1v

1 + v

v = rv

v + v = volume Clearance

volume Total = r

cc

sv

cc

ccsv

where Compression ratio is defined as

Otto Cycle Derivation

Page 19: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Then by substitution,

)r(

1 - 1 = )r( - 1 = 1-

v

-1vth

)r( = V

V = T

T -1v

1

2

-1

2

1

The air standard thermal efficiency of the Otto cycle then becomes:

Otto Cycle Derivation

Page 20: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Summarizing

Q

Q - 1 =

Q

Q - Q =

H

L

H

LHth T C m = Q v

1-TT

T

1 - TT

T-1 =

2

32

1

41

th

)r( = V

V = T

T -1v

1

2

-1

2

1

)r(

1 - 1 = )r( - 1 = 1-

v

-1vth

T

T = T

T

1

4

2

3

2

11T

T th

where

and then

Isentropic behavior

Otto Cycle Derivation

Page 21: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Heat addition (Q) is accomplished through fuel combustion

Q = Lower Heat Value (LHV) BTU/lb, kJ/kg

Q A

F m =Q

fuelain

cycle

Otto Cycle Derivation

T C m = Q vin also

Page 22: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Effect of compression ratio on Otto cycle efficiency

Page 23: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Sample Problem – 1The air at the beginning of the compression stroke of an air-standard Otto cycle is at 95 kPa and 22C and the cylinder volume is 5600 cm3. The compression ratio is 9 and 8.6 kJ are added during the heat addition process. Calculate:

(a) the temperature and pressure after the compression and heat addition process(b) the thermal efficiency of the cycle

Use cold air cycle assumptions.

Page 24: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Draw cycle and label points

T1 = 295 K

P1 = 95 kPa

r = V1 /V2 = V4 /V3 = 9

Q23 = 8.6 kJ

Page 25: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Carry through with solution

kg 10 x 29.6RT

VPm 3-

1

11

Calculate mass of air:

Compression occurs from 1 to 2:

ncompressio isentropic V

VTT

1

2

112

k

11.42 9K 27322T

K 705.6T2 But we need T3!

Page 26: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Get T3 with first law:

23v23 TTmcQ Solve for T3:

2v

3 Tc

qT K705.6

kgkJ0.855

kg6.29x10kJ8.6 3

K2304.7T3

Page 27: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Thermal Efficiency

11.41k 9

11

r

11

585.0

Page 28: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Sample Problem – 2

Page 29: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Solution

Page 30: TEKNIK PERMESINAN KAPAL II (Minggu – 3)
Page 31: TEKNIK PERMESINAN KAPAL II (Minggu – 3)
Page 32: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Diesel Cycle P-V & T-s Diagrams

Page 33: TEKNIK PERMESINAN KAPAL II (Minggu – 3)
Page 34: TEKNIK PERMESINAN KAPAL II (Minggu – 3)
Page 35: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Sample Problem – 3

Page 36: TEKNIK PERMESINAN KAPAL II (Minggu – 3)
Page 37: TEKNIK PERMESINAN KAPAL II (Minggu – 3)
Page 38: TEKNIK PERMESINAN KAPAL II (Minggu – 3)

Gasoline vs. Diesel Engine