34

Tablas Para Metal Deck

Embed Size (px)

Citation preview

United Steel Deck, Inc.

16FLOOR DECK - GENERAL INFORMATION

the values. The tabulated variables are defined on each page.The research done on composite deck has shown that the presence ofshear studs influences the live load of the system. When a sufficientnumber of shear studs are present, the composite slab can achieve itspredicted ultimate strength. When no shear studs are present the factoredmoment is found by Mno= φScFy, where φ is 0.85 and Sc is the crackedcomposite section modulus of the composite slab. If the number of studspresent is between the amount required to produce the “fully” studdedmoment and zero, then a straight line interpolation is valid. Generally, theload capacity of composite slabs is greater than required by the intendeduse, and the number of studs is not of importance. Studs are usedprimarily to make beams composite and the composite slab simply useswhat is there - the average number of studs (per foot) can be used. Theright page tables are therefore divided into two parts. Those with one studper foot and those with no studs.Both tables assume that no negative bending reinforcement is in place and thecomposite deck has been analyzed as a single span. An upper load limit of400 psf has been applied. This is to guard against uniform loads beingequated from heavy concentrated loads which require more analysis. Uniformloads greater than 400 psf can be analyzed by using the data provided.Concentrated loads can be designed as shown in the following exampleproblem. The loads have been determined by solving the equation for Wl(the live load): 1000 x M = [1.6 Wl + 1.2Wc] L2 (12)/8 where M is theappropriate listed factored moment, either Mnf or Mno; Wc is the sum of theconcrete and deck weight; L is the span in feet. Although other loadcombinations may be investigated, 1.6 Wl + 1.2Wc usually controls.

General InformationAfter installation and adequate fastening, composite steel decks (floordecks) serve several purposes. They act as working platforms, stabilizethe frame, serve as concrete forms for slabs, and provide positive bendingreinforcement. All USD composite decks are made to mechanicallyinterlock with the concrete by the use of “rolled in” embossments.

ConstructionDeck should be selected to provide a working platform capacity of at least 50psf. If temporary shoring is required to obtain this capacity, it should beavailable to support the deck as the deck is being installed. Generally, deck isselected to perform without the use of temporary shores; maximum unshoredspans are shown in the tables. As the deck is being erected, it is important toimmediately attach it to the structural frame so a working platform is made. AllOSHA rules for erection must be followed. The SDI Manual of Constructionwith Steel Deck is a recommended reference.When placing concrete, care must be taken to avoid high pile ups ofconcrete and to avoid impacts caused by dropping or dumping. Ifbuggies are used, runways should be planked and deck damage causedby roll bars or careless placement practices should not be allowed.

Finishes Composite deck is available galvanized (G30, G60 or G90) and“phosphatized/painted’’. When the deck is furnished “phosphatized/painted’’, only the side not in contact with the concrete is painted sochemical bond between steel and concrete can occur. (“Phosphatizing’’is a cleaning process.)

Wire MeshTemperature reinforcing should be present in composite slabs. The wiremesh recommendations shown in the tables follow the SDI recommenda-tion for a steel area of 0.00075 times the area of concrete above the deckflutes. The mesh shown in the tables is not proportioned to act as negativereinforcement but it does add some strength to the system. If welded wirefabric is not used, the loads in the tables should be reduced by10%. For best crack control, mesh should be kept near the top of the slabin negative bending regions (3/4" to 1" cover). Mesh also helps to distributeloads, both during construction and during the service life of the slab. It can alsobe a secondary safety device if there is a collapse during concrete placement.

Parking GaragesComposite floor deck is not recommended for parking garages in thenorthern part of the United States; salt brought because of snow removalcan deteriorate the deck. Deck can be used as a permanent form andreinforcing (mesh or bars) should be used.

The TablesThe tables are arranged so the composite properties are on the left page.The uniform live load capacities are shown on the right page. Tables areprovided for both light weight and normal weight concrete; both typesassume a concrete strength of 3000 psi. The tables are based on a steelyield strength of 33 ksi; however, 40 ksi minimum yield steel is also readilyavailable and tables based on this strength are available upon request.Maximum unshored spans are shown on the left page. These spans maybe taken as clear spans and SDI Construction loading is used to determine

Composite Floor Deck Slabs

The load width (above the ribs) is given by:bm = b2 + 2tc + 2tt

The effective slab width (be) formulas are:single span bending: be = bm + 2(1 - x / l )x;

Single span bending distribution is to be used if negative bendingreinforcing steel is not placed over the supports.

continuous span bending: be = bm + 4/3 (1 - x / l )xContinuous span bending is to be used if negative bending reinforcingsteel is present over the supports.For shear (single span or continuous) be = bm + (1 - x / l )x.But, in no case shall be > 8.9(t c/h ), feet.The Weak Axis Moment (for distribution steel); M(weak axis) = Pbe ,

where w is the distribution parallel to the ribs:w = l /2 + b3; but not to exceed l

l = span length; x = location of the load measured from the support;b2 = load width perpendicular to the flutes; b3 = load width parallel to the flutes.

15w

t t

t ch

b mb 2

distribution steel

b m = b2 + 2t c + 2t t

t t = thickness of a durable topping(if none is used t t = 0)

17 FLOOR DECK SPECIFICATIONS

SDI Formulas for Construction LoadsClear spans may be used in the formulas.For checking web crippling (bearing) the uniform loading case ofconcrete weight plus 20 psf is used - ASD is used.

1. Material and Design1. Composite floor deck shall be type_____ as manufactured by UnitedSteel Deck, Inc. from steel conforming to ASTM A611 or ASTM A653with a minimum yield point (Fy) of 33 ksi.2. Floor deck shall extend over three or more spans if possible. [The depthand gage of floor deck shall be selected to not exceed the unshored spansas calculated by using LRFD methods under the construction loadingsrecommended by SDI.]* Deflection caused by the dead load of wetconcrete and deck shall not exceed L/180 for any span or 3/4".3. Live load capacities shall be calculated in accordance with the SDIComposite Deck Design Handbook. The type and gage of the metalfloor deck shall be selected to carry, by acting compositely with theconcrete, the superimposed live loads shown on the project drawingswithout exceeding a deflection of 1/360 of the span.

2. Finishes1. Galvanizing shall conform to the requirements of ASTM A653 coatingclass G30, G60 or G90 or Federal Specification QQ-S-775e, class d orclass e.

or2. Primer paint shall be shop applied over cleaned and phosphatizedsteel - paint applied only on the exposed side of the deck. The side of thedeck that is to be in contact with the concrete is to be uncoated orgalvanized.

3. Installation1. Installation of floor deck and accessories shall be done in accordancewith the SDI Manual of Construction with Steel Deck and as shown onthe detailed erection drawings. Welds to supports should be 5/8'’diameter puddle welds with an average weld spacing of at least 12'’ oncenter. Side laps are to be welded at a maximum spacing of 36'’ oncenter. (Fasteners other than welds may be acceptable to United SteelDeck, Inc.)2. Floor openings located and detailed on the structural drawings shall becut by the floor deck contractor. Holes for other trades plus any reinforcingfor these holes shall be cut and reinforced by the other trades.

4. Concrete1. Placement of concrete shall conform to the applicable sections of theACI Specifications. If buggies are used, the deck shall be planked toprevent damage.2. Calcium Chloride: Calcium Chloride (or any admixture containingchloride salts ) shall not be used in concrete placed on productsmanufactured by United Steel Deck, Inc.

Suggested Floor Deck Specifications

1SPAN

or

+M = 0.203 Pl + 0.096 wl 2

- M = 0.094 Pl + 0.063 wl2

R2 = 1.20 wl+M = 0.074 wl2

- M = 0.117 wl2

V = 0.617 wl at interior support

+ M = 0.20 Pl + 0.094 w l 2

2SPAN

3SPAN

For single spans only, the concrete load shall include either an additional 50% of theconcrete weight or 30 psf whichever is less.* Deflection is to be calculated using only concrete plus deck weights uniformlydistributed over all spans.

Key

concentrated man or equipment load (150lbs./ft. of width unfactored)123456

123456

l

P

clear span

R1 = R2 = 0.5wl+M = wl 2 8def.* = 0.013wl4 EI

+M = 0.25Pl + wl 2 8

R1 = R3 = 0.375wlR2 = 1.25wlV = 0.625 wl at interior support+M = 0.070 wl2

- M = 0.125 wl2

def.* = 0.0054 wl4 EI

R1 = R4 = 0.4wlR2 = R3 = 1.10wlV = 0.60 wl at interior support+M = 0.08 wl2

-M = 0.10 wl2

def.* = 0.0069wl4 EI

l l

P

l l

123456789011234567890112345678901

R1 R2 R3

l l l

l l l

l l l

P

123456789012312345678901231234567890123

123456789123456789123456789

R1 R2 R3 R4

R1 R2 R3 R4

lR1 R2

12345671234567

P

l

12345671234567

* Eliminate this clause if shoring is allowed.

United Steel Deck, Inc.

18

123456123456123456123456123456123456123456123456123456

1.333

2.5

2

123123123123123123123

.667

123451234512345123451234512345

12 = 1.333n

4.5 = h

a

ΖCG of deck

N.A

Z = h - y - a = 4.5 - 1 - a

y

EXEXEXEXEXAMPLE PROBLEMAMPLE PROBLEMAMPLE PROBLEMAMPLE PROBLEMAMPLE PROBLEM

THIS EXAMPLE PROBLEM USES 20 GAGE (t = 0.0358") 2" LOK FLOOR COMPOSITE

DECK MADE FROM STEEL WITH A 33 ksi (MINIMUM) YIELD POINT. THE DECK

PROPERTIES (PER FOOT OF WIDTH) HAVE BEEN CALCULATED IN ACCORDANCE WITH

THE AMERICAN IRON AND STEEL INSTITUTE (AISI) SPECIFICATIONS AND ARE:I = 0.420 in.4, S

P = 0.367 in.3 , (SECTION MODULUS IN POSITIVE BENDING);

Sn = 0.387 in.3, (SECTION MODULUS IN NEGATIVE BENDING); As = 0.54 in.2;Rb = 1010 lbs.; φVn = 2410 lbs.; w = 1.8 psf. Rb IS THE ASD INTERIOR WEB

CRIPPLING CAPACITY BASED ON A 5" BEARING AND φV IS THE FACTORED DECK SHEAR

STRENGTH. SDI TOLERANCES APPLY. THE CONCRETE PROPERTIES ARE: f 'c = 3 ksi; DENSITY = 145 pcf. THE RATIO OF THE MODULI, n = Es/Ec = 9.

Example ProblemExample ProblemExample ProblemExample ProblemExample Problem

Combined bending shear governs, tables show maximum unshored spanof 9.27.

(COMPOSITE FLOOR DECK)

Using the top of the slab as the reference line:yuc = Σ Ay = 1.333(2.5)2 2 + 0.667(2)(2.5 + 2 2) + 0.54(2.5 + 2 - 1) = 2.06 in.

2.5(1.333) + 0.54 + 0.667(2)and the uncracked I is:Iuc = 1.33(2.5)3 12 + 1.333(2.5)(2.06 - 2.5 2)2 + 0.42 + 0.54(4.5 - 2.06 -1)2 + 0.667(2)3 12 + 0.667 (2) (4.5 - 2 2 - 2.06)2 = 8.67 in.4

Iav = (Ic + Iuc) 2 = (4.02 + 8.67) 2 = 6.3 in.4

Moments (of areas) about the neutral axis (N.A.) are summed in order tolocate the N.A.(12 n)a(a 2) - AsZ = 0: 1.333a2 2 - 0.54(3.5 - a) = 0Solving for a shows a = 1.33"; 1.33 < 2.5 O.K. ; Z = 2.173Ic = 1.333(1.33)3 3 + 0.54(2.173)2 + 0.42 = 4.02 in.4

The cracked section modulus = Ic (h -yc) = 4.02 (4.5 - 1.33) = Sc =1.27 in.3 . The table printout shows 1.26, which checks.

Determine the “uncracked” moment of inertia (Iuc). The concrete is againtransformed into equivalent steel.

Composite section propertiesCalculate the composite section properties and the allowable uniform loadfor the deck slab combination. The clear span is 9'. No negativebending reinforcing is used over the beams, so the composite slab will bea simple span.

n = Es Ec = 9; As = 0.54 in.2 ; I = 0.42; As and I are per foot of width.

Determine the “cracked” I. This calculation is the standard ASD calculationwhich assumes all concrete below the neutral axis is cracked. Theconcrete is transformed into equivalent steel.

Unshored Span CalculationCalculate the maximum unshored clear span for the three span condition ofthe deck with a 4.5" slab.The resistance factors and the load factors are provided by the AISISpecifications. The load factors are 1.6 for concrete weight, 1.4 forconstruction loading of men and equipment, and 1.2 for the deck deadload. It is important to remember that these factors are for the deck underthe concrete placement loads; when the slab has cured, and the system iscomposite, the factors are different.

w1 = wconcrete = 42 psf.; wdeck = 1.8 psf.Web crippling, shear, and the interaction of bending and web crippling arechecked with two spans loaded.

REFER TO PAGE 17 FOR FIGURE SHOWING 3 SPAN CONDITION.

Check negative bending with two spans loaded:-M = 0.117l 2(1.6x42 + 1.4x20 + 1.2x1.8) = 0.95(33000)(0.387) 12; l = 9.42'Check positive bending with one span loaded with concrete and theconcentrated load:+M = 0.20(1.4x150)l + 0.094l 2(1.6 x 42+1.2x1.8) = 0.95(33000)(0.367) 12; l = 9.33'

Check interior web crippling (note 1/3 stress increase allowed for ASDtemporary loading for web crippling):Ri = 1.20(42 + 20 + 1.8) l = (1010 x 1.33); l = 17.55'φV = 0.617(1.6 x 42 + 1.4 x 20 + 1.2 x 1.8)l = 2410; l = 40.12'Shear or bending alone will not control, but the interaction of shear andbending could. The AISI equation for interaction is:(Mapplied φMn)2 + (Vapplied φVn)2 < 1.0Mapplied = 0.117l 2(1.6 x 42 + 1.4 x 20 + 1.2 x 1.8)12 = 136.7l 2 inch lbs.φMn = 0.95 (33000)(.387) = 12132Vapplied = (1.6 x 42 + 1.4 x 20 + 1.2 x 1.8)0.617l = 60.07l(136.7l 2 12132)2 + (60.07l 2410)2 = 1.0Solving for l yields l = 9.29'Check deflection with y = l 180 and with y = 0.75" limits;y = l(12) 180 = 0.0069(42 + 1.8)l4(1728) (29.5 x 106 x 0.420); l = 11.64'y = 0.75 = 0.0069(42 + 1.8)l4(1728) (29.5 x 106 x 0.420); l = 11.55'

Σ A

19EXEXEXEXEXAMPLE PROBLEM, CONT�D.AMPLE PROBLEM, CONT�D.AMPLE PROBLEM, CONT�D.AMPLE PROBLEM, CONT�D.AMPLE PROBLEM, CONT�D.

Calculate the unfactored (allowable) live load for the case with no studs.The clear span is 9'.The factored moment is; φM0 = φFy Sc , where Sc is the section modulus ofthe cracked section as previously determined, and the φ factor is 0.85.φM0 = 0.85(33000)1.26 = 35343 inch pounds = 35.34 inch kips. Theprintout shows 35.43 which checks within 1%.Unless negative bending reinforcement is present, the composite slab isassumed to be single span. For a single span, the unfactored uniform(live) load (wl ) is found by:φM0 = (1.6wl + 1.2 wd )l2(12) 8 = 35343; wd = dead load = 42 + 1.8 =43.8 use 44; l = 9’.Solving for wl shows wl = 150 psf rounded to the nearest 5 psf.

Check the deflection if the applied load is 150 psf.With no negative reinforcing, the composite slab is a single span.∆ = 0.013 wll4 EIav = 0.013(150)94(1728) (29.5 x 106 x 6.3) = 0.12"which is l 900 and should be O.K.

Check the factored vertical shear capacity:φVsteel deck= 2410 pounds (per foot of width).φVconcrete = 0.85(2)(f 'c)½Ac = 0.85(2)(3000)½ (32.6) = 3035 pounds = 3040useφVnt = 2410 + 3040 = 5450 pounds.

Check the concrete shear control limit: 0.85(4)(f 'c)0.5Ac = 2(3040) = 6080 lbs.5450 < 6080 pounds. ( The tabulated value is 5450 - checks)The unfactored (allowable) live load if shear controls ( wv ) is found by:5450 = (1.6wv + 1.2 x 44)(9) 2; wv = 724 psf. So obviously shear doesnot control the live load.

The number of studs required to develop 100% of the factored moment isgiven by:Ns = Fy(As - Awebs 2 - Abot.flange) [0.221(f 'cEc)0.5]; the numerator of thisequation is specific to the deck being used and the denominator is AISCequation I5-1. For this 20 gage 2" x 12" deckNs = 33 x 7.7 x 0.0358 21.92 = 0.42 studs per foot (The printout shows0.43 because of round off.)The inverse 1.0 0.43 = 2.33 which means a stud is required every 2.33'in order to achieve the full factored moment.The full factored moment is φMn = 0.85FyAs(d-a 2). In this equation a isthe depth of the concrete compression block and is given bya = AsFy (0.85 f 'cb) where b is 12".a = 0.54(33000) (0.85 x 3000 x 12) = 0.58”; d is measured from the topof the slab to the centroid of the deck and is 3.5".φMn = 0.85(33000)0.54(3.5 - 0.58 2) = 48622 inch pounds. The printoutshows 48.60 inch kips, which checks.Since Ns = 0.43 and 1 Ns = 2.33', studs spaced at 1' and 2' will developthe full factored moment of 48.60 inch kips, and with no studs the compos-ite slab develops 35.43 inch kips. If studs are spaced at 3' (1/3 =0.33 studsper foot) then the composite slab capacity is found by interpolation:φMn = 35.43 + (48.60 - 35.43)0.33 0.43 = 45.54 inch kips.

be

P

b3

b2

w

For checking vertical shear, put the load one slab depth away from thebeam, x = h:bve = bm + (1 - h l)x = 9.5 + (1- 4.5 108)(4.5) = 13.8". 13.8 < 59, sofor Moment use be = 59" and for shear bve = 13.8".

Live load moment (per foot of width) = Pl 4 = (1.6)2000(9 4)(12 59)121000 = 17.57 inch kips. Where 1.6 is the load factor and (12 59) is thedistribution factor.wd = total dead load = 42 + 1.8 = 43.8 use 44 psf.Dead load moment = wdl2 8 = 1.2(44)92(12) 8000 = 6.42 inch kips.17.57 + 6.42 = 23.99 inch kips.φMno ,the factored resisting moment without studs, is = 35.34 inch kips;35.34 > 23.99 O.K. (continued on next page)

Concentrated LoadCheck the ability of the example composite slab to carry a 2000 poundconcentrated load over an area of 4.5" x 4.5"; the load can occur at anylocation in the span. No other live load will be acting at the same time.Assume that there is no negative bending reinforcing steel in the slabover the supports even though there will be wire mesh. The wire meshusually is not sufficient to supply the total negative bending needs; in thisproblem we will also determine the wire mesh required to act asdistribution steel. If moving loads can cross into adjacent spans, such asa fork lift truck, negative bending reinforcement is recommended.

Since there is no negative steel, the composite slab is considered to besimple span.clear span = l = 9' = 108"; b2 = b3 = 4.5"; bm = b2 + 2tc + 2tt; where tc isthe concrete cover over the top of the deck , and tt is the thickness of anytopping; h is the total thickness exclusive of the topping. In this case, h =4.5", tc = 2.5" and tt = 0".bm = 4.5 + 2(2.5) + 0 = 9.5"For moment, and for determining the distribution steel, put the load in thecenter of the span.be = bm + 2(1- x l)x; where x is the location of the load which is l 2.be = 9.5 + 2(1 - 54 108)54 = 63.5"; but be is not to exceed 8.9(tc h) in feet.8.9(2.5 4.5)(12) = 59"; be = 59".

United Steel Deck, Inc.

20

V = 1.6(2000)(12 13.8) + 1.2(44)9 2 = 3020 lbs. φVnt = 5450 lbs.;5450 > 3020 O.K.Find the required distribution steel (welded wire mesh):M2 = weak direction moment = Pbe (15W);W = l 2 + b3 = 54 + 4.5 = 58.5" < 108"M2 = 1.6(2000)(59)(12) (15 x 58.5) = 2582 inch pounds (per ft.)Assume that the wire mesh is located 1/2" above the top deck surface sothat d = 2". (In the positive moment region)Mr =0.85AsFy(2-a 2); In this equation As is the area (per ft.) of the wiremesh which has an Fy of 60 ksi. If bars are being investigated, the Fy

would have to be adjusted accordingly. (Note that φ is 0.9 in the ACI butis 0.85 in the SDI method.)a = AsFy (0.85f'cb), where b is 12"; assume As is the area of 6 x 6 W1.4 x1.4 mesh, which is the least allowed by SDI. As = 0.028 in.2 (per ft.).a = 0.028(60000) (0.85 x 3000 x 12) = 0.055"φMweak = 0.85(0.028)(60000)(2 - .055 2) = 2816 inch lbs per foot of width.2816 > 2582 O.K. The SDI minimum welded wire mesh is sufficient.Check the deflection under the concentrated load:Iav = 6.3 in.4 ft. of width.Put the load in the center of the span, and, for simplicity, use concentratedload coefficients.y = Pl3 (48EI); P (per foot) = 2000(12) 59 = 407 lbs.y = 407(9)3(1728) (48 x 29.5 x 106 x 6.3) = 0.06"0.06" is approximately l 1800, this should be O.K.

All model building codes require, for some building classifications, the slabto be capable of carrying a 1000 or 2000 lb. load over a 30" x 30" area.The methods shown in this example problem can be used for thatparticular loading - the footprint of the load would, of course, be larger.This code requirement will probably never be the controlling factor for asteel deck composite slab.

In most cases building codes or other reference literature will call for auniform live load. For instance the 1996 BOCA code calls for offices tobe capable of carrying 50 psf, lobbies 100 psf, and corridors 80 psf.These loads can be looked up directly in the Lok-Floor and B-Lok tablessince the tables have printed L, the live load, by solving the equationφMn = (1.6L + 1.2D) l2/8 for L.

The dead load, D, is taken as the slab and deck weight as shown in theexample problem. Although it is possible that some load combinationother than 1.6L + 1.2D may control, in most cases this combination iscritical. For any combination of loading, the φM values can be used tocalculate the limits.

N-LOK

N Lok is a special version of composite deck. It was originally conceivedas a second use for the N tooling used to make 3" deep roof deck.Unfortunately the rib dimension of the deck is narrow and the w/h ratio istoo low to use it efficiently with shear studs for composite beams. The NLok properties table is therefore shown for the “no stud” case only. NLok is particulary useful in applications that use the product as roof deckwith the intention of later ripping off the roof and pouring a floor.

N-LOK

20 gage N Lok is to be used on a 10' clear span (3 span condition) with a5.5" slab of normal weight concrete. Assume no negative bendingreinforcing steel is used. Determine the live load.

From the tables: Maximum Unshored Span = 11.20' > 10' O.K.φMno = 40.18 in.k. Iav = 8.0 in4

φVnt = 3930 lbs. (note this is less than the deckcapacity alone, the ultimate shear strength of theconcrete controls).φVn = 5020 lbs. (deck alone)

Check bending:wd = 40 + 2.4 = 42.4 use 43 psf40.18 x 1000 = (1.6wl + 1.2 x 43)102(12)/8wl = 135 psf

Check shear:V = 5020 = (1.6wl + 1.2 x 43)10/2wl = 595 psf

Check deflection with def. = l 360 = 10(12) = 0.33"

0.33 = 0.013 wl(10)4 1728/(29.5 x 106 x 8.0) wl = 347 psf

Bending controls. The allowable live load is 135 psf.

(continued from page19)

360

The Composite Properties are a list of values for the composite slab. Theslab depth is the distance from the bottom of the steel deck to the top of theslab in inches as shown on the sketch. U.L. ratings generally refer to thecover over the top of the deck so it is important to be aware of the differencein names. Ac is the area of concrete available to resist shear, in.2 per foot ofwidth. W is the concrete weight in pounds per ft.2. Sc is the section modulusof the “cracked” concrete composite slab; in.3 per foot of width. Iav is theaverage of the “cracked” and “uncracked” moments of inertia of thetransformed composite slab; in.4 per foot of width. The Iav transformed sectionanalysis is based on steel; therefore, to calculate deflections the appropriatemodulus of elasticity to use is 29.5 x 106 psi. φφφφφMno is the factored resistingmoment of the composite slab with no studs on the beams (the deck isattached to the beams or walls on which it is resting) inch kips per foot ofwidth. φφφφφVnt is the factored vertical shear resistance of the composite system;it is the sum of the shear resistances of the steel deck and the concrete but isnot allowed to exceed φφφφφ4(f'c)½Ac; pounds (per foot of width). The next threecolumns list the maximum unshored spans in feet; these values areobtained by using the construction loading requirements of the SDI;combined bending and shear, deflection, and interior reactions areconsidered in calculating these values.

N-LOK Example Problem

21

Gage t w A s I S p S n R b φφφφφVn

2 2 0 .0295 2 . 0 0 .586 0 .636 0 .374 0 .424 1090 34102 0 0 .0358 2 . 4 0 .712 0 .819 0 .492 0 .541 1580 50201 9 0 .0418 2 . 8 0 .831 1 .001 0 .584 0 .647 2112 60001 8 0 .0474 3 . 2 0 .942 1 .194 0 .680 0 .740 2700 69801 6 0 .0598 4 . 0 1 .189 1 .624 0 .882 0 .933 4020 8770

DECK PROPERTIES

N-LOK

NO STUDS Fy = 33ksi f 'c = 3 ksi 145 and 115 pcf concrete

8"

24" cover

t

Slab Depth

3"

The Deck Section Properties are per foot ofwidth. The I value is for positive bending (in.4);t is the gage thickness in inches; w is the weightin pounds per square foot; Sp and Sn are thesection moduli for positive and negative bending(in.3); Rb and φφφφφVn. are the interior reaction andthe shear in pounds (per foot of width).

N-LOK

Slab Ac W Sc Iav φφφφφMno φφφφφVnt W Sc Iav φφφφφMno φφφφφVnt

Depth in 2 psf in 3 in 4 in.k lbs. 1 span 2 span 3 span psf in 3 in 4 in.k lbs. 1 span 2 span 3 span

COMPOSITE PROPERTIES

22 g

age

20

gage

19

gage

18

gage

16

gage

Max. unshored spans, ft. Max. unshored spans, ft.Normal Weight Concrete (145 pcf) Light Weight Concrete (115 pcf)

Light Weight

5 .50 21 .1 4 0 1 .20 7 . 4 33 .63 3930 7 .01 9 .45 9 .56 3 2 1 .13 5 . 7 31 .67 2950 7 .63 10 .24 10 .376 .00 23 .6 4 6 1 .42 9 . 7 39 .78 4390 6 .65 8 .98 9 .09 3 7 1 .34 7 . 5 37 .57 3290 7 .25 9 .76 9 .886 .25 24 .9 4 9 1 .53 11.0 42 .96 4630 6 .49 8 .78 8 .88 3 9 1 .45 8 . 5 40 .64 3470 7 .08 9 .55 9 .666 .50 26 .2 5 2 1 .65 12 .5 46 .20 4870 6 .34 8 .59 8 .69 4 2 1 .56 9 . 6 43 .78 3650 6 .93 9 .35 9 .467 .00 28 .8 5 9 1 .88 15 .8 52 .85 5370 6 .07 8 .24 8 .34 4 6 1 .79 12 .1 50 .22 4030 6 .65 8 .99 9 .097 .25 30 .2 6 2 2 .00 17 .6 56 .24 5620 5 .97 8 .08 8 .18 4 9 1 .91 13 .5 53 .53 4220 6 .52 8 .82 8 .927 .50 31 .6 6 5 2 .13 19 .6 59 .67 5880 5 .90 7 .94 8 .03 5 1 2 .03 15 .0 56 .87 4410 6 .40 8 .67 8 .778 .00 34 .4 7 1 2 .38 24 .1 66 .64 6410 5 .75 7 .66 7 .75 5 6 2 .27 18 .3 63 .68 4810 6 .18 8 .38 8 .488 .25 35 .9 7 4 2 .50 26 .6 70 .17 6690 5 .68 7 .54 7 .63 5 8 2 .39 20 .1 67 .13 5010 6 .08 8 .25 8 .348 .50 37 .4 7 7 2 .63 29 .2 73 .73 6890 5 .62 7 .42 7 .51 6 1 2 .52 22 .1 70 .62 5220 5 .99 8 .12 8 .225 .50 21 .1 4 0 1 .43 8 . 0 40 .18 3930 8 .26 10 .83 11.20 3 2 1 .34 6 . 3 37 .68 2950 9 .02 11.69 12 .086 .00 23 .6 4 6 1 .69 10 .5 47 .49 4390 7 .82 10 .32 10 .67 3 7 1 .59 8 . 2 44 .67 3290 8 .56 11.18 11.556 .25 24 .9 4 9 1 .83 12 .0 51 .29 4630 7 .63 10 .09 10 .43 3 9 1 .72 9 . 3 48 .31 3470 8 .36 10 .94 11.316 .50 26 .2 5 2 1 .97 13 .5 55 .16 4870 7 .45 9 .87 10 .20 4 2 1 .86 10 .5 52 .04 3650 8 .17 10 .72 11.087 .00 28 .8 5 9 2 .25 17 .1 63 .12 5370 7 .13 9 .48 9 .80 4 6 2 .13 13 .2 59 .74 4030 7 .82 10 .32 10 .677 .25 30 .2 6 2 2 .40 19 .0 67 .19 5620 7 .01 9 .30 9 .61 4 9 2 .27 14 .7 63 .68 4220 7 .67 10 .14 10 .487 .50 31 .6 6 5 2 .54 21 .2 71 .30 5880 6 .92 9 .13 9 .43 5 1 2 .41 16 .3 67 .68 4410 7 .53 9 .96 10 .308 .00 34 .4 7 1 2 .84 25 .9 79 .67 6410 6 .74 8 .81 9.11 5 6 2 .70 19 .9 75 .83 4810 7 .26 9 .64 9 .968 .25 35 .9 7 4 2 .99 28 .5 83 .92 6690 6 .66 8 .66 8 .95 5 8 2 .85 21 .9 79 .97 5010 7 .14 9 .49 9 .808 .50 37 .4 7 7 3 .14 31 .3 88 .20 6960 6 .58 8 .52 8 .81 6 1 3 .00 24 .0 84 .15 5220 7 .03 9 .34 9 .655 .50 21 .1 4 0 1 .65 8 . 6 46 .24 3930 9 .13 11.83 12 .22 3 2 1 .54 6 . 8 43 .24 2950 9 .99 12 .75 13 .186 .00 23 .6 4 6 1 .95 11.3 54 .62 4390 8 .64 11.27 11.65 3 7 1 .83 8 . 8 51 .20 3290 9 .47 12 .20 12 .616 .25 24 .9 4 9 2 .10 12 .8 58 .98 4630 8 .43 11.02 11.39 3 9 1 .97 10 .0 55 .37 3470 9 .24 11.94 12 .356 .50 26 .2 5 2 2 .26 14 .4 63 .44 4870 8 .23 10 .78 11.14 4 2 2 .13 11.3 59 .65 3650 9 .03 11.71 12 .107 .00 28 .8 5 9 2 .59 18 .2 72 .60 5370 7 .87 10 .35 10 .70 4 6 2 .44 14 .1 68 .47 4030 8 .64 11.27 11.657 .25 30 .2 6 2 2 .76 20 .3 77 .29 5620 7 .73 10 .16 10 .50 4 9 2 .60 15 .7 73 .01 4220 8 .47 11.07 11.447 .50 31 .6 6 5 2 .93 22 .5 82 .05 5880 7 .63 9 .97 10 .31 5 1 2 .77 17 .5 77 .61 4410 8 .31 10 .88 11.258 .00 34 .4 7 1 3 .27 27 .5 91 .72 6410 7 .43 9 .63 9 .95 5 6 3 .10 21 .3 87 .01 4810 8 .01 10 .53 10 .888 .25 35 .9 7 4 3 .44 30 .3 96 .63 6690 7 .34 9 .47 9 .79 5 8 3 .27 23 .4 91 .78 5010 7 .87 10 .36 10 .718 .50 37 .4 7 7 3 .62 33 .3 101 .58 6960 7 .26 9 .32 9 .63 6 1 3 .44 25 .6 96 .61 5220 7 .76 10 .20 10 .555 .50 21 .1 4 0 1 .85 9 . 2 51 .92 3930 9 .97 12 .63 13 .05 3 2 1 .73 7 . 3 48 .45 2950 10 .92 13 .61 14 .076 .00 23 .6 4 6 2 .18 12 .0 61 .26 4390 9 .43 12 .03 12 .44 3 7 2 .04 9 . 4 57 .29 3290 10 .34 13 .02 13 .466 .25 24 .9 4 9 2 .36 13 .6 66 .13 4630 9 .19 11.77 12 .16 3 9 2 .21 10 .7 61 .93 3470 10 .09 12 .75 13 .186 .50 26 .2 5 2 2 .54 15 .3 71 .12 4870 8 .97 11.52 11.90 4 2 2 .38 12 .0 66 .69 3650 9 .86 12 .50 12 .927 .00 28 .8 5 9 2 .90 19 .2 81 .38 5370 8 .58 11.06 11.43 4 6 2 .73 15 .0 76 .54 4030 9 .43 12 .03 12 .447 .25 30 .2 6 2 3 .09 21 .4 86 .64 5620 8 .43 10 .85 11.22 4 9 2 .91 16 .7 81 .61 4220 9 .24 11.82 12 .227 .50 31 .6 6 5 3 .28 23 .8 91 .97 5880 8 .31 10 .65 11.01 5 1 3 .09 18 .5 86 .76 4410 9 .06 11.62 12 .018 .00 34 .4 7 1 3 .67 29 .0 102 .83 6410 8 .10 10 .29 10 .63 5 6 3 .47 22 .6 97 .28 4810 8 .73 11.24 11.628 .25 35 .9 7 4 3 .86 31 .9 108 .34 6690 8 .00 10 .12 10 .46 5 8 3 .66 24 .8 102 .64 5010 8 .58 11.07 11.448 .50 37 .4 7 7 4 .06 35 .0 113.91 6960 7 .90 9 .96 10 .29 6 1 3 .85 27 .1 108 .05 5220 8 .46 10 .90 11.275 .50 21 .1 4 0 2 .29 10 .3 51 .92 3930 11.55 14.11 14 .59 3 2 2 .13 8 . 2 48 .45 2950 12 .67 15 .20 15 .716 .00 23 .6 4 6 2 .69 13 .4 61 .26 4390 10 .91 13 .46 13 .91 3 7 2 .51 10 .6 57 .29 3290 11.99 14 .54 15 .036 .25 24 .9 4 9 2 .91 15 .2 66 .13 4630 10 .63 13 .16 13 .60 3 9 2 .71 12 .0 61 .93 3470 11.69 14 .25 14 .736 .50 26 .2 5 2 3 .12 17 .1 71 .12 4870 10 .38 12 .88 13 .32 4 2 2 .92 13 .5 66 .69 3650 11.41 13 .97 14 .447 .00 28 .8 5 9 3 .58 21 .4 81 .38 5370 9 .91 12 .38 12 .80 4 6 3 .34 16 .8 76 .54 4030 10 .92 13 .46 13 .917 .25 30 .2 6 2 3 .81 23 .8 86 .64 5620 9 .74 12 .15 12 .56 4 9 3 .57 18 .7 81 .61 4220 10 .69 13 .22 13 .677 .50 31 .6 6 5 4 .04 26 .4 91 .97 5880 9 .60 11.93 12 .33 5 1 3 .79 20 .7 86 .76 4410 10 .48 13 .00 13 .448 .00 34 .4 7 1 4 .52 32 .1 102 .83 6410 9 .35 11.52 11.91 5 6 4 .25 25 .2 97 .28 4810 10 .10 12 .58 13 .018 .25 35 .9 7 4 4 .77 35 .3 108 .34 6690 9 .24 11.34 11.72 5 8 4 .49 27 .6 102 .64 5010 9 .92 12 .39 12 .818 .50 37 .4 7 7 5 .01 38 .6 113.91 6960 9 .12 11.16 11.53 6 1 4 .73 30 .2 108 .05 5220 9 .77 12 .20 12 .61

United Steel Deck, Inc.

The Deck Section Properties are per foot of width. The Ivalue is for positive bending (in.4); t is the gage thickness ininches; w is the weight in pounds per square foot; Sp and Sn

are the section moduli for positive and negative bending (in.3);Rb and φφφφφVn. are the interior reaction and the shear in pounds(per foot of width); studs is the number of studs required per footin order to obtain the full resisting moment, φφφφφMnf.

The Composite Properties are a list of values for thecomposite slab. The slab depth is the distance from thebottom of the steel deck to the top of the slab in inches asshown on the sketch. U.L. ratings generally refer to the coverover the top of the deck so it is important to be aware of thedifference in names. φφφφφMnf is the factored resisting momentprovided by the composite slab when the “full” number ofstuds as shown in the upper table are in place; inch kips (perfoot of width). Ac is the area of concrete available to resistshear, in.2 per foot of width. Vol. is the volume of concrete inft.3 per ft.2 needed to make up the slab; no allowance for frameor deck deflection is included. W is the concrete weight inpounds per ft.2. Sc is the section modulus of the “cracked”concrete composite slab; in.3 per foot of width. Iav is theaverage of the “cracked” and “uncracked” moments of inertiaof the transformed composite slab; in.4 per foot of width. The Iav

transformed section analysis is based on steel; therefore, tocalculate deflections the appropriate modulus of elasticity to useis 29.5 x 106 psi. φφφφφMno is the factored resisting moment of thecomposite slab if there are no studs on the beams (the deckis attached to the beams or walls on which it is resting) inchkips (per foot of width). φφφφφVnt is the factored vertical shearresistance of the composite system; it is the sum of the shearresistances of the steel deck and the concrete but is notallowed to exceed φφφφφ4(f'c)½Ac; pounds (per foot of width). Thenext three columns list the maximum unshored spans infeet; these values are obtained by using the constructionloading requirements of the SDI; combined bending andshear, deflection, and interior reactions are considered incalculating these values. Awwf is the minimum area of weldedwire fabric recommended for temperature reinforcing in thecomposite slab; square inches per foot.

22

Gage t w A s I S p S n R b φφφφφVn studs

22 0.0295 1.6 0.470 0.165 0.195 0.206 1320 2620 0.4320 0.0358 1.9 0.570 0.212 0.247 0.260 1880 3170 0.5219 0.0418 2.3 0.670 0.260 0.292 0.304 2500 3680 0.6118 0.0474 2.6 0.760 0.308 0.337 0.349 3200 4160 0.6916 0.0598 3.3 0.960 0.400 0.434 0.439 4750 5210 0.87

DECK PROPERTIES

6"

30" cover shown (36" preferred)

1½"

t

Slab Depth

B - LOK

1.5 x 6" DECK Fy = 33ksi f 'c = 3 ksi 145 pcf concrete

B-LOK

4.00 38.19 21.3 0.255 37 0.96 4.0 27.04 3970 4.78 6.37 6.45 0.0234.50 44.78 24.8 0.297 43 1.16 5.7 32.65 4610 4.54 6.07 6.15 0.0274.75 48.07 26.5 0.318 46 1.27 6.7 35.52 4940 4.44 5.94 6.01 0.0295.00 51.37 28.3 0.339 49 1.37 7.8 38.42 5260 4.34 5.82 5.89 0.0325.50 57.96 32.1 0.380 55 1.58 10.4 44.29 5610 4.16 5.60 5.66 0.0365.75 61.26 34.0 0.401 58 1.68 11.8 47.26 5790 4.08 5.49 5.56 0.0386.00 64.55 36.0 0.422 61 1.79 13.4 50.25 5970 4.02 5.40 5.46 0.0416.50 71.15 40.1 0.464 67 2.01 17.1 56.26 6350 3.93 5.22 5.29 0.0456.75 74.44 42.2 0.484 70 2.11 19.1 59.29 6550 3.88 5.14 5.20 0.0477.00 77.74 44.3 0.505 73 2.22 21.3 62.33 6750 3.84 5.07 5.13 0.0504.00 45.45 21.3 0.255 37 1.15 4.3 32.21 3970 5.57 7.45 7.54 0.0234.50 53.44 24.8 0.297 43 1.39 6.1 38.94 4610 5.28 7.09 7.17 0.0274.75 57.44 26.5 0.318 46 1.51 7.2 42.37 4940 5.15 6.93 7.01 0.0295.00 61.44 28.3 0.339 49 1.63 8.4 45.85 5280 5.04 6.78 6.86 0.0325.50 69.43 32.1 0.380 55 1.89 11.1 52.91 5970 4.83 6.51 6.58 0.0365.75 73.43 34.0 0.401 58 2.01 12.7 56.48 6340 4.73 6.38 6.46 0.0386.00 77.43 36.0 0.422 61 2.14 14.4 60.08 6520 4.65 6.27 6.34 0.0416.50 85.42 40.1 0.464 67 2.40 18.2 67.32 6900 4.54 6.06 6.13 0.0456.75 89.42 42.2 0.484 70 2.53 20.4 70.97 7100 4.49 5.96 6.03 0.0477.00 93.42 44.3 0.505 73 2.66 22.7 74.63 7300 4.44 5.87 5.94 0.0504.00 52.41 21.3 0.255 37 1.33 4.6 37.25 3970 6.19 8.30 8.39 0.0234.50 61.81 24.8 0.297 43 1.61 6.6 45.06 4610 5.86 7.88 7.97 0.0274.75 66.51 26.5 0.318 46 1.75 7.7 49.07 4940 5.72 7.70 7.79 0.0295.00 71.20 28.3 0.339 49 1.89 8.9 53.12 5280 5.58 7.53 7.61 0.0325.50 80.60 32.1 0.380 55 2.19 11.8 61.34 5970 5.34 7.22 7.30 0.0365.75 85.30 34.0 0.401 58 2.34 13.5 65.51 6340 5.24 7.08 7.16 0.0386.00 90.00 36.0 0.422 61 2.48 15.3 69.70 6700 5.15 6.95 7.03 0.0416.50 99.39 40.1 0.464 67 2.79 19.3 78.16 7410 5.02 6.71 6.79 0.0456.75 104.09 42.2 0.484 70 2.94 21.6 82.43 7610 4.96 6.60 6.68 0.0477.00 108.79 44.3 0.505 73 3.09 24.0 86.71 7810 4.91 6.50 6.57 0.0504.00 58.42 21.3 0.255 37 1.49 4.9 41.73 3970 6.76 8.95 9.19 0.0234.50 69.07 24.8 0.297 43 1.80 6.9 50.50 4610 6.40 8.51 8.72 0.0274.75 74.40 26.5 0.318 46 1.96 8.1 55.00 4940 6.24 8.31 8.51 0.0295.00 79.73 28.3 0.339 49 2.12 9.4 59.56 5280 6.09 8.12 8.32 0.0325.50 90.39 32.1 0.380 55 2.45 12.4 68.82 5970 5.83 7.78 7.97 0.0365.75 95.72 34.0 0.401 58 2.62 14.2 73.51 6340 5.71 7.63 7.82 0.0386.00 101.05 36.0 0.422 61 2.79 16.1 78.24 6700 5.61 7.48 7.67 0.0416.50 111.71 40.1 0.464 67 3.13 20.3 87.78 7460 5.47 7.21 7.40 0.0456.75 117.04 42.2 0.484 70 3.30 22.6 92.59 7860 5.40 7.09 7.28 0.0477.00 122.37 44.3 0.505 73 3.47 25.1 97.42 8260 5.34 6.97 7.16 0.0504.00 58.42 21.3 0.255 37 1.83 5.4 41.73 3970 7.88 10.00 10.34 0.0234.50 69.07 24.8 0.297 43 2.21 7.7 50.50 4610 7.45 9.51 9.83 0.0274.75 74.40 26.5 0.318 46 2.41 9.0 55.00 4940 7.25 9.29 9.60 0.0295.00 79.73 28.3 0.339 49 2.61 10.4 59.56 5280 7.08 9.08 9.39 0.0325.50 90.39 32.1 0.380 55 3.03 13.7 68.82 5970 6.76 8.70 9.00 0.0365.75 95.72 34.0 0.401 58 3.23 15.6 73.51 6340 6.62 8.53 8.82 0.0386.00 101.05 36.0 0.422 61 3.44 17.7 78.24 6700 6.51 8.37 8.65 0.0416.50 111.71 40.1 0.464 67 3.87 22.2 87.78 7460 6.34 8.07 8.35 0.0456.75 117.04 42.2 0.484 70 4.08 24.8 92.59 7860 6.26 7.94 8.20 0.0477.00 122.37 44.3 0.505 73 4.30 27.5 97.42 8260 6.19 7.81 8.07 0.050

Slab φφφφφMnf A c Vol. W Sc Iav φφφφφMno φφφφφVnt AwwfDepth in.k in 2 ft3/ft2 psf in 3 in 3 in.k lbs. 1span 2span 3span

COMPOSITE PROPERTIES

22 g

age

20

gage

19

gage

18

gage

16

gage

Max. unshored spans, ft.

area above the arrowindicates 1 STUD/FT.

area below arrowindicates NO STUDS

23

The Uniform Live Loads are based onthe LRFD equation φMn = (l.6L+1.2D)l2 8.Although there are other load combinationsthat may require investigation, this willcontrol most of the time. The equationassumes there is no negative bendingreinforcement over the beams andtherefore each composite slab is a singlespan. Two sets of values are shown; φMnf

is used to calculate the uniform load whenthe full required number of studs is present;φMno is used to calculate the load when nostuds are present. A straight lineinterpolation can be done if the averagenumber of studs is between zero and therequired number needed to develop the“full” factored moment. The tabulated loadsare checked for shear controlling (it seldomdoes), and also limited to a live loaddeflection of 1/360 of the span.

An upper limit of 400 psf has been appliedto the tabulated loads. This has been doneto guard against equating large concen-trated to uniform loads. Concentrated loadsmay require special analysis and design totake care of servicibility requirements notcovered by simply using a uniform loadvalue. On the other hand, for any loadcombination the values provided by thecomposite properties can be used in thecalculations.

Welded wire fabric in the required amountis assumed for the table values. If weldedwire fabric is not present, deduct 10%from the listed loads.

Refer to the example problems for the useof the tables.

*

B - LOK

1.5 x 6" DECK Fy = 33ksi f 'c = 3 ksi 145 pcf concrete

4.00 38.19 400 400 400 350 295 255 220 190 165 145 130 115 1054.50 44.78 400 400 400 400 345 300 260 225 195 175 155 135 1205.00 51.37 400 400 400 400 400 345 295 260 225 200 175 155 1405.50 57.96 400 400 400 400 400 385 335 290 255 225 200 175 1556.00 64.55 400 400 400 400 400 400 375 325 285 250 220 195 1756.50 71.15 400 400 400 400 400 400 400 360 315 275 245 215 1956.75 74.44 400 400 400 400 400 400 400 375 330 290 255 225 2007.00 77.74 400 400 400 400 400 400 400 390 345 305 270 240 2104.00 45.45 400 400 400 400 355 305 265 235 205 180 160 145 1254.50 53.44 400 400 400 400 400 360 315 275 240 215 190 170 1505.00 61.44 400 400 400 400 400 400 360 315 280 245 220 195 1755.50 69.43 400 400 400 400 400 400 400 360 315 280 245 220 1956.00 77.43 400 400 400 400 400 400 400 400 350 310 275 245 2206.50 85.42 400 400 400 400 400 400 400 400 390 345 305 270 2406.75 89.42 400 400 400 400 400 400 400 400 400 360 320 285 2557.00 93.42 400 400 400 400 400 400 400 400 400 375 335 295 2654.00 52.41 400 400 400 400 400 360 310 275 240 215 190 170 1504.50 61.81 400 400 400 400 400 400 370 320 285 250 225 200 1805.00 71.20 400 400 400 400 400 400 400 370 330 290 260 230 2055.50 80.60 400 400 400 400 400 400 400 400 370 330 295 260 2356.00 90.00 400 400 400 400 400 400 400 400 400 370 325 295 2606.50 99.39 400 400 400 400 400 400 400 400 400 400 360 325 2906.75 104.09 400 400 400 400 400 400 400 400 400 400 380 340 3057.00 108.79 400 400 400 400 400 400 400 400 400 400 395 355 3204.00 58.42 400 400 400 400 400 400 350 305 270 240 215 185 1604.50 69.07 400 400 400 400 400 400 400 365 320 285 255 225 2055.00 79.73 400 400 400 400 400 400 400 400 370 330 295 265 2355.50 90.39 400 400 400 400 400 400 400 400 400 375 335 300 2706.00 101.05 400 400 400 400 400 400 400 400 400 400 375 335 3006.50 111.71 400 400 400 400 400 400 400 400 400 400 400 370 3306.75 117.04 400 400 400 400 400 400 400 400 400 400 400 390 3507.00 122.37 400 400 400 400 400 400 400 400 400 400 400 400 3654.00 58.42 400 400 400 400 400 400 350 305 270 240 215 185 1604.50 69.07 400 400 400 400 400 400 400 365 320 285 255 225 2055.00 79.73 400 400 400 400 400 400 400 400 370 330 295 265 2355.50 90.39 400 400 400 400 400 400 400 400 400 375 335 300 2706.00 101.05 400 400 400 400 400 400 400 400 400 400 375 335 3006.50 111.71 400 400 400 400 400 400 400 400 400 400 400 370 3306.75 117.04 400 400 400 400 400 400 400 400 400 400 400 390 3507.00 122.37 400 400 400 400 400 400 400 400 400 400 400 400 3654.00 27.04 400 345 285 240 200 170 145 125 110 95 85 75 654.50 32.65 400 400 345 290 245 210 180 155 135 115 105 90 805.00 38.42 400 400 400 340 290 245 210 185 160 140 120 105 955.50 44.29 400 400 400 395 335 285 245 215 185 160 140 125 1106.00 50.25 400 400 400 400 380 325 280 245 210 185 160 145 1256.50 56.26 400 400 400 400 400 365 315 275 240 210 185 160 1406.75 59.29 400 400 400 400 400 385 330 290 250 220 195 170 1507.00 62.33 400 400 400 400 400 400 350 305 265 230 205 180 1604.00 32.21 400 400 345 290 245 210 180 155 135 120 105 95 804.50 38.94 400 400 400 350 295 255 220 190 165 145 130 115 1005.00 45.85 400 400 400 400 350 300 260 225 200 175 155 135 1205.50 52.91 400 400 400 400 400 350 300 260 230 200 180 155 1406.00 60.08 400 400 400 400 400 400 345 300 260 230 205 180 1606.50 67.32 400 400 400 400 400 400 385 335 295 260 230 205 1806.75 70.97 400 400 400 400 400 400 400 355 310 275 240 215 1907.00 74.63 400 400 400 400 400 400 400 375 330 290 255 225 2004.00 37.25 400 400 400 340 285 245 215 185 160 145 125 110 1004.50 45.06 400 400 400 400 350 300 260 225 200 175 155 135 1205.00 53.12 400 400 400 400 400 355 305 270 235 205 185 160 1455.50 61.34 400 400 400 400 400 400 355 310 270 240 215 190 1706.00 69.70 400 400 400 400 400 400 400 355 310 275 245 215 1906.50 78.16 400 400 400 400 400 400 400 400 350 310 275 245 2156.75 82.43 400 400 400 400 400 400 400 400 370 325 290 255 2307.00 86.71 400 400 400 400 400 400 400 400 390 345 305 270 2404.00 41.73 400 400 400 380 325 280 240 210 185 165 145 130 1154.50 50.50 400 400 400 400 395 340 295 255 225 200 175 155 1405.00 59.56 400 400 400 400 400 400 350 305 270 235 210 185 1655.50 68.82 400 400 400 400 400 400 400 355 310 275 245 215 1956.00 70.24 400 400 400 400 400 400 400 400 355 315 280 250 2206.50 87.78 400 400 400 400 400 400 400 400 400 355 315 280 2506.75 92.59 400 400 400 400 400 400 400 400 400 375 330 295 2657.00 97.42 400 400 400 400 400 400 400 400 400 395 350 310 2804.00 41.73 400 400 400 380 325 280 240 210 185 165 145 130 1154.50 50.50 400 400 400 400 395 340 295 255 225 200 175 155 1405.00 59.56 400 400 400 400 400 400 350 305 270 235 210 185 1655.50 68.82 400 400 400 400 400 400 400 355 310 275 245 215 1956.00 78.24 400 400 400 400 400 400 400 400 355 315 280 250 2206.50 87.78 400 400 400 400 400 400 400 400 400 355 315 280 2506.75 92.59 400 400 400 400 400 400 400 400 400 375 330 295 2657.00 97.42 400 400 400 400 400 400 400 400 400 395 350 310 280

Slab φφφφφMn5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00Depth in.k

L, Uniform Live Loads, psf *22 g

age

20

gage

19

gage

18

gage

16

gage

22 g

age

20

gage

19

gage

18

gage

16

gage

United Steel Deck, Inc.

The Deck Section Properties are per foot of width. The Ivalue is for positive bending (in.4); t is the gage thickness ininches; w is the weight in pounds per square foot; Sp and Sn

are the section moduli for positive and negative bending (in.3);Rb and φφφφφVn. are the interior reaction and the shear in pounds(per foot of width); studs is the number of studs required per footin order to obtain the full resisting moment, φφφφφMnf.

The Composite Properties are a list of values for thecomposite slab. The slab depth is the distance from thebottom of the steel deck to the top of the slab in inches asshown on the sketch. U.L. ratings generally refer to the coverover the top of the deck so it is important to be aware of thedifference in names. φφφφφMnf is the factored resisting momentprovided by the composite slab when the “full” number ofstuds as shown in the upper table are in place; inch kips (perfoot of width). Ac is the area of concrete available to resistshear, in.2 per foot of width. Vol. is the volume of concrete inft.3 per ft.2 needed to make up the slab; no allowance for frameor deck deflection is included. W is the concrete weight inpounds per ft.2. Sc is the section modulus of the “cracked”concrete composite slab; in.3 per foot of width. Iav is theaverage of the “cracked” and “uncracked” moments of inertiaof the transformed composite slab; in.4 per foot of width. The Iav

transformed section analysis is based on steel; therefore, tocalculate deflections the appropriate modulus of elasticity to useis 29.5 x 106 psi. φφφφφMno is the factored resisting moment of thecomposite slab if there are no studs on the beams (the deckis attached to the beams or walls on which it is resting) inchkips (per foot of width). φφφφφVnt is the factored vertical shearresistance of the composite system; it is the sum of the shearresistances of the steel deck and the concrete but is notallowed to exceed φφφφφ4(f'c)½Ac; pounds (per foot of width). Thenext three columns list the maximum unshored spans infeet; these values are obtained by using the constructionloading requirements of the SDI; combined bending andshear, deflection, and interior reactions are considered incalculating these values. Awwf is the minimum area of weldedwire fabric recommended for temperature reinforcing in thecomposite slab; square inches per foot.

24

Gage t w A s I S p S n R b φφφφφVn studs

22 0.0295 1.6 0.470 0.165 0.206 0.195 1320 2620 0.2720 0.0358 1.9 0.570 0.212 0.260 0.247 1880 3170 0.3319 0.0418 2.3 0.670 0.260 0.304 0.292 2500 3680 0.3918 0.0474 2.6 0.760 0.308 0.349 0.337 3200 4160 0.4416 0.0598 3.3 0.960 0.400 0.439 0.434 4750 5210 0.55

DECK PROPERTIES

INVERTED B-LOK

Inverted 1.5 x 6" DECK Fy = 33ksi f 'c = 3 ksi 145 pcf concrete

30" cover shown (36" preferred)

1½"

6"

Slab Depth

INVERTED B-LOK

4.00 40.82 33.3 0.286 42 1.12 5.1 31.37 5720 4.76 6.37 6.45 0.0234.50 47.42 38.3 0.328 48 1.32 7.1 37.15 6180 4.54 6.10 6.17 0.0274.75 50.71 40.8 0.349 51 1.43 8.3 40.08 6420 4.45 5.97 6.04 0.0295.00 54.01 43.3 0.370 54 1.53 9.6 43.04 6650 4.35 5.85 5.92 0.0325.50 60.60 48.6 0.411 60 1.75 12.5 49.01 7140 4.19 5.64 5.71 0.0365.75 63.89 51.3 0.432 63 1.85 14.2 52.03 7390 4.14 5.55 5.61 0.0386.00 67.19 54.0 0.453 66 1.96 16.0 55.05 7650 4.09 5.45 5.52 0.0416.50 73.78 59.6 0.495 72 2.18 20.0 61.14 8170 3.99 5.26 5.35 0.0456.75 77.08 62.4 0.516 75 2.29 22.3 64.19 8430 3.95 5.18 5.27 0.0477.00 80.37 65.3 0.536 78 2.40 24.7 67.26 8700 3.91 5.09 5.19 0.0504.00 48.65 33.3 0.286 42 1.34 5.5 37.48 6210 5.52 7.27 7.50 0.0234.50 56.64 38.3 0.328 48 1.58 7.6 44.40 6730 5.26 6.93 7.16 0.0274.75 60.64 40.8 0.349 51 1.71 8.8 47.93 6970 5.14 6.77 7.00 0.0295.00 64.64 43.3 0.370 54 1.84 10.2 51.48 7200 5.03 6.63 6.85 0.0325.50 72.63 48.6 0.411 60 2.09 13.3 58.67 7690 4.84 6.37 6.58 0.0365.75 76.63 51.3 0.432 63 2.22 15.1 62.29 7940 4.77 6.25 6.45 0.0386.00 80.62 54.0 0.453 66 2.35 17.0 65.93 8200 4.71 6.13 6.34 0.0416.50 88.62 59.6 0.495 72 2.61 21.3 73.26 8720 4.60 5.92 6.12 0.0456.75 92.62 62.4 0.516 75 2.74 23.6 76.94 8980 4.55 5.82 6.02 0.0477.00 96.61 65.3 0.536 78 2.87 26.2 80.64 9250 4.50 5.73 5.92 0.0504.00 56.17 33.3 0.286 42 1.55 5.8 43.45 6210 6.09 7.89 8.16 0.0234.50 65.57 38.3 0.328 48 1.84 8.1 51.51 7120 5.79 7.52 7.77 0.0274.75 70.26 40.8 0.349 51 1.98 9.4 55.61 7480 5.66 7.36 7.60 0.0295.00 74.96 43.3 0.370 54 2.13 10.8 59.75 7710 5.54 7.20 7.44 0.0325.50 84.36 48.6 0.411 60 2.43 14.1 68.13 8200 5.31 6.92 7.15 0.0365.75 89.06 51.3 0.432 63 2.58 15.9 72.36 8450 5.24 6.79 7.01 0.0386.00 93.76 54.0 0.453 66 2.73 17.9 76.61 8710 5.18 6.66 6.89 0.0416.50 103.15 59.6 0.495 72 3.04 22.4 85.18 9230 5.06 6.43 6.65 0.0456.75 107.85 62.4 0.516 75 3.19 24.9 89.48 9490 5.00 6.33 6.54 0.0477.00 112.55 65.3 0.536 78 3.34 27.6 93.80 9760 4.94 6.23 6.44 0.0504.00 62.68 33.3 0.286 42 1.74 6.1 48.76 6210 6.63 8.46 8.75 0.0234.50 73.34 38.3 0.328 48 2.06 8.5 57.82 7120 6.30 8.07 8.34 0.0274.75 78.67 40.8 0.349 51 2.23 9.8 62.44 7590 6.15 7.89 8.16 0.0295.00 84.00 43.3 0.370 54 2.39 11.3 67.11 8070 6.01 7.73 7.99 0.0325.50 94.66 48.6 0.411 60 2.73 14.7 76.55 8680 5.77 7.42 7.67 0.0365.75 99.99 51.3 0.432 63 2.90 16.7 81.32 8930 5.69 7.28 7.53 0.0386.00 105.32 54.0 0.453 66 3.07 18.8 86.11 9190 5.62 7.15 7.39 0.0416.50 115.97 59.6 0.495 72 3.41 23.4 95.77 9710 5.48 6.91 7.14 0.0456.75 121.30 62.4 0.516 75 3.59 26.0 100.63 9970 5.42 6.80 7.02 0.0477.00 126.63 65.3 0.536 78 3.76 28.8 105.50 10240 5.36 6.69 6.91 0.0504.00 62.68 33.3 0.286 42 2.14 6.7 48.76 6210 7.60 9.57 9.89 0.0234.50 73.34 38.3 0.328 48 2.54 9.3 57.82 7120 7.21 9.13 9.44 0.0274.75 78.67 40.8 0.349 51 2.75 10.7 62.44 7590 7.04 8.93 9.23 0.0295.00 84.00 43.3 0.370 54 2.96 12.4 67.11 8070 6.88 8.74 9.04 0.0325.50 94.66 48.6 0.411 60 3.38 16.1 76.55 9050 6.60 8.40 8.69 0.0365.75 99.99 51.3 0.432 63 3.59 18.2 81.32 9550 6.51 8.25 8.52 0.0386.00 105.32 54.0 0.453 66 3.80 20.5 86.11 10060 6.42 8.10 8.37 0.0416.50 115.97 59.6 0.495 72 4.23 25.5 95.77 10760 6.27 7.83 8.09 0.0456.75 121.30 62.4 0.516 75 4.45 28.3 100.63 11020 6.19 7.70 7.96 0.0477.00 126.63 65.3 0.536 78 4.67 31.3 105.50 11290 6.12 7.58 7.83 0.050

Slab φφφφφMnf Ac Vol. W Sc Iav φφφφφMno φφφφφVnt AwwfDepth in.k in 2 ft3/ft2 psf in 3 in 3 in.k lbs. 1span 2span 3span

COMPOSITE PROPERTIES

22 g

age

20

gage

19

gage

18

gage

16

gage

Max. unshored spans, ft.

area above the arrowindicates 1 STUD/FT.

area below arrowindicates NO STUDS

25

The Uniform Live Loads are based onthe LRFD equation φMn = (l.6L+1.2D)l2 8.Although there are other load combinationsthat may require investigation, this willcontrol most of the time. The equationassumes there is no negative bendingreinforcement over the beams andtherefore each composite slab is a singlespan. Two sets of values are shown; φMnf

is used to calculate the uniform load whenthe full required number of studs is present;φMno is used to calculate the load when nostuds are present. A straight lineinterpolation can be done if the averagenumber of studs is between zero and therequired number needed to develop the“full” factored moment. The tabulated loadsare checked for shear controlling (it seldomdoes), and also limited to a live loaddeflection of 1/360 of the span.

An upper limit of 400 psf has been appliedto the tabulated loads. This has been doneto guard against equating large concen-trated to uniform loads. Concentrated loadsmay require special analysis and design totake care of servicibility requirements notcovered by simply using a uniform loadvalue. On the other hand, for any loadcombination the values provided by thecomposite properties can be used in thecalculations.

Welded wire fabric in the required amountis assumed for the table values. If weldedwire fabric is not present, deduct 10%from the listed loads.

Refer to the example problems for the useof the tables.

*

Inverted 1.5 x 6" DECK Fy = 33ksi f 'c = 3 ksi 145 pcf concrete

INVERTED B-LOK

4.00 40.82 400 400 400 370 315 270 235 205 180 155 140 120 1104.50 47.42 400 400 400 400 365 315 270 235 205 180 160 140 1255.00 54.01 400 400 400 400 400 360 310 270 235 210 185 165 1455.50 60.60 400 400 400 400 400 400 350 305 265 235 205 185 1656.00 67.19 400 400 400 400 400 400 385 335 295 260 230 205 1806.50 73.78 400 400 400 400 400 400 400 370 325 285 250 225 2006.75 77.08 400 400 400 400 400 400 400 385 340 300 265 235 2107.00 80.37 400 400 400 400 400 400 400 400 355 310 275 245 2154.00 48.65 400 400 400 400 380 330 285 250 220 190 170 150 1354.50 56.64 400 400 400 400 400 380 330 290 255 225 200 175 1605.00 64.64 400 400 400 400 400 400 380 330 290 255 230 205 1805.50 72.63 400 400 400 400 400 400 400 375 325 290 255 230 2056.00 80.62 400 400 400 400 400 400 400 400 365 320 285 255 2256.50 88.62 400 400 400 400 400 400 400 400 400 355 315 280 2506.75 92.62 400 400 400 400 400 400 400 400 400 370 330 290 2607.00 96.61 400 400 400 400 400 400 400 400 400 385 345 305 2754.00 56.17 400 400 400 400 400 385 335 290 255 225 200 180 1604.50 65.57 400 400 400 400 400 400 390 340 300 265 235 210 1905.00 74.96 400 400 400 400 400 400 400 390 345 305 270 240 2155.50 84.36 400 400 400 400 400 400 400 400 385 345 305 270 2456.00 93.76 400 400 400 400 400 400 400 400 400 380 340 305 2706.50 103.15 400 400 400 400 400 400 400 400 400 400 375 335 3006.75 107.85 400 400 400 400 400 400 400 400 400 400 390 350 3157.00 112.55 400 400 400 400 400 400 400 400 400 400 400 365 3304.00 62.68 400 400 400 400 400 400 375 330 290 255 230 205 1854.50 73.34 400 400 400 400 400 400 400 385 340 300 270 240 2155.00 84.00 400 400 400 400 400 400 400 400 390 345 310 275 2455.50 94.66 400 400 400 400 400 400 400 400 400 390 350 310 2806.00 105.32 400 400 400 400 400 400 400 400 400 400 390 345 3106.50 115.97 400 400 400 400 400 400 400 400 400 400 400 385 3456.75 121.30 400 400 400 400 400 400 400 400 400 400 400 400 3607.00 126.63 400 400 400 400 400 400 400 400 400 400 400 400 3754.00 62.68 400 400 400 400 400 400 375 330 290 255 230 205 1854.50 73.34 400 400 400 400 400 400 400 385 340 300 270 240 2155.00 84.00 400 400 400 400 400 400 400 400 390 345 310 275 2455.50 94.66 400 400 400 400 400 400 400 400 400 390 350 310 2806.00 105.32 400 400 400 400 400 400 400 400 400 400 390 345 3106.50 115.97 400 400 400 400 400 400 400 400 400 400 400 385 3456.75 121.30 400 400 400 400 400 400 400 400 400 400 400 400 3607.00 126.63 400 400 400 400 400 400 400 400 400 400 400 400 3754.00 31.37 400 400 330 275 235 200 170 150 130 110 100 85 754.50 37.15 400 400 395 330 280 240 205 175 155 135 120 105 905.00 43.04 400 400 400 385 325 275 240 205 180 155 140 120 1055.50 49.01 400 400 400 400 370 315 275 235 205 180 160 140 1256.00 55.05 400 400 400 400 400 355 310 265 235 205 180 160 1406.50 61.14 400 400 400 400 400 400 345 300 260 225 200 175 1556.75 64.19 400 400 400 400 400 400 360 315 275 240 210 185 1657.00 67.26 400 400 400 400 400 400 380 330 285 250 220 195 1704.00 37.48 400 400 400 335 285 245 210 185 160 140 125 110 954.50 44.40 400 400 400 400 340 290 250 220 190 170 150 130 1155.00 51.48 400 400 400 400 395 340 295 255 225 195 175 155 1355.50 58.67 400 400 400 400 400 390 335 290 255 225 200 175 1556.00 65.93 400 400 400 400 400 400 380 330 290 255 225 200 1756.50 73.26 400 400 400 400 400 400 400 365 320 285 250 220 1956.75 76.94 400 400 400 400 400 400 400 385 340 300 265 235 2057.00 80.64 400 400 400 400 400 400 400 400 355 315 275 245 2204.00 43.45 400 400 400 395 335 290 250 220 190 170 150 130 1154.50 51.51 400 400 400 400 400 345 300 260 230 200 175 155 1405.00 59.75 400 400 400 400 400 400 345 305 265 235 205 185 1655.50 68.13 400 400 400 400 400 400 395 345 305 270 235 210 1906.00 76.61 400 400 400 400 400 400 400 390 345 305 270 240 2156.50 85.18 400 400 400 400 400 400 400 400 385 340 300 265 2406.75 89.48 400 400 400 400 400 400 400 400 400 355 315 280 2507.00 93.80 400 400 400 400 400 400 400 400 400 375 330 295 2654.00 48.76 400 400 400 400 380 330 285 250 220 190 170 150 1354.50 57.82 400 400 400 400 400 390 340 295 260 230 205 180 1605.00 67.11 400 400 400 400 400 400 395 345 305 270 235 210 1905.50 76.55 400 400 400 400 400 400 400 395 345 305 270 245 2156.00 86.11 400 400 400 400 400 400 400 400 390 345 310 275 2456.50 95.77 400 400 400 400 400 400 400 400 400 385 345 305 2756.75 100.63 400 400 400 400 400 400 400 400 400 400 360 320 2907.00 105.50 400 400 400 400 400 400 400 400 400 400 380 340 3054.00 48.76 400 400 400 400 380 330 285 250 220 190 170 150 1354.50 57.82 400 400 400 400 400 390 340 295 260 230 205 180 1605.00 67.11 400 400 400 400 400 400 395 345 305 370 235 210 1905.50 76.55 400 400 400 400 400 400 400 395 345 305 270 245 2156.00 86.11 400 400 400 400 400 400 400 400 390 345 310 275 2456.50 95.77 400 400 400 400 400 400 400 400 400 385 345 305 2756.75 100.63 400 400 400 400 400 400 400 400 400 400 360 320 2907.00 105.50 400 400 400 400 400 400 400 400 400 400 380 340 305

Slab φφφφφMn5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00Depth in.k

L, Uniform Live Loads, psf *22 g

age

20

gage

19

gage

18

gage

16

gage

22 g

age

20

gage

19

gage

18

gage

16

gage

United Steel Deck, Inc.

The Deck Section Properties are per foot of width. The Ivalue is for positive bending (in.4); t is the gage thickness ininches; w is the weight in pounds per square foot; Sp and Sn

are the section moduli for positive and negative bending (in.3);Rb and φφφφφVn. are the interior reaction and the shear in pounds(per foot of width); studs is the number of studs required per footin order to obtain the full resisting moment, φφφφφMnf.

The Composite Properties are a list of values for thecomposite slab. The slab depth is the distance from thebottom of the steel deck to the top of the slab in inches asshown on the sketch. U.L. ratings generally refer to the coverover the top of the deck so it is important to be aware of thedifference in names. φφφφφMnf is the factored resisting momentprovided by the composite slab when the “full” number ofstuds as shown in the upper table are in place; inch kips (perfoot of width). Ac is the area of concrete available to resistshear, in.2 per foot of width. Vol. is the volume of concrete inft.3 per ft.2 needed to make up the slab; no allowance for frameor deck deflection is included. W is the concrete weight inpounds per ft.2. Sc is the section modulus of the “cracked”concrete composite slab; in.3 per foot of width. Iav is theaverage of the “cracked” and “uncracked” moments of inertiaof the transformed composite slab; in.4 per foot of width. The Iav

transformed section analysis is based on steel; therefore, tocalculate deflections the appropriate modulus of elasticity to useis 29.5 x 106 psi. φφφφφMno is the factored resisting moment of thecomposite slab if there are no studs on the beams (the deckis attached to the beams or walls on which it is resting) inchkips (per foot of width). φφφφφVnt is the factored vertical shearresistance of the composite system; it is the sum of the shearresistances of the steel deck and the concrete but is notallowed to exceed φφφφφ4(f'c)½Ac; pounds (per foot of width). Thenext three columns list the maximum unshored spans infeet; these values are obtained by using the constructionloading requirements of the SDI; combined bending andshear, deflection, and interior reactions are considered incalculating these values. Awwf is the minimum area of weldedwire fabric recommended for temperature reinforcing in thecomposite slab; square inches per foot.

26

Gage t w A s I S p S n R b φφφφφVn studs

22 0.0295 1.5 0.430 0.189 0.206 0.207 692 1560 0.3620 0.0358 1.8 0.520 0.237 0.267 0.270 972 1890 0.4319 0.0418 2.1 0.610 0.276 0.327 0.330 1280 2200 0.5118 0.0474 2.3 0.690 0.313 0.378 0.376 1610 2490 0.5716 0.0598 3.0 0.870 0.395 0.474 0.474 2370 3130 0.72

DECK PROPERTIES

1.5" LOK-FLOOR

1.5 x 12" DECK Fy = 33ksi f 'c = 3 ksi 145 pcf concrete

12"

24" cover

1½"Slab Depth

t1.5" LOK-FLOOR

4.00 36.40 30.7 0.271 39 0.97 4.4 27.28 4420 4.86 6.49 6.57 0.0234.50 42.43 36.0 0.313 45 1.16 6.2 32.47 4910 4.62 6.20 6.27 0.0274.75 45.45 38.8 0.333 48 1.25 7.3 35.12 5170 4.52 6.07 6.14 0.0295.00 48.46 41.7 0.354 51 1.35 8.4 37.79 5440 4.42 5.95 6.02 0.0325.50 54.50 47.0 0.396 57 1.54 11.1 43.20 5940 4.25 5.72 5.79 0.0365.75 57.51 49.4 0.417 60 1.64 12.7 45.94 6160 4.17 5.62 5.69 0.0386.00 60.53 51.8 0.438 63 1.74 14.3 48.68 6380 4.12 5.53 5.59 0.0416.50 66.56 56.5 0.479 69 1.93 18.1 54.22 6820 4.03 5.35 5.41 0.0456.75 69.57 58.9 0.500 73 2.03 20.2 57.00 7040 3.98 5.27 5.33 0.0477.00 72.59 61.3 0.521 76 2.13 22.4 59.79 7260 3.94 5.19 5.25 0.0504.00 43.31 30.7 0.271 39 1.16 4.8 32.48 4750 5.74 7.68 7.79 0.0234.50 50.61 36.0 0.313 45 1.38 6.7 38.69 5240 5.45 7.30 7.42 0.0274.75 54.25 38.8 0.333 48 1.49 7.8 41.86 5500 5.32 7.13 7.25 0.0295.00 57.90 41.7 0.354 51 1.61 9.0 45.06 5770 5.20 6.97 7.10 0.0325.50 65.19 47.0 0.396 57 1.84 11.8 51.55 6270 4.99 6.68 6.82 0.0365.75 68.84 49.4 0.417 60 1.95 13.5 54.83 6490 4.90 6.54 6.70 0.0386.00 72.49 51.8 0.438 63 2.07 15.2 58.13 6710 4.84 6.42 6.58 0.0416.50 79.78 56.5 0.479 69 2.31 19.2 64.78 7150 4.72 6.18 6.36 0.0456.75 83.43 58.9 0.500 73 2.43 21.4 68.12 7370 4.67 6.08 6.26 0.0477.00 87.07 61.3 0.521 76 2.55 23.7 71.48 7590 4.62 5.97 6.16 0.0504.00 49.98 30.7 0.271 39 1.34 5.1 37.46 5060 6.51 8.49 8.77 0.0234.50 58.54 36.0 0.313 45 1.59 7.1 44.68 5550 6.17 8.07 8.33 0.0274.75 62.81 38.8 0.333 48 1.72 8.2 48.37 5810 6.03 7.88 8.14 0.0295.00 67.09 41.7 0.354 51 1.86 9.5 52.10 6080 5.89 7.70 7.96 0.0325.50 75.65 47.0 0.396 57 2.13 12.5 59.67 6580 5.64 7.38 7.63 0.0365.75 79.92 49.4 0.417 60 2.26 14.2 63.49 6800 5.54 7.24 7.47 0.0386.00 84.20 51.8 0.438 63 2.40 16.1 67.34 7020 5.46 7.10 7.33 0.0416.50 92.76 56.5 0.479 69 2.68 20.2 75.10 7460 5.33 6.84 7.07 0.0456.75 97.03 58.9 0.500 73 2.82 22.5 79.00 7680 5.27 6.72 6.94 0.0477.00 101.31 61.3 0.521 76 2.96 25.0 82.92 7900 5.21 6.61 6.83 0.0504.00 55.70 30.7 0.271 39 1.49 5.3 41.82 5350 7.11 9.05 9.36 0.0234.50 65.38 36.0 0.313 45 1.78 7.4 49.93 5840 6.74 8.61 8.90 0.0274.75 70.22 38.8 0.333 48 1.93 8.6 54.07 6100 6.58 8.41 8.69 0.0295.00 75.06 41.7 0.354 51 2.08 10.0 58.27 6370 6.42 8.22 8.50 0.0325.50 84.73 47.0 0.396 57 2.38 13.1 66.77 6870 6.15 7.88 8.15 0.0365.75 89.57 49.4 0.417 60 2.53 14.9 71.08 7090 6.03 7.73 7.98 0.0386.00 94.41 51.8 0.438 63 2.69 16.8 75.41 7310 5.95 7.58 7.83 0.0416.50 104.09 56.5 0.479 69 3.00 21.1 84.14 7750 5.81 7.31 7.55 0.0456.75 108.93 58.9 0.500 73 3.16 23.5 88.54 7970 5.74 7.18 7.42 0.0477.00 113.76 61.3 0.521 76 3.31 26.1 92.95 8190 5.67 7.06 7.30 0.0504.00 55.70 30.7 0.271 39 1.83 5.8 41.82 5710 8.14 10.15 10.49 0.0234.50 65.38 36.0 0.313 45 2.19 8.1 49.93 6480 7.71 9.66 9.98 0.0274.75 70.22 38.8 0.333 48 2.37 9.5 54.07 6740 7.51 9.44 9.75 0.0295.00 75.06 41.7 0.354 51 2.56 10.9 58.27 7010 7.34 9.23 9.54 0.0325.50 84.73 47.0 0.396 57 2.94 14.3 66.77 7510 7.02 8.85 9.15 0.0365.75 89.57 49.4 0.417 60 3.13 16.3 71.08 7730 6.88 8.68 8.97 0.0386.00 94.41 51.8 0.438 63 3.32 18.3 75.41 7950 6.79 8.52 8.80 0.0416.50 104.09 56.5 0.479 69 3.71 23.0 84.14 8390 6.62 8.21 8.49 0.0456.75 108.93 58.9 0.500 73 3.91 25.6 88.54 8610 6.54 8.08 8.34 0.0477.00 113.76 61.3 0.521 76 4.10 28.3 92.95 8830 6.46 7.94 8.21 0.050

Slab φφφφφMnf Ac Vol. W Sc Iav φφφφφMno φφφφφVnt AwwfDepth in.k in 2 ft3/ft2 psf in 3 in 3 in.k lbs. 1span 2span 3span

COMPOSITE PROPERTIES

22 g

age

20

gage

19

gage

18

gage

16

gage

Max. unshored spans, ft.

area above the arrowindicates 1 STUD/FT.

area below arrowindicates NO STUDS

27

The Uniform Live Loads are based onthe LRFD equation φMn = (l.6L+1.2D)l2 8.Although there are other load combinationsthat may require investigation, this willcontrol most of the time. The equationassumes there is no negative bendingreinforcement over the beams andtherefore each composite slab is a singlespan. Two sets of values are shown; φMnf

is used to calculate the uniform load whenthe full required number of studs is present;φMno is used to calculate the load when nostuds are present. A straight lineinterpolation can be done if the averagenumber of studs is between zero and therequired number needed to develop the“full” factored moment. The tabulated loadsare checked for shear controlling (it seldomdoes), and also limited to a live loaddeflection of 1/360 of the span.

An upper limit of 400 psf has been appliedto the tabulated loads. This has been doneto guard against equating large concen-trated to uniform loads. Concentrated loadsmay require special analysis and design totake care of servicibility requirements notcovered by simply using a uniform loadvalue. On the other hand, for any loadcombination the values provided by thecomposite properties can be used in thecalculations.

Welded wire fabric in the required amountis assumed for the table values. If weldedwire fabric is not present, deduct 10%from the listed loads.

Refer to the example problems for the useof the tables.

*

1.5 x 12" DECK Fy = 33ksi f 'c = 3 ksi 145 pcf concrete

1.5" LOK-FLOOR

4.00 36.40 400 400 390 330 280 240 205 180 155 140 120 105 954.50 42.43 400 400 400 385 325 280 240 210 185 160 140 125 1105.00 48.46 400 400 400 400 375 320 275 240 210 185 160 145 1255.50 54.50 400 400 400 400 400 360 310 270 235 205 185 160 1456.00 60.53 400 400 400 400 400 400 345 300 265 230 205 180 1606.50 66.56 400 400 400 400 400 400 380 330 290 255 225 200 1756.75 69.57 400 400 400 400 400 400 395 345 300 265 235 205 1857.00 72.59 400 400 400 400 400 400 400 360 315 275 245 215 1904.00 43.31 400 400 400 395 340 290 250 220 190 170 150 135 1204.50 50.61 400 400 400 400 395 340 295 255 225 200 175 155 1405.00 57.90 400 400 400 400 400 390 335 295 260 225 200 180 1605.50 65.19 400 400 400 400 400 400 380 330 290 255 225 200 1806.00 72.49 400 400 400 400 400 400 400 370 325 285 255 225 2006.50 79.78 400 400 400 400 400 400 400 400 355 315 280 250 2206.75 83.43 400 400 400 400 400 400 400 400 375 330 290 260 2307.00 87.07 400 400 400 400 400 400 400 400 390 345 305 270 2404.00 49.98 400 400 400 400 395 340 295 255 225 200 175 160 1404.50 58.54 400 400 400 400 400 400 345 300 265 235 210 185 1655.00 67.09 400 400 400 400 400 400 395 345 305 270 240 215 1905.50 75.65 400 400 400 400 400 400 400 390 345 305 270 240 2156.00 84.20 400 400 400 400 400 400 400 400 385 340 300 270 2406.50 92.76 400 400 400 400 400 400 400 400 400 375 335 295 2656.75 97.03 400 400 400 400 400 400 400 400 400 390 350 310 2807.00 101.31 400 400 400 400 400 400 400 400 400 400 365 325 2904.00 55.70 400 400 400 400 400 380 330 290 255 225 200 180 1604.50 65.38 400 400 400 400 400 400 390 340 300 265 235 210 1905.00 75.06 400 400 400 400 400 400 400 395 345 305 270 245 2205.50 84.73 400 400 400 400 400 400 400 400 390 345 310 275 2456.00 94.41 400 400 400 400 400 400 400 400 400 385 345 305 2756.50 104.09 400 400 400 400 400 400 400 400 400 400 380 340 3056.75 108.93 400 400 400 400 400 400 400 400 400 400 400 355 3207.00 113.76 400 400 400 400 400 400 400 400 400 400 400 370 3354.00 55.70 400 400 400 400 400 380 330 290 255 225 200 180 1604.50 65.38 400 400 400 400 400 400 390 340 300 265 235 210 1905.00 75.06 400 400 400 400 400 400 400 395 345 305 270 245 2205.50 84.73 400 400 400 400 400 400 400 400 390 345 310 275 2456.00 94.41 400 400 400 400 400 400 400 400 400 385 345 305 2756.50 104.09 400 400 400 400 400 400 400 400 400 400 380 340 3056.75 108.93 400 400 400 400 400 400 400 400 400 400 400 355 3207.00 113.76 400 400 400 400 400 400 400 400 400 400 400 370 3354.00 27.28 400 345 285 240 200 170 145 125 110 95 85 75 654.50 32.47 400 400 340 285 240 205 175 150 130 115 100 90 755.00 37.79 400 400 400 335 280 240 205 180 155 135 120 105 905.50 43.20 400 400 400 380 325 275 235 205 180 155 135 120 1056.00 48.68 400 400 400 400 365 310 270 230 200 175 155 135 1206.50 54.22 400 400 400 400 400 350 300 260 225 195 175 150 1356.75 57.00 400 400 400 400 400 365 315 275 240 210 180 160 1407.00 59.79 400 400 400 400 400 385 330 285 250 220 190 170 1504.00 32.48 400 400 345 290 245 210 180 155 135 120 105 90 804.50 38.69 400 400 400 345 295 250 215 190 165 145 125 110 1005.00 45.06 400 400 400 400 345 295 255 220 190 170 150 130 1155.50 51.55 400 400 400 400 395 335 290 255 220 195 170 150 1356.00 58.13 400 400 400 400 400 380 330 285 250 220 195 170 1506.50 64.78 400 400 400 400 400 400 370 320 280 245 215 190 1706.75 68.12 400 400 400 400 400 400 390 335 295 260 230 200 1807.00 71.48 400 400 400 400 400 400 400 355 310 270 240 210 1904.00 37.46 400 400 400 340 290 245 215 185 160 140 125 110 1004.50 44.68 400 400 400 400 345 295 255 220 195 170 150 135 1205.00 52.10 400 400 400 400 400 345 300 260 230 200 175 155 1405.50 59.67 400 400 400 400 400 395 345 300 260 230 205 180 1606.00 67.34 400 400 400 400 400 400 390 340 295 260 230 205 1856.50 75.10 400 400 400 400 400 400 400 380 335 295 260 230 2056.75 79.00 400 400 400 400 400 400 400 400 350 310 275 245 2157.00 82.92 400 400 400 400 400 400 400 400 370 325 285 255 2254.00 41.82 400 400 400 380 325 280 240 210 185 160 145 125 1154.50 49.93 400 400 400 400 390 335 290 250 220 195 170 155 1355.00 58.27 400 400 400 400 400 390 340 295 260 230 200 180 1605.50 66.77 400 400 400 400 400 400 390 340 300 265 235 210 1856.00 75.41 400 400 400 400 400 400 400 385 340 300 265 235 2106.50 84.14 400 400 400 400 400 400 400 400 380 335 295 265 2356.75 88.54 400 400 400 400 400 400 400 400 400 355 315 280 2507.00 92.95 400 400 400 400 400 400 400 400 400 370 330 295 2604.00 41.82 400 400 400 380 325 280 240 210 185 160 145 125 1154.50 49.93 400 400 400 400 390 335 290 250 220 195 170 155 1355.00 58.27 400 400 400 400 400 390 340 295 260 230 200 180 1605.50 66.77 400 400 400 400 400 400 390 340 300 265 235 210 1856.00 75.41 400 400 400 400 400 400 400 385 340 300 265 235 2106.50 84.14 400 400 400 400 400 400 400 400 380 335 295 265 2356.75 88.54 400 400 400 400 400 400 400 400 400 355 315 280 2507.00 92.95 400 400 400 400 400 400 400 400 400 370 330 295 260

Slab φφφφφMn5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00Depth in.k

L, Uniform Live Loads, psf *22 g

age

20

gage

19

gage

18

gage

16

gage

22 g

age

20

gage

19

gage

18

gage

16

gage

United Steel Deck, Inc.

The Deck Section Properties are per foot of width. The Ivalue is for positive bending (in.4); t is the gage thickness ininches; w is the weight in pounds per square foot; Sp and Sn

are the section moduli for positive and negative bending (in.3);Rb and φφφφφVn. are the interior reaction and the shear in pounds(per foot of width); studs is the number of studs required per footin order to obtain the full resisting moment, φφφφφMnf.

The Composite Properties are a list of values for thecomposite slab. The slab depth is the distance from thebottom of the steel deck to the top of the slab in inches asshown on the sketch. U.L. ratings generally refer to the coverover the top of the deck so it is important to be aware of thedifference in names. φφφφφMnf is the factored resisting momentprovided by the composite slab when the “full” number ofstuds as shown in the upper table are in place; inch kips (perfoot of width). Ac is the area of concrete available to resistshear, in.2 per foot of width. Vol. is the volume of concrete inft.3 per ft.2 needed to make up the slab; no allowance for frameor deck deflection is included. W is the concrete weight inpounds per ft.2. Sc is the section modulus of the “cracked”concrete composite slab; in.3 per foot of width. Iav is theaverage of the “cracked” and “uncracked” moments of inertiaof the transformed composite slab; in.4 per foot of width. The Iav

transformed section analysis is based on steel; therefore, tocalculate deflections the appropriate modulus of elasticity to useis 29.5 x 106 psi. φφφφφMno is the factored resisting moment of thecomposite slab if there are no studs on the beams (the deckis attached to the beams or walls on which it is resting) inchkips (per foot of width). φφφφφVnt is the factored vertical shearresistance of the composite system; it is the sum of the shearresistances of the steel deck and the concrete but is notallowed to exceed φφφφφ4(f'c)½Ac; pounds (per foot of width). Thenext three columns list the maximum unshored spans infeet; these values are obtained by using the constructionloading requirements of the SDI; combined bending andshear, deflection, and interior reactions are considered incalculating these values. Awwf is the minimum area of weldedwire fabric recommended for temperature reinforcing in thecomposite slab; square inches per foot.

28

Gage t w A s I S p S n R b φφφφφVn studs

22 0.0295 1.5 0.440 0.338 0.284 0.302 714 1990 0.3620 0.0358 1.8 0.540 0.420 0.367 0.387 1010 2410 0.4319 0.0418 2.1 0.630 0.490 0.445 0.458 1330 2810 0.5118 0.0474 2.4 0.710 0.560 0.523 0.529 1680 3180 0.5716 0.0598 3.1 0.900 0.700 0.654 0.654 2470 3990 0.72

DECK PROPERTIES

2" LOK-FLOOR

2 x 12" DECK Fy = 33ksi f 'c = 3 ksi 145 pcf concrete

24" and 36" cover (36" shown)

2"

12"

t

Slab Depth

2" LOK-FLOOR

4.50 40.27 32.6 0.292 42 1.05 5.9 29.40 5030 5.82 7.83 7.92 0.0235.00 46.44 37.5 0.333 48 1.23 8.0 34.53 5480 5.54 7.47 7.56 0.0275.25 49.53 40.0 0.354 51 1.32 9.2 37.16 5720 5.41 7.31 7.39 0.0295.50 52.61 42.6 0.375 54 1.42 10.5 39.81 5960 5.30 7.16 7.24 0.0326.00 58.78 48.0 0.417 60 1.61 13.5 45.21 6460 5.09 6.89 6.97 0.0366.25 61.87 50.8 0.438 63 1.71 15.3 47.95 6720 5.03 6.76 6.84 0.0386.50 64.95 53.6 0.458 66 1.81 17.1 50.70 6980 4.97 6.65 6.72 0.0417.00 71.12 59.5 0.500 73 2.01 21.2 56.26 7530 4.85 6.43 6.51 0.0457.25 74.21 61.9 0.521 76 2.11 23.5 59.07 7750 4.79 6.32 6.41 0.0477.50 77.29 64.3 0.542 79 2.21 26.0 61.88 7970 4.74 6.22 6.31 0.0504.50 48.60 32.6 0.292 42 1.26 6.3 35.43 5450 6.81 8.97 9.27 0.0235.00 56.18 37.5 0.333 48 1.48 8.6 41.65 5900 6.47 8.55 8.83 0.0275.25 59.96 40.0 0.354 51 1.60 9.8 44.84 6140 6.32 8.36 8.63 0.0295.50 63.75 42.6 0.375 54 1.71 11.3 48.07 6380 6.18 8.18 8.45 0.0326.00 71.32 48.0 0.417 60 1.95 14.5 54.63 6880 5.94 7.85 8.11 0.0366.25 75.11 50.8 0.438 63 2.07 16.3 57.96 7140 5.86 7.70 7.95 0.0386.50 78.90 53.6 0.458 66 2.19 18.2 61.31 7400 5.79 7.56 7.80 0.0417.00 86.47 59.5 0.500 73 2.43 22.6 68.09 7950 5.65 7.29 7.53 0.0457.25 90.26 61.9 0.521 76 2.55 25.0 71.50 8170 5.58 7.17 7.41 0.0477.50 94.05 64.3 0.542 79 2.67 27.6 74.93 8390 5.52 7.05 7.28 0.0504.50 55.85 32.6 0.292 42 1.45 6.7 40.69 5850 7.65 9.76 10.08 0.0235.00 64.68 37.5 0.333 48 1.71 9.0 47.87 6300 7.26 9.30 9.61 0.0275.25 69.10 40.0 0.354 51 1.84 10.4 51.56 6540 7.09 9.09 9.39 0.0295.50 73.52 42.6 0.375 54 1.97 11.9 55.30 6780 6.93 8.90 9.19 0.0326.00 82.35 48.0 0.417 60 2.24 15.2 62.90 7280 6.65 8.54 8.83 0.0366.25 86.77 50.8 0.438 63 2.38 17.1 66.76 7540 6.56 8.38 8.66 0.0386.50 91.19 53.6 0.458 66 2.52 19.2 70.65 7800 6.48 8.23 8.50 0.0417.00 100.03 59.5 0.500 73 2.80 23.8 78.50 8350 6.32 7.94 8.20 0.0457.25 104.44 61.9 0.521 76 2.94 26.3 82.46 8570 6.24 7.81 8.07 0.0477.50 108.86 64.3 0.542 79 3.08 29.0 86.45 8790 6.17 7.68 7.94 0.0504.50 62.08 32.6 0.292 42 1.62 7.0 45.34 6080 8.42 10.48 10.83 0.0235.00 72.04 37.5 0.333 48 1.90 9.5 53.36 6670 7.98 9.99 10.32 0.0275.25 77.02 40.0 0.354 51 2.05 10.9 57.48 6910 7.79 9.77 10.10 0.0295.50 82.00 42.6 0.375 54 2.20 12.4 61.66 7150 7.61 9.56 9.88 0.0326.00 91.95 48.0 0.417 60 2.50 15.9 70.18 7650 7.30 9.18 9.49 0.0366.25 96.93 50.8 0.438 63 2.66 17.9 74.50 7910 7.20 9.01 9.31 0.0386.50 101.91 53.6 0.458 66 2.81 20.0 78.85 8170 7.11 8.85 9.14 0.0417.00 111.87 59.5 0.500 73 3.13 24.8 87.66 8720 6.93 8.54 8.82 0.0457.25 116.85 61.9 0.521 76 3.28 27.4 92.10 8940 6.85 8.40 8.68 0.0477.50 121.83 64.3 0.542 79 3.44 30.2 96.57 9160 6.77 8.26 8.54 0.0504.50 62.08 32.6 0.292 42 1.99 7.7 45.34 6080 9.58 11.63 12.02 0.0235.00 72.04 37.5 0.333 48 2.35 10.4 53.36 6980 9.08 11.10 11.47 0.0275.25 77.02 40.0 0.354 51 2.53 11.9 57.48 7450 8.85 10.85 11.22 0.0295.50 82.00 42.6 0.375 54 2.72 13.6 61.66 7940 8.65 10.63 10.98 0.0326.00 91.95 48.0 0.417 60 3.10 17.4 70.18 8460 8.29 10.21 10.55 0.0366.25 96.93 50.8 0.438 63 3.29 19.5 74.50 8720 8.17 10.02 10.35 0.0386.50 101.91 53.6 0.458 66 3.48 21.8 78.85 8980 8.07 9.84 10.17 0.0417.00 111.87 59.5 0.500 73 3.88 27.0 87.66 9530 7.86 9.50 9.82 0.0457.25 116.85 61.9 0.521 76 4.08 29.8 92.10 9750 7.77 9.35 9.66 0.0477.50 121.83 64.3 0.542 79 4.28 32.8 96.57 9970 7.67 9.20 9.50 0.050

Slab φφφφφMnf Ac Vol. W Sc Iav φφφφφMno φφφφφVnt AwwfDepth in.k in 2 ft3/ft2 psf in 3 in 3 in.k lbs. 1span 2span 3span

COMPOSITE PROPERTIES

22 g

age

20

gage

19

gage

18

gage

16

gage

Max. unshored spans, ft.

area above the arrowindicates 1 STUD/FT.

area below arrowindicates NO STUDS

29

The Uniform Live Loads are based onthe LRFD equation φMn = (l.6L+1.2D)l2 8.Although there are other load combinationsthat may require investigation, this willcontrol most of the time. The equationassumes there is no negative bendingreinforcement over the beams andtherefore each composite slab is a singlespan. Two sets of values are shown; φMnf

is used to calculate the uniform load whenthe full required number of studs is present;φMno is used to calculate the load when nostuds are present. A straight lineinterpolation can be done if the averagenumber of studs is between zero and therequired number needed to develop the“full” factored moment. The tabulated loadsare checked for shear controlling (it seldomdoes), and also limited to a live loaddeflection of 1/360 of the span.

An upper limit of 400 psf has been appliedto the tabulated loads. This has been doneto guard against equating large concen-trated to uniform loads. Concentrated loadsmay require special analysis and design totake care of servicibility requirements notcovered by simply using a uniform loadvalue. On the other hand, for any loadcombination the values provided by thecomposite properties can be used in thecalculations.

Welded wire fabric in the required amountis assumed for the table values. If weldedwire fabric is not present, deduct 10%from the listed loads.

Refer to the example problems for the useof the tables.

*

2 x 12" DECK Fy = 33ksi f 'c = 3 ksi 145 pcf concrete

2" LOK-FLOOR

4.50 40.27 400 365 310 265 230 200 175 155 135 120 105 95 855.00 46.44 400 400 360 305 265 230 200 175 155 140 125 110 955.50 52.61 400 400 400 350 300 260 230 200 175 155 140 125 1106.00 58.78 400 400 400 390 335 295 255 225 200 175 155 140 1256.50 64.95 400 400 400 400 370 325 285 250 220 195 175 155 1357.00 71.12 400 400 400 400 400 355 310 275 240 215 190 170 1507.25 74.21 400 400 400 400 400 370 325 285 250 225 200 175 1557.50 77.29 400 400 400 400 400 385 340 295 260 230 205 185 1654.50 48.60 400 400 380 325 285 245 215 190 170 150 135 120 1105.00 56.18 400 400 400 380 330 285 250 220 195 175 155 140 1255.50 63.75 400 400 400 400 375 325 285 250 225 200 175 160 1406.00 71.32 400 400 400 400 400 365 320 285 250 225 200 180 1606.50 78.90 400 400 400 400 400 400 355 315 280 245 220 195 1757.00 86.47 400 400 400 400 400 400 390 345 305 270 240 215 1957.25 90.26 400 400 400 400 400 400 400 360 320 285 255 225 2057.50 94.05 400 400 400 400 400 400 400 375 330 295 265 235 2104.50 55.85 400 400 400 380 330 290 255 225 200 180 160 145 1305.00 64.68 400 400 400 400 385 335 295 260 230 205 185 165 1505.50 73.52 400 400 400 400 400 380 335 295 265 235 210 190 1706.00 82.35 400 400 400 400 400 400 375 335 295 265 235 215 1906.50 91.19 400 400 400 400 400 400 400 370 330 295 265 235 2107.00 100.03 400 400 400 400 400 400 400 400 360 320 290 260 2357.25 104.44 400 400 400 400 400 400 400 400 375 335 300 270 2457.50 108.86 400 400 400 400 400 400 400 400 395 350 315 280 2554.50 62.08 400 400 400 400 370 325 285 255 225 200 180 160 1455.00 72.04 400 400 400 400 400 375 335 295 260 235 210 190 1705.50 82.00 400 400 400 400 400 400 380 335 300 265 240 215 1956.00 91.95 400 400 400 400 400 400 400 375 335 300 270 245 2206.50 101.91 400 400 400 400 400 400 400 400 375 335 300 270 2457.00 111.87 400 400 400 400 400 400 400 400 400 365 330 295 2707.25 116.85 400 400 400 400 400 400 400 400 400 385 345 310 2807.50 121.83 400 400 400 400 400 400 400 400 400 400 360 325 2904.50 62.08 400 400 400 400 370 325 285 255 225 200 180 160 1455.00 72.04 400 400 400 400 400 375 335 295 260 235 210 190 1705.50 82.00 400 400 400 400 400 400 380 335 300 265 240 215 1956.00 91.95 400 400 400 400 400 400 400 375 335 300 270 245 2206.50 101.91 400 400 400 400 400 400 400 400 375 335 300 270 2457.00 111.87 400 400 400 400 400 400 400 400 400 365 330 295 2707.25 116.85 400 400 400 400 400 400 400 400 400 385 345 310 2807.50 121.83 400 400 400 400 400 400 400 400 400 400 360 325 2904.50 29.40 305 255 215 185 160 135 120 105 90 80 70 60 505.00 34.53 360 305 255 220 185 160 140 120 105 95 80 70 655.50 39.81 400 350 295 255 215 190 165 140 125 110 95 85 756.00 45.21 400 400 340 290 250 215 185 160 140 125 110 95 856.50 50.70 400 400 380 325 280 240 210 185 160 140 125 110 957.00 56.26 400 400 400 360 310 270 235 205 180 155 140 120 1057.25 59.07 400 400 400 380 325 285 245 215 190 165 145 130 1157.50 61.88 400 400 400 400 345 295 260 225 200 175 155 135 1204.50 35.43 375 315 270 230 200 170 150 130 115 100 90 80 705.00 41.65 400 375 315 270 235 205 175 155 135 120 105 95 855.50 48.07 400 400 365 315 270 235 205 180 160 140 125 110 956.00 54.63 400 400 400 360 310 270 235 205 180 160 140 125 1106.50 61.31 400 400 400 400 350 300 265 230 205 180 160 140 1257.00 68.09 400 400 400 400 390 335 295 260 230 200 180 160 1407.25 71.50 400 400 400 400 400 355 310 270 240 210 190 165 1507.50 74.93 400 400 400 400 400 370 325 285 250 225 200 175 1554.50 40.69 400 370 315 270 230 200 175 155 135 120 105 95 855.00 47.87 400 400 370 315 275 240 210 185 160 145 125 115 1005.50 55.30 400 400 400 365 320 275 240 215 190 165 150 130 1206.00 62.90 400 400 400 400 365 315 275 245 215 190 170 150 1356.50 70.65 400 400 400 400 400 355 310 275 245 215 190 170 1557.00 78.50 400 400 400 400 400 395 350 305 270 240 215 190 1707.25 82.46 400 400 400 400 400 400 365 320 285 255 225 200 1807.50 86.45 400 400 400 400 400 400 385 340 300 265 235 210 1904.50 45.34 400 400 350 300 260 230 200 175 155 140 125 110 1005.00 53.36 400 400 400 355 310 270 235 210 185 165 145 130 1155.50 61.66 400 400 400 400 360 315 275 240 215 190 170 150 1356.00 70.18 400 400 400 400 400 360 315 275 245 220 195 175 1556.50 78.85 400 400 400 400 400 400 355 310 275 245 220 195 1757.00 87.66 400 400 400 400 400 400 395 350 310 275 245 220 1957.25 92.10 400 400 400 400 400 400 400 365 325 290 260 230 2107.50 96.57 400 400 400 400 400 400 400 385 340 305 270 245 2204.50 45.34 400 400 350 300 260 230 200 175 155 140 125 110 1005.00 53.36 400 400 400 355 310 270 235 210 185 165 145 130 1155.50 61.66 400 400 400 400 360 315 275 240 215 190 170 150 1356.00 70.18 400 400 400 400 400 360 315 275 245 220 195 175 1556.50 78.85 400 400 400 400 400 400 355 310 275 245 220 195 1757.00 87.66 400 400 400 400 400 400 395 350 310 275 245 220 1957.25 92.10 400 400 400 400 400 400 400 365 325 290 260 230 2107.50 96.57 400 400 400 400 400 400 400 385 340 305 270 245 220

Slab φφφφφMn6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00 11.50 12.00Depth in.k

L, Uniform Live Loads, psf *22 g

age

20

gage

19

gage

18

gage

16

gage

22 g

age

20

gage

19

gage

18

gage

16

gage

United Steel Deck, Inc.

The Deck Section Properties are per foot of width. The Ivalue is for positive bending (in.4); t is the gage thickness ininches; w is the weight in pounds per square foot; Sp and Sn

are the section moduli for positive and negative bending (in.3);Rb and φφφφφVn. are the interior reaction and the shear in pounds(per foot of width); studs is the number of studs required per footin order to obtain the full resisting moment, φφφφφMnf.

The Composite Properties are a list of values for thecomposite slab. The slab depth is the distance from thebottom of the steel deck to the top of the slab in inches asshown on the sketch. U.L. ratings generally refer to the coverover the top of the deck so it is important to be aware of thedifference in names. φφφφφMnf is the factored resisting momentprovided by the composite slab when the “full” number ofstuds as shown in the upper table are in place; inch kips (perfoot of width). Ac is the area of concrete available to resistshear, in.2 per foot of width. Vol. is the volume of concrete inft.3 per ft.2 needed to make up the slab; no allowance for frameor deck deflection is included. W is the concrete weight inpounds per ft.2. Sc is the section modulus of the “cracked”concrete composite slab; in.3 per foot of width. Iav is theaverage of the “cracked” and “uncracked” moments of inertiaof the transformed composite slab; in.4 per foot of width. The Iav

transformed section analysis is based on steel; therefore, tocalculate deflections the appropriate modulus of elasticity to useis 29.5 x 106 psi. φφφφφMno is the factored resisting moment of thecomposite slab if there are no studs on the beams (the deckis attached to the beams or walls on which it is resting) inchkips (per foot of width). φφφφφVnt is the factored vertical shearresistance of the composite system; it is the sum of the shearresistances of the steel deck and the concrete but is notallowed to exceed φφφφφ4(f'c)½Ac; pounds (per foot of width). Thenext three columns list the maximum unshored spans infeet; these values are obtained by using the constructionloading requirements of the SDI; combined bending andshear, deflection, and interior reactions are considered incalculating these values. Awwf is the minimum area of weldedwire fabric recommended for temperature reinforcing in thecomposite slab; square inches per foot.

30

3 x 12" DECK Fy = 33ksi f 'c = 3 ksi 145 pcf concrete

Gage t w A s I S p S n R b φφφφφVn studs

22 0.0295 1.7 0.505 0.797 0.454 0.500 718 2190 0.4120 0.0358 2.1 0.610 0.993 0.583 0.620 1020 3220 0.5019 0.0418 2.4 0.710 1.158 0.708 0.726 1350 4310 0.5818 0.0474 2.8 0.810 1.324 0.832 0.832 1720 4880 0.6616 0.0598 3.5 1.020 1.666 1.045 1.045 2540 6130 0.83

DECK PROPERTIES

3" LOK-FLOOR

24" and 36" cover (36" shown)

3"

12"

t

Slab Depth

3" LOK-FLOOR

5.50 52.80 37.6 0.333 48 1.33 10.1 37.18 5690 7.36 9.64 9.96 0.0236.00 59.89 42.0 0.375 54 1.52 13.0 42.70 6100 7.02 9.22 9.52 0.0276.25 63.43 44.3 0.396 57 1.62 14.6 45.55 6310 6.87 9.02 9.32 0.0296.50 66.97 46.6 0.417 60 1.73 16.4 48.44 6530 6.74 8.84 9.13 0.0327.00 74.05 51.3 0.458 66 1.94 20.3 54.34 6970 6.56 8.50 8.78 0.0367.25 77.59 53.8 0.479 69 2.04 22.5 57.34 7200 6.48 8.35 8.62 0.0387.50 81.13 56.3 0.500 73 2.15 24.8 60.37 7430 6.40 8.13 8.47 0.0418.00 88.22 61.3 0.542 79 2.37 29.9 66.51 7900 6.25 7.64 8.18 0.0458.25 91.76 63.9 0.563 82 2.48 32.7 69.61 8140 6.18 7.41 8.05 0.0478.50 95.30 66.6 0.583 85 2.59 35.7 72.73 8390 6.11 7.20 7.92 0.0505.50 62.81 37.6 0.333 48 1.58 10.8 44.32 6720 8.52 10.82 11.18 0.0236.00 71.37 42.0 0.375 54 1.81 13.8 50.89 7130 8.12 10.35 10.70 0.0276.25 75.65 44.3 0.396 57 1.94 15.5 54.28 7340 7.94 10.14 10.48 0.0296.50 79.92 46.6 0.417 60 2.06 17.4 57.73 7560 7.78 9.94 10.27 0.0327.00 88.48 51.3 0.458 66 2.31 21.5 64.77 8000 7.58 9.57 9.89 0.0367.25 92.76 53.8 0.479 69 2.44 23.8 68.35 8230 7.48 9.40 9.71 0.0387.50 97.03 56.3 0.500 73 2.57 26.2 71.97 8460 7.39 9.24 9.54 0.0418.00 105.59 61.3 0.542 79 2.83 31.6 79.32 8930 7.21 8.94 9.23 0.0458.25 109.87 63.9 0.563 82 2.96 34.6 83.03 9170 7.13 8.80 9.09 0.0478.50 114.15 66.6 0.583 85 3.09 37.8 86.77 9420 7.05 8.66 8.95 0.0505.50 72.04 37.6 0.333 48 1.81 11.4 50.82 7000 9.53 11.74 12.13 0.0236.00 82.00 42.0 0.375 54 2.08 14.6 58.38 7820 9.07 11.24 11.61 0.0276.25 86.97 44.3 0.396 57 2.22 16.3 62.28 8240 8.87 11.01 11.38 0.0296.50 91.95 46.6 0.417 60 2.36 18.3 66.25 8650 8.69 10.80 11.16 0.0327.00 101.91 51.3 0.458 66 2.65 22.6 74.37 9090 8.46 10.40 10.75 0.0367.25 106.89 53.8 0.479 69 2.80 25.0 78.51 9320 8.35 10.22 10.56 0.0387.50 111.87 56.3 0.500 73 2.95 27.5 82.69 9550 8.24 10.04 10.38 0.0418.00 121.83 61.3 0.542 79 3.25 33.2 91.18 10020 8.04 9.72 10.05 0.0458.25 126.81 63.9 0.563 82 3.40 36.3 95.48 10260 7.95 9.57 9.89 0.0478.50 131.78 66.6 0.583 85 3.56 39.6 99.80 10510 7.86 9.43 9.74 0.0505.50 80.96 37.6 0.333 48 2.04 11.9 57.20 7000 10.44 12.55 12.97 0.0236.00 92.32 42.0 0.375 54 2.34 15.2 65.72 7820 9.94 12.02 12.42 0.0276.25 98.00 44.3 0.396 57 2.50 17.1 70.12 8240 9.71 11.78 12.17 0.0296.50 103.68 46.6 0.417 60 2.66 19.1 74.61 8680 9.51 11.55 11.94 0.0327.00 115.04 51.3 0.458 66 2.99 23.6 83.80 9560 9.25 11.13 11.50 0.0367.25 120.72 53.8 0.479 69 3.15 26.1 88.48 9890 9.13 10.94 11.30 0.0387.50 126.40 56.3 0.500 73 3.32 28.8 93.22 10120 9.02 10.75 11.11 0.0418.00 137.76 61.3 0.542 79 3.67 34.7 102.84 10590 8.80 10.41 10.75 0.0458.25 143.44 63.9 0.563 82 3.84 37.9 107.71 10830 8.69 10.25 10.59 0.0478.50 149.12 66.6 0.583 85 4.01 41.3 112.61 11080 8.59 10.09 10.43 0.0505.50 80.96 37.6 0.333 48 2.50 13.0 57.20 7000 11.85 14.04 14.51 0.0236.00 92.32 42.0 0.375 54 2.88 16.6 65.72 7820 11.27 13.45 13.90 0.0276.25 98.00 44.3 0.396 57 3.07 18.6 70.12 8240 11.01 13.18 13.62 0.0296.50 103.68 46.6 0.417 60 3.27 20.8 74.61 8680 10.78 12.93 13.36 0.0327.00 115.04 51.3 0.458 66 3.67 25.7 83.80 9560 10.49 12.46 12.88 0.0367.25 120.72 53.8 0.479 69 3.88 28.4 88.48 10010 10.35 12.24 12.65 0.0387.50 126.40 56.3 0.500 73 4.09 31.3 93.22 10480 10.22 12.04 12.44 0.0418.00 137.76 61.3 0.542 79 4.52 37.6 102.84 11420 9.96 11.66 12.05 0.0458.25 143.44 63.9 0.563 82 4.73 41.1 107.71 11910 9.85 11.48 11.86 0.0478.50 149.12 66.6 0.583 85 4.95 44.8 112.61 12330 9.73 11.31 11.69 0.050

Slab φφφφφMnf Ac Vol. W Sc Iav φφφφφMno φφφφφVnt AwwfDepth in.k in 2 ft3/ft2 psf in 3 in 3 in.k lbs. 1span 2span 3span

COMPOSITE PROPERTIES

22 g

age

20

gage

19

gage

18

gage

16

gage

Max. unshored spans, ft.

area above the arrowindicates 1 STUD/FT.

area below arrowindicates NO STUDS

31

The Uniform Live Loads are based onthe LRFD equation φMn = (l.6L+1.2D)l2 8.Although there are other load combinationsthat may require investigation, this willcontrol most of the time. The equationassumes there is no negative bendingreinforcement over the beams andtherefore each composite slab is a singlespan. Two sets of values are shown; φMnf

is used to calculate the uniform load whenthe full required number of studs is present;φMno is used to calculate the load when nostuds are present. A straight lineinterpolation can be done if the averagenumber of studs is between zero and therequired number needed to develop the“full” factored moment. The tabulated loadsare checked for shear controlling (it seldomdoes), and also limited to a live loaddeflection of 1/360 of the span.

An upper limit of 400 psf has been appliedto the tabulated loads. This has been doneto guard against equating large concen-trated to uniform loads. Concentrated loadsmay require special analysis and design totake care of servicibility requirements notcovered by simply using a uniform loadvalue. On the other hand, for any loadcombination the values provided by thecomposite properties can be used in thecalculations.

Welded wire fabric in the required amountis assumed for the table values. If weldedwire fabric is not present, deduct 10%from the listed loads.

Refer to the example problems for the useof the tables.

*

3" LOK-FLOOR

3 x 12" DECK Fy = 33ksi f 'c = 3 ksi 145 pcf concrete

5.50 52.80 235 205 180 160 145 130 115 105 95 85 75 65 606.00 59.89 265 235 205 185 165 145 130 120 105 95 85 75 706.50 66.97 300 265 230 205 185 165 145 130 120 105 95 85 757.00 74.05 330 290 255 230 205 180 165 145 130 120 105 95 857.50 81.13 360 320 280 250 225 200 180 160 145 130 115 105 958.00 88.22 395 345 305 275 245 220 195 175 155 140 125 115 1058.25 91.76 400 360 320 285 255 225 205 180 165 145 135 120 1058.50 95.30 400 375 330 295 265 235 210 190 170 155 140 125 1105.50 62.81 285 250 225 200 180 160 145 130 115 105 95 85 806.00 71.37 325 285 255 225 205 185 165 150 135 120 110 100 906.50 79.92 365 320 285 255 230 205 185 165 150 135 125 110 1007.00 88.48 400 355 315 285 255 225 205 185 165 150 135 125 1107.50 97.03 400 390 350 310 280 250 225 205 185 165 150 135 1258.00 105.59 400 400 380 340 305 270 245 220 200 180 165 150 1358.25 109.87 400 400 395 350 315 285 255 230 210 190 170 155 1408.50 114.15 400 400 400 365 330 295 265 240 215 195 180 160 1455.50 72.04 335 295 260 235 210 190 170 155 140 125 115 105 956.00 82.00 380 335 300 265 240 215 195 175 160 145 130 120 1106.50 91.95 400 375 335 300 270 245 220 200 180 165 150 135 1257.00 101.91 400 400 375 335 300 270 245 220 200 180 165 150 1357.50 111.87 400 400 400 365 330 295 270 240 220 200 180 165 1508.00 121.83 400 400 400 400 360 325 290 265 240 220 200 180 1658.25 126.81 400 400 400 400 375 335 305 275 250 225 205 190 1708.50 131.78 400 400 400 400 390 350 315 285 260 235 215 195 1805.50 80.96 380 335 300 270 240 215 195 180 160 145 135 120 1106.00 92.32 400 385 340 305 275 250 225 205 185 170 155 140 1306.50 103.68 400 400 385 345 310 280 255 230 210 190 175 160 1457.00 115.04 400 400 400 385 345 310 280 255 230 210 195 175 1607.50 126.40 400 400 400 400 380 340 310 280 255 235 210 195 1808.00 137.76 400 400 400 400 400 375 340 305 280 255 230 210 1958.25 143.44 400 400 400 400 400 390 350 320 290 265 240 220 2008.50 149.12 400 400 400 400 400 400 365 330 300 275 250 230 2105.50 80.96 380 335 300 270 240 215 195 180 160 145 135 120 1106.00 92.32 400 385 340 305 275 250 225 205 185 170 155 140 1306.50 103.68 400 400 385 345 310 280 255 230 210 190 175 160 1457.00 115.04 400 400 400 385 345 310 280 255 230 210 195 175 1607.50 126.40 400 400 400 400 380 340 310 280 255 235 210 195 1808.00 137.76 400 400 400 400 400 375 340 305 280 255 230 210 1958.25 143.44 400 400 400 400 400 390 350 320 290 265 240 220 2008.50 149.12 400 400 400 400 400 400 365 330 300 275 250 230 2105.50 37.18 155 135 115 105 90 80 70 60 55 45 40 35 306.00 42.70 180 155 135 120 105 90 80 70 65 55 50 45 356.50 48.44 205 175 155 135 120 105 95 85 75 65 55 50 457.00 54.34 230 200 175 155 135 120 105 95 85 75 65 55 507.50 60.37 255 225 195 170 150 135 120 105 95 80 75 65 558.00 66.51 280 245 215 190 170 150 130 115 105 90 80 70 658.25 69.61 295 260 230 200 175 155 140 125 110 95 85 75 658.50 72.73 310 270 240 210 185 165 145 130 115 100 90 80 705.50 44.32 190 165 145 130 115 100 90 80 70 65 55 50 456.00 50.89 220 195 170 150 135 120 105 95 85 75 65 60 506.50 57.73 250 220 195 170 150 135 120 105 95 85 75 70 607.00 64.77 280 250 220 195 170 155 135 120 110 95 85 75 707.50 71.97 315 275 245 215 190 170 150 135 120 110 95 85 758.00 79.32 350 305 270 240 215 190 170 150 135 120 110 95 858.25 83.03 365 320 285 250 225 200 180 160 140 125 115 100 908.50 86.77 380 335 295 265 235 210 185 165 150 135 120 105 955.50 50.82 225 195 175 155 135 120 110 95 85 80 70 65 556.00 58.38 260 225 200 180 160 140 125 115 100 90 80 75 656.50 66.25 295 260 230 205 180 160 145 130 115 105 95 85 757.00 74.37 330 290 260 230 205 185 165 145 130 120 105 95 857.50 82.69 370 325 290 255 230 205 185 165 150 135 120 110 958.00 91.18 400 360 320 285 255 225 205 180 165 150 135 120 1108.25 95.48 400 380 335 300 265 240 215 190 170 155 140 125 1158.50 99.80 400 395 350 310 280 250 225 200 180 165 145 135 1205.50 57.20 255 225 200 180 160 140 125 115 105 90 85 75 706.00 65.72 295 260 230 205 185 165 145 130 120 105 95 85 806.50 74.61 335 295 265 235 210 190 170 150 135 125 110 100 907.00 83.80 380 335 295 265 235 210 190 170 155 140 125 115 1057.50 93.22 400 375 330 295 265 235 215 190 175 155 140 130 1158.00 102.84 400 400 370 330 295 265 235 215 195 175 160 145 1308.25 107.71 400 400 385 345 310 275 250 225 200 185 165 150 1358.50 112.61 400 400 400 360 320 290 260 235 210 190 175 160 1455.50 57.20 255 225 200 180 160 140 125 115 105 90 85 75 706.00 65.72 295 260 230 205 185 165 145 130 120 105 95 85 806.50 74.61 335 295 265 235 210 190 170 150 135 125 110 100 907.00 83.80 380 335 295 265 235 210 190 170 155 140 125 115 1057.50 93.22 400 375 330 295 265 235 215 190 175 155 140 130 1158.00 102.84 400 400 370 330 295 265 235 215 195 175 160 145 1308.25 143.44 400 400 385 345 310 275 250 225 200 185 165 150 1358.50 112.61 400 400 400 360 320 290 260 235 210 190 175 160 145

Slab φφφφφMn9.00 9.50 10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00Depth in.k

L, Uniform Live Loads, psf *22 g

age

20

gage

19

gage

18

gage

16

gage

22 g

age

20

gage

19

gage

18

gage

16

gage

United Steel Deck, Inc.

The Deck Section Properties are per foot of width. The Ivalue is for positive bending (in.4); t is the gage thickness ininches; w is the weight in pounds per square foot; Sp and Sn

are the section moduli for positive and negative bending (in.3);Rb and φφφφφVn. are the interior reaction and the shear in pounds(per foot of width); studs is the number of studs required per footin order to obtain the full resisting moment, φφφφφMnf.

The Composite Properties are a list of values for thecomposite slab. The slab depth is the distance from thebottom of the steel deck to the top of the slab in inches asshown on the sketch. U.L. ratings generally refer to the coverover the top of the deck so it is important to be aware of thedifference in names. φφφφφMnf is the factored resisting momentprovided by the composite slab when the “full” number ofstuds as shown in the upper table are in place; inch kips (perfoot of width). Ac is the area of concrete available to resistshear, in.2 per foot of width. Vol. is the volume of concrete inft.3 per ft.2 needed to make up the slab; no allowance for frameor deck deflection is included. W is the concrete weight inpounds per ft.2. Sc is the section modulus of the “cracked”concrete composite slab; in.3 per foot of width. Iav is theaverage of the “cracked” and “uncracked” moments of inertiaof the transformed composite slab; in.4 per foot of width. The Iav

transformed section analysis is based on steel; therefore, tocalculate deflections the appropriate modulus of elasticity to useis 29.5 x 106 psi. φφφφφMno is the factored resisting moment of thecomposite slab if there are no studs on the beams (the deckis attached to the beams or walls on which it is resting) inchkips (per foot of width). φφφφφVnt is the factored vertical shearresistance of the composite system; it is the sum of the shearresistances of the steel deck and the concrete but is notallowed to exceed φφφφφ4(f'c)½Ac; pounds (per foot of width). Thenext three columns list the maximum unshored spans infeet; these values are obtained by using the constructionloading requirements of the SDI; combined bending andshear, deflection, and interior reactions are considered incalculating these values. Awwf is the minimum area of weldedwire fabric recommended for temperature reinforcing in thecomposite slab; square inches per foot.

32

Light Weight

Gage t w As I Sp Sn Rb φφφφφVn studs

22 0.0295 1.6 0.470 0.165 0.195 0.206 1320 2620 0.5220 0.0358 1.9 0.570 0.212 0.247 0.260 1880 3170 0.6319 0.0418 2.3 0.670 0.260 0.292 0.304 2500 3680 0.7318 0.0474 2.6 0.760 0.308 0.337 0.349 3200 4160 0.8316 0.0598 3.3 0.960 0.400 0.434 0.439 4750 5210 1.05

DECK PROPERTIES

6"

30" cover shown (36" preferred)

1½"

t

Slab Depth

B - LOK

1.5 x 6" DECK Fy = 33ksi f 'c = 3 ksi 115 pcf concrete

B-LOK

4.00 38.19 21.3 0.255 29 0.91 3.1 25.66 2980 5.14 6.82 6.91 0.0234.50 44.78 24.8 0.297 34 1.11 4.3 31.13 3460 4.90 6.53 6.61 0.0274.75 48.07 26.5 0.318 37 1.21 5.1 33.93 3700 4.80 6.39 6.47 0.0295.00 51.37 28.3 0.339 39 1.31 5.9 36.77 3960 4.70 6.27 6.34 0.0325.50 57.96 32.1 0.380 44 1.52 7.9 42.53 4480 4.52 6.04 6.11 0.0365.75 61.26 34.0 0.401 46 1.62 8.9 45.45 4750 4.43 5.94 6.01 0.0386.00 64.55 36.0 0.422 49 1.73 10.1 48.39 5030 4.36 5.84 5.91 0.0416.50 71.15 40.1 0.464 53 1.94 12.8 54.31 5420 4.21 5.66 5.73 0.0456.75 74.44 42.2 0.484 56 2.04 14.3 57.30 5570 4.15 5.58 5.64 0.0477.00 77.74 44.3 0.505 58 2.15 15.9 60.30 5720 4.09 5.50 5.56 0.0504.00 45.45 21.3 0.255 29 1.09 3.3 30.45 2980 6.02 8.01 8.11 0.0234.50 53.44 24.8 0.297 34 1.32 4.7 36.98 3460 5.72 7.64 7.74 0.0274.75 57.44 26.5 0.318 37 1.44 5.5 40.33 3700 5.59 7.48 7.57 0.0295.00 61.44 28.3 0.339 39 1.56 6.4 43.73 3960 5.47 7.33 7.41 0.0325.50 69.43 32.1 0.380 44 1.81 8.5 50.64 4480 5.25 7.05 7.13 0.0365.75 73.43 34.0 0.401 46 1.93 9.7 54.14 4750 5.15 6.92 7.00 0.0386.00 77.43 36.0 0.422 49 2.06 11.0 57.67 5030 5.06 6.80 6.88 0.0416.50 85.42 40.1 0.464 53 2.31 13.8 64.79 5600 4.89 6.58 6.66 0.0456.75 89.42 42.2 0.484 56 2.44 15.4 68.38 5890 4.81 6.48 6.56 0.0477.00 93.42 44.3 0.505 58 2.57 17.1 71.98 6190 4.73 6.39 6.46 0.0504.00 52.41 21.3 0.255 29 1.25 3.6 35.09 2980 6.70 8.94 9.05 0.0234.50 61.81 24.8 0.297 34 1.52 5.1 42.65 3460 6.36 8.52 8.62 0.0274.75 66.51 26.5 0.318 37 1.66 6.0 46.54 3700 6.21 8.33 8.43 0.0295.00 71.20 28.3 0.339 39 1.80 6.9 50.49 3960 6.08 8.16 8.25 0.0325.50 80.60 32.1 0.380 44 2.09 9.1 58.52 4480 5.83 7.84 7.93 0.0365.75 85.30 34.0 0.401 46 2.23 10.4 62.60 4750 5.71 7.69 7.78 0.0386.00 90.00 36.0 0.422 49 2.38 11.7 66.71 5030 5.61 7.56 7.65 0.0416.50 99.39 40.1 0.464 53 2.67 14.8 75.02 5600 5.41 7.31 7.39 0.0456.75 104.09 42.2 0.484 56 2.82 16.5 79.20 5890 5.32 7.19 7.28 0.0477.00 108.79 44.3 0.505 58 2.97 18.3 83.41 6190 5.24 7.08 7.17 0.0504.00 58.42 21.3 0.255 29 1.40 3.8 39.20 2980 7.34 9.64 9.93 0.0234.50 69.07 24.8 0.297 34 1.70 5.4 47.67 3460 6.96 9.19 9.44 0.0274.75 74.40 26.5 0.318 37 1.85 6.3 52.03 3700 6.79 8.99 9.23 0.0295.00 79.73 28.3 0.339 39 2.01 7.3 56.46 3960 6.64 8.80 9.03 0.0325.50 90.39 32.1 0.380 44 2.33 9.6 65.49 4480 6.36 8.46 8.67 0.0365.75 95.72 34.0 0.401 46 2.50 11.0 70.08 4750 6.24 8.30 8.51 0.0386.00 101.05 36.0 0.422 49 2.66 12.4 74.71 5030 6.12 8.15 8.35 0.0416.50 111.71 40.1 0.464 53 3.00 15.6 84.06 5600 5.90 7.88 8.07 0.0456.75 117.04 42.2 0.484 56 3.16 17.4 88.78 5890 5.80 7.75 7.94 0.0477.00 122.37 44.3 0.505 58 3.33 19.3 93.52 6190 5.71 7.63 7.82 0.0504.00 58.42 21.3 0.255 29 1.70 4.3 39.20 2980 8.58 10.76 11.12 0.0234.50 69.07 24.8 0.297 34 2.08 6.0 47.67 3460 8.12 10.27 10.61 0.0274.75 74.40 26.5 0.318 37 2.27 7.0 52.03 3700 7.92 10.05 10.38 0.0295.00 79.73 28.3 0.339 39 2.46 8.1 56.46 3960 7.73 9.84 10.17 0.0325.50 90.39 32.1 0.380 44 2.86 10.7 65.49 4480 7.40 9.46 9.78 0.0365.75 95.72 34.0 0.401 46 3.07 12.1 70.08 4750 7.25 9.28 9.60 0.0386.00 101.05 36.0 0.422 49 3.27 13.7 74.71 5030 7.11 9.12 9.43 0.0416.50 111.71 40.1 0.464 53 3.69 17.2 84.06 5600 6.85 8.81 9.11 0.0456.75 117.04 42.2 0.484 56 3.90 19.2 88.78 5890 6.74 8.67 8.96 0.0477.00 122.37 44.3 0.505 58 4.11 21.3 93.52 6190 6.62 8.54 8.82 0.050

Slab φφφφφMnf Ac Vol. W Sc Iav φφφφφMno φφφφφVnt AwwfDepth in.k in 2 ft3/ft2 psf in 3 in 3 in.k lbs. 1span 2span 3span

COMPOSITE PROPERTIES

22 g

age

20

gage

19

gage

18

gage

16

gage

Max. unshored spans, ft.

area above the arrowindicates 1 STUD/FT.

area below arrowindicates NO STUDS

33

The Uniform Live Loads are based onthe LRFD equation φMn = (l.6L+1.2D)l2 8.Although there are other load combinationsthat may require investigation, this willcontrol most of the time. The equationassumes there is no negative bendingreinforcement over the beams andtherefore each composite slab is a singlespan. Two sets of values are shown; φMnf

is used to calculate the uniform load whenthe full required number of studs is present;φMno is used to calculate the load when nostuds are present. A straight lineinterpolation can be done if the averagenumber of studs is between zero and therequired number needed to develop the“full” factored moment. The tabulated loadsare checked for shear controlling (it seldomdoes), and also limited to a live loaddeflection of 1/360 of the span.

An upper limit of 400 psf has been appliedto the tabulated loads. This has been doneto guard against equating large concen-trated to uniform loads. Concentrated loadsmay require special analysis and design totake care of servicibility requirements notcovered by simply using a uniform loadvalue. On the other hand, for any loadcombination the values provided by thecomposite properties can be used in thecalculations.

Welded wire fabric in the required amountis assumed for the table values. If weldedwire fabric is not present, deduct 10%from the listed loads.

Refer to the example problems for the useof the tables.

*

Light Weight

1.5 x 6" DECK Fy = 33ksi f 'c = 3 ksi 115 pcf concrete

B - LOK

4.00 38.19 400 400 400 355 300 260 225 195 175 155 135 115 1004.50 44.78 400 400 400 400 355 305 265 230 205 180 160 140 1254.75 48.07 400 400 400 400 380 330 285 250 220 195 170 155 1355.00 51.37 400 400 400 400 400 350 305 265 235 205 185 165 1455.50 57.96 400 400 400 400 400 395 345 300 265 235 210 185 1655.75 61.26 400 400 400 400 400 400 365 315 280 245 220 195 1756.00 64.55 400 400 400 400 400 400 385 335 295 260 230 205 1856.50 71.15 400 400 400 400 400 400 400 370 325 285 255 230 2054.00 45.45 400 400 400 400 365 315 270 240 200 170 145 125 1104.50 53.44 400 400 400 400 400 370 320 280 250 220 195 175 1554.75 57.44 400 400 400 400 400 395 345 300 265 235 210 190 1705.00 61.44 400 400 400 400 400 400 370 325 285 255 225 200 1805.50 69.43 400 400 400 400 400 400 400 365 325 285 255 230 2055.75 73.43 400 400 400 400 400 400 400 385 340 305 270 240 2156.00 77.43 400 400 400 400 400 400 400 400 360 320 285 255 2306.50 85.42 400 400 400 400 400 400 400 400 400 355 315 280 2554.00 52.41 400 400 400 400 400 365 310 255 215 185 160 135 1204.50 61.81 400 400 400 400 400 400 375 330 290 260 225 190 1654.75 66.51 400 400 400 400 400 400 400 355 315 280 250 220 1955.00 71.20 400 400 400 400 400 400 400 380 335 300 265 240 2155.50 80.60 400 400 400 400 400 400 400 400 380 340 300 270 2455.75 85.30 400 400 400 400 400 400 400 400 400 360 320 285 2556.00 90.00 400 400 400 400 400 400 400 400 400 375 335 300 2706.50 99.39 400 400 400 400 400 400 400 400 400 400 370 335 3004.00 58.42 400 400 400 400 400 395 325 275 230 195 170 145 1254.50 69.07 400 400 400 400 400 400 400 370 325 275 235 205 1754.75 74.40 400 400 400 400 400 400 400 400 355 315 275 240 2055.00 79.73 400 400 400 400 400 400 400 400 380 335 300 270 2405.50 90.39 400 400 400 400 400 400 400 400 400 385 340 305 2755.75 95.72 400 400 400 400 400 400 400 400 400 400 360 325 2956.00 101.05 400 400 400 400 400 400 400 400 400 400 385 345 3106.50 111.71 400 400 400 400 400 400 400 400 400 400 400 380 3454.00 58.42 400 400 400 400 400 395 325 275 230 195 170 145 1254.50 69.07 400 400 400 400 400 400 400 370 325 275 235 205 1754.75 74.40 400 400 400 400 400 400 400 400 355 315 275 240 2055.00 79.73 400 400 400 400 400 400 400 400 380 335 300 270 2405.50 90.39 400 400 400 400 400 400 400 400 400 385 340 305 2755.75 95.72 400 400 400 400 400 400 400 400 400 400 360 325 2956.00 101.05 400 400 400 400 400 400 400 400 400 400 385 345 3106.50 111.71 400 400 400 400 400 400 400 400 400 400 400 380 3454.00 25.66 400 330 275 230 195 165 145 121 110 95 85 75 654.50 31.13 400 400 335 280 240 205 175 155 135 115 105 90 804.75 33.93 400 400 365 305 260 225 190 165 145 130 115 100 905.00 36.77 400 400 395 330 280 240 210 180 160 140 125 110 955.50 42.53 400 400 400 385 330 280 245 210 185 160 145 125 1105.75 45.45 400 400 400 400 350 300 260 225 200 175 155 135 1206.00 48.39 400 400 400 400 375 320 275 240 210 185 165 145 1306.50 54.31 400 400 400 400 400 360 310 270 240 210 185 165 1454.00 30.45 400 395 330 275 235 200 175 150 135 115 105 90 804.50 36.98 400 400 400 340 285 245 215 185 165 145 125 115 1004.75 40.33 400 400 400 370 315 270 235 205 180 155 140 125 1105.00 43.73 400 400 400 400 340 295 255 220 195 170 150 135 1205.50 50.64 400 400 400 400 395 340 295 260 225 200 175 155 1405.75 54.14 400 400 400 400 400 365 315 275 240 215 190 170 1506.00 57.67 400 400 400 400 400 390 340 295 260 230 200 180 1606.50 64.79 400 400 400 400 400 400 380 330 290 260 230 205 1804.00 35.09 400 400 380 320 275 235 205 180 155 140 120 110 954.50 42.65 400 400 400 395 335 290 250 220 190 170 150 135 1204.75 46.54 400 400 400 400 365 315 275 240 210 185 165 145 1305.00 50.49 400 400 400 400 400 345 300 260 230 200 180 160 1455.50 58.52 400 400 400 400 400 400 345 305 265 235 210 185 1655.75 62.60 400 400 400 400 400 400 370 325 285 255 225 200 1806.00 66.71 400 400 400 400 400 400 395 345 305 270 240 215 1906.50 75.02 400 400 400 400 400 400 400 390 345 305 270 240 2154.00 39.20 400 400 400 365 310 265 230 200 180 155 140 125 1104.50 47.67 400 400 400 400 380 325 285 245 220 195 170 155 1354.75 52.03 400 400 400 400 400 355 310 270 240 210 185 165 1505.00 56.46 400 400 400 400 400 385 335 295 260 230 205 180 1655.50 65.49 400 400 400 400 400 400 390 345 300 270 240 215 1905.75 70.08 400 400 400 400 400 400 400 370 325 285 255 230 2056.00 74.71 400 400 400 400 400 400 400 395 345 305 275 245 2206.50 84.06 400 400 400 400 400 400 400 400 390 345 310 275 2504.00 39.20 400 400 400 365 310 265 230 200 180 155 140 125 1104.50 47.67 400 400 400 400 380 325 285 245 220 195 170 155 1354.75 52.03 400 400 400 400 400 355 310 270 240 210 185 165 1505.00 56.46 400 400 400 400 400 385 335 295 260 230 205 180 1655.50 65.49 400 400 400 400 400 400 390 345 300 270 240 215 1905.75 70.08 400 400 400 400 400 400 400 370 325 285 255 230 2056.00 74.71 400 400 400 400 400 400 400 395 345 305 275 245 2206.50 84.06 400 400 400 400 400 400 400 400 390 345 310 275 250

Slab φφφφφMn5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00Depth in.k

L, Uniform Live Loads, psf *22 g

age

20

gage

19

gage

18

gage

16

gage

22 g

age

20

gage

19

gage

18

gage

16

gage

United Steel Deck, Inc.

The Deck Section Properties are per foot of width. The Ivalue is for positive bending (in.4); t is the gage thickness ininches; w is the weight in pounds per square foot; Sp and Sn

are the section moduli for positive and negative bending (in.3);Rb and φφφφφVn. are the interior reaction and the shear in pounds(per foot of width); studs is the number of studs required per footin order to obtain the full resisting moment, φφφφφMnf.

The Composite Properties are a list of values for thecomposite slab. The slab depth is the distance from thebottom of the steel deck to the top of the slab in inches asshown on the sketch. U.L. ratings generally refer to the coverover the top of the deck so it is important to be aware of thedifference in names. φφφφφMnf is the factored resisting momentprovided by the composite slab when the “full” number ofstuds as shown in the upper table are in place; inch kips (perfoot of width). Ac is the area of concrete available to resistshear, in.2 per foot of width. Vol. is the volume of concrete inft.3 per ft.2 needed to make up the slab; no allowance for frameor deck deflection is included. W is the concrete weight inpounds per ft.2. Sc is the section modulus of the “cracked”concrete composite slab; in.3 per foot of width. Iav is theaverage of the “cracked” and “uncracked” moments of inertiaof the transformed composite slab; in.4 per foot of width. The Iav

transformed section analysis is based on steel; therefore, tocalculate deflections the appropriate modulus of elasticity to useis 29.5 x 106 psi. φφφφφMno is the factored resisting moment of thecomposite slab if there are no studs on the beams (the deckis attached to the beams or walls on which it is resting) inchkips (per foot of width). φφφφφVnt is the factored vertical shearresistance of the composite system; it is the sum of the shearresistances of the steel deck and the concrete but is notallowed to exceed φφφφφ4(f'c)½Ac; pounds (per foot of width). Thenext three columns list the maximum unshored spans infeet; these values are obtained by using the constructionloading requirements of the SDI; combined bending andshear, deflection, and interior reactions are considered incalculating these values. Awwf is the minimum area of weldedwire fabric recommended for temperature reinforcing in thecomposite slab; square inches per foot.

34

Light Weight

Gage t w A s I S p S n R b φφφφφVn studs

22 0.0295 1.6 0.470 0.165 0.206 0.195 1320 2620 0.3320 0.0358 1.9 0.570 0.212 0.260 0.247 1880 3170 0.4019 0.0418 2.3 0.670 0.260 0.304 0.292 2500 3680 0.4718 0.0474 2.6 0.760 0.308 0.349 0.337 3200 4160 0.5316 0.0598 3.3 0.960 0.400 0.439 0.434 4750 5210 0.67

DECK PROPERTIES

INVERTED B-LOK

Inverted 1.5 x 6" DECK Fy = 33ksi f 'c = 3 ksi 115 pcf concrete

30" cover shown (36" preferred)

1½"

6"

Slab Depth

INVERTED B-LOK

4.00 40.82 33.3 0.286 33 1.07 3.8 30.00 4660 5.15 6.85 6.93 0.0234.50 47.42 38.3 0.328 38 1.27 5.3 35.66 5290 4.92 6.57 6.65 0.0274.75 50.71 40.8 0.349 40 1.37 6.2 38.53 5470 4.82 6.44 6.52 0.0295.00 54.01 43.3 0.370 43 1.48 7.1 41.43 5650 4.72 6.32 6.40 0.0325.50 60.60 48.6 0.411 47 1.69 9.3 47.31 6010 4.55 6.11 6.18 0.0365.75 63.89 51.3 0.432 50 1.79 10.5 50.27 6200 4.47 6.01 6.08 0.0386.00 67.19 54.0 0.453 52 1.90 11.9 53.25 6390 4.40 5.91 5.98 0.0416.50 73.78 59.6 0.495 57 2.11 14.8 59.24 6780 4.26 5.74 5.80 0.0456.75 77.08 62.4 0.516 59 2.22 16.5 62.26 6980 4.20 5.65 5.72 0.0477.00 80.37 65.3 0.536 62 2.33 18.2 65.29 7180 4.15 5.58 5.64 0.0504.00 48.65 33.3 0.286 33 1.27 4.1 35.72 4660 5.99 7.85 8.10 0.0234.50 56.64 38.3 0.328 38 1.51 5.7 42.48 5340 5.71 7.51 7.75 0.0274.75 60.64 40.8 0.349 40 1.64 6.7 45.93 5690 5.59 7.35 7.59 0.0295.00 64.64 43.3 0.370 43 1.76 7.7 49.41 6050 5.48 7.21 7.44 0.0325.50 72.63 48.6 0.411 47 2.01 10.0 56.45 6560 5.27 6.94 7.17 0.0365.75 76.63 51.3 0.432 50 2.14 11.3 60.01 6750 5.18 6.82 7.05 0.0386.00 80.62 54.0 0.453 52 2.27 12.7 63.59 6940 5.09 6.70 6.92 0.0416.50 88.62 59.6 0.495 57 2.52 15.9 70.81 7330 4.92 6.48 6.70 0.0456.75 92.62 62.4 0.516 59 2.65 17.7 74.43 7530 4.85 6.38 6.60 0.0477.00 96.61 65.3 0.536 62 2.78 19.5 78.08 7730 4.79 6.28 6.50 0.0504.00 56.17 33.3 0.286 33 1.47 4.4 41.30 4660 6.61 8.52 8.81 0.0234.50 65.57 38.3 0.328 38 1.75 6.1 49.14 5340 6.30 8.15 8.43 0.0274.75 70.26 40.8 0.349 40 1.89 7.1 53.14 5690 6.16 7.98 8.25 0.0295.00 74.96 43.3 0.370 43 2.04 8.2 57.19 6050 6.04 7.83 8.09 0.0325.50 84.36 48.6 0.411 47 2.33 10.7 65.40 6790 5.80 7.54 7.79 0.0365.75 89.06 51.3 0.432 50 2.48 12.1 69.55 7160 5.70 7.40 7.65 0.0386.00 93.76 54.0 0.453 52 2.63 13.6 73.72 7450 5.60 7.28 7.52 0.0416.50 103.15 59.6 0.495 57 2.93 16.9 82.13 7840 5.41 7.04 7.28 0.0456.75 107.85 62.4 0.516 59 3.08 18.8 86.37 8040 5.33 6.93 7.16 0.0477.00 112.55 65.3 0.536 62 3.23 20.7 90.62 8240 5.26 6.83 7.06 0.0504.00 62.68 33.3 0.286 33 1.65 4.7 46.25 4660 7.21 9.14 9.44 0.0234.50 73.34 38.3 0.328 38 1.96 6.5 55.04 5340 6.86 8.74 9.04 0.0274.75 78.67 40.8 0.349 40 2.12 7.5 59.54 5690 6.71 8.56 8.85 0.0295.00 84.00 43.3 0.370 43 2.28 8.6 64.09 6050 6.57 8.40 8.68 0.0325.50 94.66 48.6 0.411 47 2.61 11.2 73.32 6790 6.31 8.09 8.36 0.0365.75 99.99 51.3 0.432 50 2.78 12.7 77.99 7160 6.19 7.94 8.21 0.0386.00 105.32 54.0 0.453 52 2.95 14.3 82.69 7540 6.08 7.81 8.07 0.0416.50 115.97 59.6 0.495 57 3.29 17.8 92.17 8320 5.88 7.56 7.81 0.0456.75 121.30 62.4 0.516 59 3.46 19.7 96.95 8520 5.78 7.44 7.69 0.0477.00 126.63 65.3 0.536 62 3.63 21.8 101.74 8720 5.72 7.33 7.57 0.0504.00 62.68 33.3 0.286 33 2.02 5.2 46.25 4660 8.28 10.32 10.67 0.0234.50 73.34 38.3 0.328 38 2.41 7.1 55.04 5340 7.88 9.88 10.22 0.0274.75 78.67 40.8 0.349 40 2.61 8.3 59.54 5690 7.70 9.68 10.01 0.0295.00 84.00 43.3 0.370 43 2.81 9.5 64.09 6050 7.53 9.49 9.81 0.0325.50 94.66 48.6 0.411 47 3.22 12.3 73.32 6790 7.23 9.15 9.46 0.0365.75 99.99 51.3 0.432 50 3.43 13.9 77.99 7160 7.09 ~.99 9.29 0.0386.00 105.32 54.0 0.453 52 3.64 15.7 82.69 7540 6.96 8.84 9.13 0.0416.50 115.97 59.6 0.495 57 4.06 19.5 92.17 8320 6.72 8.55 8.84 0.0456.75 121.30 62.4 0.516 59 4.27 21.7 96.95 8720 6.61 8.42 8.71 0.0477.00 126.63 65.3 0.536 62 4.48 23.9 101.74 9130 6.53 8.30 8.58 0.050

Slab φφφφφMnf Ac Vol. W Sc Iav φφφφφMno φφφφφVnt AwwfDepth in.k in 2 ft3/ft2 psf in 3 in 3 in.k lbs. 1span 2span 3span

COMPOSITE PROPERTIES

22 g

age

20

gage

19

gage

18

gage

16

gage

Max. unshored spans, ft.

area above the arrowindicates 1 STUD/FT.

area below arrowindicates NO STUDS

35

The Uniform Live Loads are based onthe LRFD equation φMn = (l.6L+1.2D)l2 8.Although there are other load combinationsthat may require investigation, this willcontrol most of the time. The equationassumes there is no negative bendingreinforcement over the beams andtherefore each composite slab is a singlespan. Two sets of values are shown; φMnf

is used to calculate the uniform load whenthe full required number of studs is present;φMno is used to calculate the load when nostuds are present. A straight lineinterpolation can be done if the averagenumber of studs is between zero and therequired number needed to develop the“full” factored moment. The tabulated loadsare checked for shear controlling (it seldomdoes), and also limited to a live loaddeflection of 1/360 of the span.

An upper limit of 400 psf has been appliedto the tabulated loads. This has been doneto guard against equating large concen-trated to uniform loads. Concentrated loadsmay require special analysis and design totake care of servicibility requirements notcovered by simply using a uniform loadvalue. On the other hand, for any loadcombination the values provided by thecomposite properties can be used in thecalculations.

Welded wire fabric in the required amountis assumed for the table values. If weldedwire fabric is not present, deduct 10%from the listed loads.

Refer to the example problems for the useof the tables.

*

Light Weight

Inverted 1.5 x 6" DECK Fy = 33ksi f 'c = 3 ksi 115 pcf concrete

INVERTED B-LOK

4.00 40.82 400 400 400 375 320 275 240 210 185 165 145 130 1154.50 47.42 400 400 400 400 375 320 280 245 215 190 170 150 1354.75 50.71 400 400 400 400 400 345 300 260 230 205 180 160 1455.00 54.01 400 400 400 400 400 365 320 280 245 215 190 170 1555.50 60.60 400 400 400 400 400 400 360 315 275 245 215 190 1705.75 63.89 400 400 400 400 400 400 375 330 290 255 230 205 1806.00 67.19 400 400 400 400 400 400 395 345 305 270 240 215 1906.50 73.78 400 400 400 400 400 400 400 380 335 295 265 235 2104.00 48.65 400 400 400 400 390 335 290 255 225 200 175 155 1354.50 56.64 400 400 400 400 400 390 340 295 260 230 205 185 1654.75 60.64 400 400 400 400 400 400 365 320 280 250 220 200 1755.00 64.64 400 400 400 400 400 400 385 340 300 265 235 210 1905.50 72.63 400 400 400 400 400 400 400 380 335 300 265 240 2155.75 76.63 400 400 400 400 400 400 400 400 355 315 280 250 2256.00 80.62 400 400 400 400 400 400 400 400 375 330 295 265 2356.50 88.62 400 400 400 400 400 400 400 400 400 365 325 290 2604.00 56.17 400 400 400 400 400 390 340 300 265 225 195 165 1454.50 65.57 400 400 400 400 400 400 395 350 305 275 245 220 1954.75 70.26 400 400 400 400 400 400 400 375 330 295 260 235 2105.00 74.96 400 400 400 400 400 400 400 400 350 310 280 250 2255.50 84.36 400 400 400 400 400 400 400 400 395 350 315 280 2555.75 89.06 400 400 400 400 400 400 400 400 400 370 330 300 2706.00 93.76 400 400 400 400 400 400 400 400 400 390 350 315 2806.50 103.15 400 400 400 400 400 400 400 400 400 400 385 345 3104.00 62.68 400 400 400 400 400 400 380 335 280 240 205 175 1554.50 73.34 400 400 400 400 400 400 400 395 345 310 275 245 2104.75 78.67 400 400 400 400 400 400 400 400 375 330 295 265 2405.00 84.00 400 400 400 400 400 400 400 400 400 355 315 285 2555.50 94.66 400 400 400 400 400 400 400 400 400 400 355 320 2905.75 99.99 400 400 400 400 400 400 400 400 400 400 375 340 3056.00 105.32 400 400 400 400 400 400 400 400 400 400 400 355 3206.50 115.97 400 400 400 400 400 400 400 400 400 400 400 395 3554.00 62.68 400 400 400 400 400 400 380 335 280 240 205 175 1554.50 73.34 400 400 400 400 400 400 400 395 345 310 275 245 2104.75 78.67 400 400 400 400 400 400 400 400 375 330 295 265 2405.00 84.00 400 400 400 400 400 400 400 400 400 355 315 285 2555.50 94.66 400 400 400 400 400 400 400 400 400 400 355 320 2905.75 99.99 400 400 400 400 400 400 400 400 400 400 375 340 3056.00 105.32 400 400 400 400 400 400 400 400 400 400 400 355 3206.50 115.97 400 400 400 400 400 400 400 400 400 400 400 395 3554.00 30.00 400 385 320 270 230 195 170 145 130 115 100 85 754.50 35.66 400 400 385 320 275 235 205 175 155 135 120 105 954.75 38.53 400 400 400 350 295 255 220 190 165 145 130 115 1005.00 41.43 400 400 400 375 320 275 235 205 180 160 140 125 1105.50 47.31 400 400 400 400 365 315 270 235 205 180 160 140 1255.75 50.27 400 400 400 400 390 335 290 250 220 195 170 150 1356.00 53.25 400 400 400 400 400 355 305 265 235 205 180 160 1456.50 59.24 400 400 400 400 400 395 340 300 260 230 205 180 1604.00 435.72 400 400 385 325 280 240 205 180 160 140 125 110 954.50 42.48 400 400 400 390 330 285 245 215 190 165 145 130 1154.75 45.93 400 400 400 400 360 310 265 235 205 180 160 140 1255.00 49.41 400 400 400 400 385 335 290 250 220 195 175 155 1355.50 56.45 400 400 400 400 400 380 330 290 255 225 200 175 1555.75 60.01 400 400 400 400 400 400 350 305 270 240 210 190 1706.00 63.59 400 400 400 400 400 400 375 325 285 255 225 200 1806.50 70.81 400 400 400 400 400 400 400 365 320 285 250 225 2004.00 41.30 400 400 400 380 325 280 240 210 185 165 145 130 1154.50 49.14 400 400 400 400 390 335 290 255 225 195 175 155 1404.75 53.14 400 400 400 400 400 360 315 275 240 215 190 170 1505.00 57.19 400 400 400 400 400 390 340 295 260 230 205 185 1655.50 65.40 400 400 400 400 400 400 390 340 300 265 235 210 1905.75 69.55 400 400 400 400 400 400 400 360 320 280 250 225 2006.00 73.72 400 400 400 400 400 400 400 385 340 300 265 240 2156.50 82.13 400 400 400 400 400 400 400 400 380 335 300 265 2404.00 46.25 400 400 400 400 365 315 275 240 210 185 165 150 1354.50 55.04 400 400 400 400 400 375 330 285 255 225 200 180 1604.75 59.54 400 400 400 400 400 400 355 310 275 245 215 195 1755.00 64.09 400 400 400 400 400 400 385 335 295 260 235 210 1855.50 73.32 400 400 400 400 400 400 400 385 340 300 270 240 2155.75 77.99 400 400 400 400 400 400 400 400 360 320 285 255 2306.00 82.69 400 400 400 400 400 400 400 400 385 340 305 270 2456.50 92.17 400 400 400 400 400 400 400 400 400 380 340 330 2754.00 46.25 400 400 400 400 365 315 275 240 210 185 165 150 1354.50 55.04 400 400 400 400 400 375 330 285 255 225 200 180 1604.75 59.54 400 400 400 400 400 400 355 310 275 245 215 195 1755.00 64.09 400 400 400 400 400 400 385 335 295 260 235 210 1855.50 73.32 400 400 400 400 400 400 400 385 340 300 270 240 2155.75 77.99 400 400 400 400 400 400 400 400 360 320 285 255 2306.00 82.69 400 400 400 400 400 400 400 400 385 340 305 270 2456.50 92.17 400 400 400 400 400 400 400 400 400 380 340 305 275

Slab φφφφφMn5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00Depth in.k

L, Uniform Live Loads, psf *22 g

age

20

gage

19

gage

18

gage

16

gage

22 g

age

20

gage

19

gage

18

gage

16

gage

United Steel Deck, Inc.

The Deck Section Properties are per foot of width. The Ivalue is for positive bending (in.4); t is the gage thickness ininches; w is the weight in pounds per square foot; Sp and Sn

are the section moduli for positive and negative bending (in.3);Rb and φφφφφVn. are the interior reaction and the shear in pounds(per foot of width); studs is the number of studs required per footin order to obtain the full resisting moment, φφφφφMnf.

The Composite Properties are a list of values for thecomposite slab. The slab depth is the distance from thebottom of the steel deck to the top of the slab in inches asshown on the sketch. U.L. ratings generally refer to the coverover the top of the deck so it is important to be aware of thedifference in names. φφφφφMnf is the factored resisting momentprovided by the composite slab when the “full” number ofstuds as shown in the upper table are in place; inch kips (perfoot of width). Ac is the area of concrete available to resistshear, in.2 per foot of width. Vol. is the volume of concrete inft.3 per ft.2 needed to make up the slab; no allowance for frameor deck deflection is included. W is the concrete weight inpounds per ft.2. Sc is the section modulus of the “cracked”concrete composite slab; in.3 per foot of width. Iav is theaverage of the “cracked” and “uncracked” moments of inertiaof the transformed composite slab; in.4 per foot of width. The Iav

transformed section analysis is based on steel; therefore, tocalculate deflections the appropriate modulus of elasticity to useis 29.5 x 106 psi. φφφφφMno is the factored resisting moment of thecomposite slab if there are no studs on the beams (the deckis attached to the beams or walls on which it is resting) inchkips (per foot of width). φφφφφVnt is the factored vertical shearresistance of the composite system; it is the sum of the shearresistances of the steel deck and the concrete but is notallowed to exceed φφφφφ4(f'c)½Ac; pounds (per foot of width). Thenext three columns list the maximum unshored spans infeet; these values are obtained by using the constructionloading requirements of the SDI; combined bending andshear, deflection, and interior reactions are considered incalculating these values. Awwf is the minimum area of weldedwire fabric recommended for temperature reinforcing in thecomposite slab; square inches per foot.

36

Light Weight

Gage t w A s I S p S n R b φφφφφVn studs

22 0.0295 1.5 0.430 0.189 0.206 0.207 692 1560 0.4320 0.0358 1.8 0.520 0.237 0.267 0.270 972 1890 0.5219 0.0418 2.1 0.610 0.276 0.327 0.330 1280 2200 0.6118 0.0474 2.3 0.690 0.313 0.378 0.376 1610 2490 0.6916 0.0598 3.0 0.870 0.395 0.474 0.474 2370 3130 0.87

DECK PROPERTIES

1.5" LOK-FLOOR

1.5 x 12" DECK Fy = 33ksi f 'c = 3 ksi 115 pcf concrete

12"

24" cover

1½"Slab Depth

t1.5" LOK-FLOOR

4.00 36.40 30.7 0.271 31 0.93 3.4 26.09 3700 5.24 6.97 7.06 0.0234.50 42.43 36.0 0.313 36 1.11 4.7 31.16 4070 5.00 6.68 6.76 0.0274.75 45.45 38.8 0.333 38 1.20 5.5 33.75 4270 4.90 6.54 6.62 0.0295.00 48.46 41.7 0.354 41 1.30 6.3 36.37 4470 4.80 6.42 6.50 0.0325.50 54.50 47.0 0.396 46 1.49 8.3 41.68 4840 4.62 6.19 6.26 0.0365.75 57.51 49.4 0.417 48 1.58 9.5 44.37 5010 4.53 6.09 6.16 0.0386.00 60.53 51.8 0.438 50 1.68 10.7 47.08 5170 4.46 5.99 6.06 0.0416.50 66.56 56.5 0.479 55 1.87 13.4 52.53 5510 4.31 5.80 5.87 0.0456.75 69.57 58.9 0.500 58 1.97 14.9 55.27 5670 4.25 5.72 5.79 0.0477.00 72.59 61.3 0.521 60 2.07 16.6 58.03 5840 4.18 5.64 5.71 0.0504.00 43.31 30.7 0.271 31 1.10 3.6 30.95 4030 6.22 8.30 8.40 0.0234.50 50.61 36.0 0.313 36 1.32 5.1 37.00 4400 5.92 7.92 8.02 0.0274.75 54.25 38.8 0.333 38 1.43 5.9 40.09 4600 5.79 7.75 7.85 0.0295.00 57.90 41.7 0.354 41 1.54 6.8 43.23 4800 5.66 7.58 7.69 0.0325.50 65.19 47.0 0.396 46 1.77 9.0 49.59 5170 5.44 7.29 7.41 0.0365.75 68.84 49.4 0.417 48 1.88 10.2 52.81 5340 5.34 7.15 7.28 0.0386.00 72.49 51.8 0.438 50 2.00 11.5 56.05 5500 5.24 7.02 7.15 0.0416.50 79.78 56.5 0.479 55 2.23 14.4 62.59 5840 5.07 6.78 6.92 0.0456.75 83.43 58.9 0.500 58 2.35 16.0 65.89 6000 4.99 6.67 6.82 0.0477.00 87.07 61.3 0.521 60 2.47 17.7 69.19 6170 4.91 6.56 6.72 0.0504.00 49.98 30.7 0.271 31 1.27 3.9 35.58 4280 7.07 9.16 9.47 0.0234.50 58.54 36.0 0.313 36 1.52 5.4 42.60 4710 6.72 8.75 9.04 0.0274.75 62.81 38.8 0.333 38 1.65 6.3 46.19 4910 6.57 8.56 8.84 0.0295.00 67.09 41.7 0.354 41 1.78 7.3 49.83 5110 6.42 8.38 8.66 0.0325.50 75.65 47.0 0.396 46 2.04 9.5 57.24 5480 6.16 8.05 8.32 0.0365.75 79.92 49.4 0.417 48 2.17 10.8 60.99 5650 6.05 7.90 8.17 0.0386.00 84.20 51.8 0.438 50 2.31 12.2 64.76 5810 5.94 7.76 8.02 0.0416.50 92.76 56.5 0.479 55 2.58 15.3 72.38 6150 5.73 7.50 7.75 0.0456.75 97.03 58.9 0.500 58 2.72 17.0 76.22 6310 5.64 7.38 7.62 0.0477.00 101.31 61.3 0.521 60 2.85 18.8 80.08 6480 5.55 7.26 7.50 0.0504.00 55.70 30.7 0.271 31 1.41 4.1 39.61 4280 7.74 9.77 10.10 0.0234.50 65.38 36.0 0.313 36 1.69 5.7 47.47 5000 7.35 9.33 9.64 0.0274.75 70.22 38.8 0.333 38 1.84 6.6 51.50 5200 7.18 9.13 9.43 0.0295.00 75.06 41.7 0.354 41 1.98 7.7 55.59 5400 7.02 8.94 9.24 0.0325.50 84.73 47.0 0.396 46 2.28 10.0 63.91 5770 6.73 8.60 8.88 0.0365.75 89.57 49.4 0.417 48 2.43 11.4 68.12 5940 6.60 8.44 8.72 0.0386.00 94.41 51.8 0.438 50 2.58 12.8 72.37 6100 6.48 8.29 8.56 0.0416.50 104.09 56.5 0.479 55 2.89 16.0 80.94 6440 6.25 8.01 8.27 0.0456.75 108.93 58.9 0.500 58 3.04 17.8 85.26 6600 6.15 7.88 8.14 0.0477.00 113.76 61.3 0.521 60 3.19 19.8 89.60 6770 6.05 7.75 8.01 0.0504.00 55.70 30.7 0.271 31 1.72 4.5 39.61 4280 8.88 10.94 11.31 0.0234.50 65.38 36.0 0.313 36 2.07 6.3 47.47 5030 8.42 10.46 10.80 0.0274.75 70.22 38.8 0.333 38 2.25 7.3 51.50 5420 8.22 10.23 10.58 0.0295.00 75.06 41.7 0.354 41 2.43 8.5 55.59 5820 8.03 10.02 10.36 0.0325.50 84.73 47.0 0.396 46 2.80 11.1 63.91 6410 7.69 9.64 9.96 0.0365.75 89.57 49.4 0.417 48 2.98 12.5 68.12 6580 7.54 9.47 9.78 0.0386.00 94.41 51.8 0.438 50 3.17 14.1 72.37 6740 7.40 9.30 9.61 0.0416.50 104.09 56.5 0.479 55 3.55 17.6 80.94 7080 7.13 8.99 9.29 0.0456.75 108.93 58.9 0.500 58 3.75 19.6 85.26 7240 7.01 8.85 9.14 0.0477.00 113.76 61.3 0.521 60 3.94 21.7 89.60 7410 6.90 8.71 9.00 0.050

Slab φφφφφMnf Ac Vol. W Sc Iav φφφφφMno φφφφφVnt AwwfDepth in.k in 2 ft3/ft2 psf in 3 in 3 in.k lbs. 1span 2span 3span

COMPOSITE PROPERTIES

22 g

age

20

gage

19

gage

18

gage

16

gage

Max. unshored spans, ft.

area above the arrowindicates 1 STUD/FT.

area below arrowindicates NO STUDS

37

The Uniform Live Loads are based onthe LRFD equation φMn = (l.6L+1.2D)l2 8.Although there are other load combinationsthat may require investigation, this willcontrol most of the time. The equationassumes there is no negative bendingreinforcement over the beams andtherefore each composite slab is a singlespan. Two sets of values are shown; φMnf

is used to calculate the uniform load whenthe full required number of studs is present;φMno is used to calculate the load when nostuds are present. A straight lineinterpolation can be done if the averagenumber of studs is between zero and therequired number needed to develop the“full” factored moment. The tabulated loadsare checked for shear controlling (it seldomdoes), and also limited to a live loaddeflection of 1/360 of the span.

An upper limit of 400 psf has been appliedto the tabulated loads. This has been doneto guard against equating large concen-trated to uniform loads. Concentrated loadsmay require special analysis and design totake care of servicibility requirements notcovered by simply using a uniform loadvalue. On the other hand, for any loadcombination the values provided by thecomposite properties can be used in thecalculations.

Welded wire fabric in the required amountis assumed for the table values. If weldedwire fabric is not present, deduct 10%from the listed loads.

Refer to the example problems for the useof the tables.

*

Light Weight

4.00 36.40 400 400 395 335 285 245 215 185 165 145 125 115 1004.50 42.43 400 400 400 390 335 285 250 215 190 170 150 130 1204.75 45.45 400 400 400 400 355 305 265 230 205 180 160 140 1255.00 48.46 400 400 400 400 380 325 285 250 220 190 170 150 1355.50 54.50 400 400 400 400 400 370 320 280 245 215 190 170 1505.75 57.51 400 400 400 400 400 390 335 295 260 230 205 180 1606.00 60.53 400 400 400 400 400 400 355 310 275 240 215 190 1706.50 66.56 400 400 400 400 400 400 390 340 300 265 235 210 1854.00 43.31 400 400 400 400 345 295 255 225 200 175 155 140 1204.50 50.61 400 400 400 400 400 345 300 265 230 205 185 165 1454.75 54.25 400 400 400 400 400 370 325 285 250 220 195 175 1555.00 57.90 400 400 400 400 400 395 345 300 265 235 210 185 1705.50 65.19 400 400 400 400 400 400 390 340 300 265 235 210 1905.75 68.84 400 400 400 400 400 400 400 360 315 280 250 225 2006.00 72.49 400 400 400 400 400 400 400 380 335 295 265 235 2106.50 79.78 400 400 400 400 400 400 400 400 370 325 290 260 2304.00 49.98 400 400 400 400 400 345 300 265 230 200 170 145 1304.50 58.54 400 400 400 400 400 400 355 310 275 240 215 195 1754.75 62.81 400 400 400 400 400 400 380 330 295 260 230 205 1855.00 67.09 400 400 400 400 400 400 400 355 315 280 245 220 2005.50 75.65 400 400 400 400 400 400 400 400 355 315 280 250 2255.75 79.92 400 400 400 400 400 400 400 400 375 330 295 265 2406.00 84.20 400 400 400 400 400 400 400 400 395 350 310 280 2506.50 92.76 400 400 400 400 400 400 400 400 400 385 345 310 2754.00 55.70 400 400 400 400 400 385 340 290 245 210 180 155 1354.50 65.38 400 400 400 400 400 400 395 350 310 275 245 215 1904.75 70.22 400 400 400 400 400 400 400 375 330 295 260 235 2105.00 75.06 400 400 400 400 400 400 400 400 355 315 280 250 2255.50 84.73 400 400 400 400 400 400 400 400 400 355 315 285 2555.75 89.57 400 400 400 400 400 400 400 400 400 375 335 300 2706.00 94.41 400 400 400 400 400 400 400 400 400 395 355 315 2856.50 104.09 400 400 400 400 400 400 400 400 400 400 390 350 3154.00 55.70 400 400 400 400 400 385 340 290 245 210 180 155 1354.50 65.38 400 400 400 400 400 400 395 350 310 275 245 215 1904.75 70.22 400 400 400 400 400 400 400 375 330 295 260 235 2105.00 75.06 400 400 400 400 400 400 400 400 355 315 280 250 2255.50 84.73 400 400 400 400 400 400 400 400 400 355 315 285 2555.75 89.57 400 400 400 400 400 400 400 400 400 375 335 300 2706.00 94.41 400 400 400 400 400 400 400 400 400 395 355 315 2856.50 104.09 400 400 400 400 400 400 400 400 400 400 390 350 3154.00 26.09 400 335 275 235 195 170 145 125 110 95 85 75 654.50 31.16 400 400 335 280 235 205 175 150 130 115 100 90 804.75 33.75 400 400 360 305 255 220 190 165 145 125 110 100 855.00 36.37 400 400 390 325 280 240 205 180 155 135 120 105 955.50 41.68 400 400 400 375 320 275 235 205 180 155 140 120 1105.75 44.37 400 400 400 400 340 290 250 220 190 170 150 130 1156.00 47.08 400 400 400 400 360 310 270 235 205 180 155 140 1256.50 52.53 400 400 400 400 400 345 300 260 230 200 175 155 1404.00 30.95 400 400 335 280 240 205 175 155 135 120 105 90 804.50 37.00 400 400 400 335 285 245 215 185 160 145 125 110 1004.75 40.09 400 400 400 365 310 265 230 200 175 155 135 120 1105.00 43.23 400 400 400 395 335 290 250 215 190 170 150 130 1155.50 49.59 400 400 400 400 385 330 285 250 220 195 170 150 1355.75 52.81 400 400 400 400 400 355 305 265 235 205 185 160 1456.00 56.05 400 400 400 400 400 375 325 285 250 220 195 175 1556.50 62.59 400 400 400 400 400 400 365 320 280 245 220 195 1754.00 35.58 400 400 385 325 280 240 205 180 160 140 125 110 1004.50 42.60 400 400 400 390 335 285 250 215 190 170 150 130 1204.75 46.19 400 400 400 400 360 310 270 235 205 185 160 145 1305.00 49.83 400 400 400 400 390 335 290 255 225 200 175 155 1405.50 57.24 400 400 400 400 400 390 335 295 260 230 205 180 1605.75 60.99 400 400 400 400 400 400 360 315 275 245 215 195 1756.00 64.76 400 400 400 400 400 400 380 335 295 260 230 205 1856.50 72.38 400 400 400 400 400 400 400 375 330 290 260 230 2054.00 39.61 400 400 400 365 310 270 235 205 180 160 140 125 1104.50 47.47 400 400 400 400 375 325 280 245 215 190 170 150 1354.75 51.50 400 400 400 400 400 350 305 265 235 205 185 165 1455.00 55.59 400 400 400 400 400 380 330 290 255 225 200 180 1605.50 63.91 400 400 400 400 400 400 380 335 295 260 230 205 1855.75 68.12 400 400 400 400 400 400 400 355 315 275 245 220 1956.00 72.37 400 400 400 400 400 400 400 380 335 295 260 235 2106.50 80.94 400 400 400 400 400 400 400 400 375 330 295 265 2354.00 39.61 400 400 400 365 310 270 235 205 180 160 140 125 1104.50 47.47 400 400 400 400 375 325 280 245 215 190 170 150 1354.75 51.50 400 400 400 400 400 350 305 265 235 205 185 165 1455.00 55.59 400 400 400 400 400 380 330 290 255 225 200 180 1605.50 63.91 400 400 400 400 400 400 380 335 295 260 230 205 1855.75 68.12 400 400 400 400 400 400 400 355 315 275 245 220 1956.00 72.37 400 400 400 400 400 400 400 380 335 295 260 235 2106.50 80.94 400 400 400 400 400 400 400 400 375 330 295 265 235

1.5 x 12" DECK Fy = 33ksi f 'c = 3 ksi 115 pcf concrete

Slab φφφφφMn5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00Depth in.k

L, Uniform Live Loads, psf *22 g

age

20

gage

19

gage

18

gage

16

gage

22 g

age

20

gage

19

gage

18

gage

16

gage

1.5" LOK-FLOOR

United Steel Deck, Inc.

The Deck Section Properties are per foot of width. The Ivalue is for positive bending (in.4); t is the gage thickness ininches; w is the weight in pounds per square foot; Sp and Sn

are the section moduli for positive and negative bending (in.3);Rb and φφφφφVn. are the interior reaction and the shear in pounds(per foot of width); studs is the number of studs required per footin order to obtain the full resisting moment, φφφφφMnf.

The Composite Properties are a list of values for thecomposite slab. The slab depth is the distance from thebottom of the steel deck to the top of the slab in inches asshown on the sketch. U.L. ratings generally refer to the coverover the top of the deck so it is important to be aware of thedifference in names. φφφφφMnf is the factored resisting momentprovided by the composite slab when the “full” number ofstuds as shown in the upper table are in place; inch kips (perfoot of width). Ac is the area of concrete available to resistshear, in.2 per foot of width. Vol. is the volume of concrete inft.3 per ft.2 needed to make up the slab; no allowance for frameor deck deflection is included. W is the concrete weight inpounds per ft.2. Sc is the section modulus of the “cracked”concrete composite slab; in.3 per foot of width. Iav is theaverage of the “cracked” and “uncracked” moments of inertiaof the transformed composite slab; in.4 per foot of width. The Iav

transformed section analysis is based on steel; therefore, tocalculate deflections the appropriate modulus of elasticity to useis 29.5 x 106 psi. φφφφφMno is the factored resisting moment of thecomposite slab if there are no studs on the beams (the deckis attached to the beams or walls on which it is resting) inchkips (per foot of width). φφφφφVnt is the factored vertical shearresistance of the composite system; it is the sum of the shearresistances of the steel deck and the concrete but is notallowed to exceed φφφφφ4(f'c)½Ac; pounds (per foot of width). Thenext three columns list the maximum unshored spans infeet; these values are obtained by using the constructionloading requirements of the SDI; combined bending andshear, deflection, and interior reactions are considered incalculating these values. Awwf is the minimum area of weldedwire fabric recommended for temperature reinforcing in thecomposite slab; square inches per foot.

38

Light Weight

Gage t w A s I S p S n R b φφφφφVn studs

22 0.0295 1.5 0.440 0.338 0.284 0.302 714 1990 0.4320 0.0358 1.8 0.540 0.420 0.367 0.387 1010 2410 0.5219 0.0418 2.1 0.630 0.490 0.445 0.458 1330 2810 0.6118 0.0474 2.4 0.710 0.560 0.523 0.529 1680 3180 0.6916 0.0598 3.1 0.900 0.700 0.654 0.654 2470 3990 0.87

DECK PROPERTIES

2" LOK-FLOOR

2 x 12" DECK Fy = 33ksi f 'c = 3 ksi 115 pcf concrete

24" and 36" cover (36" shown)

2"

12"

t

Slab Depth

2" LOK-FLOOR

4.50 40.27 32.6 0.292 34 1.00 4.4 28.13 4270 6.32 8.46 8.56 0.0235.00 46.44 37.5 0.333 38 1.18 6.0 33.12 4610 6.03 8.09 8.19 0.0275.25 49.53 40.0 0.354 41 1.27 6.9 35.69 4790 5.90 7.93 8.02 0.0295.50 52.61 42.6 0.375 43 1.36 7.9 38.29 4970 5.77 7.77 7.86 0.0326.00 58.78 48.0 0.417 48 1.55 10.1 43.58 5340 5.55 7.49 7.58 0.0366.25 61.87 50.8 0.438 50 1.65 11.3 46.26 5540 5.45 7.36 7.45 0.0386.50 64.95 53.6 0.458 53 1.75 12.7 48.97 5730 5.36 7.24 7.32 0.0417.00 71.12 59.5 0.500 58 1.94 15.7 54.44 6150 5.18 7.01 7.10 0.0457.25 74.21 61.9 0.521 60 2.04 17.4 57.20 6310 5.10 6.91 6.99 0.0477.50 77.29 64.3 0.542 62 2.14 19.2 59.97 6480 5.05 6.81 6.89 0.0504.50 48.60 32.6 0.292 34 1.20 4.8 33.77 4560 7.42 9.71 10.03 0.0235.00 56.18 37.5 0.333 38 1.42 6.5 39.80 5030 7.07 9.28 9.59 0.0275.25 59.96 40.0 0.354 41 1.53 7.4 42.91 5210 6.91 9.09 9.39 0.0295.50 63.75 42.6 0.375 43 1.64 8.5 46.05 5390 6.76 8.91 9.20 0.0326.00 71.32 48.0 0.417 48 1.87 10.9 52.47 5760 6.49 8.57 8.86 0.0366.25 75.11 50.8 0.438 50 1.99 12.2 55.73 5960 6.37 8.42 8.70 0.0386.50 78.90 53.6 0.458 53 2.10 13.7 59.02 6150 6.26 8.27 8.55 0.0417.00 86.47 59.5 0.500 58 2.34 16.9 65.67 6570 6.05 8.00 8.27 0.0457.25 90.26 61.9 0.521 60 2.46 18.7 69.03 6730 5.95 7.87 8.14 0.0477.50 94.05 64.3 0.542 62 2.58 20.6 72.41 6900 5.89 7.75 8.01 0.0504.50 55.85 32.6 0.292 34 1.38 5.1 38.67 4560 8.35 10.55 10.91 0.0235.00 64.68 37.5 0.333 38 1.63 6.9 45.61 5240 7.94 10.10 10.43 0.0275.25 69.10 40.0 0.354 41 1.75 7.9 49.19 5590 7.76 9.89 10.22 0.0295.50 73.52 42.6 0.375 43 1.88 9.0 52.83 5790 7.59 9.69 10.01 0.0326.00 82.35 48.0 0.417 48 2.15 11.6 60.25 6160 7.29 9.33 9.64 0.0366.25 86.77 50.8 0.438 50 2.28 13.0 64.02 6360 7.15 9.16 9.47 0.0386.50 91.19 53.6 0.458 53 2.42 14.5 67.83 6550 7.02 9.00 9.30 0.0417.00 100.03 59.5 0.500 58 2.69 17.9 75.53 6970 6.78 8.71 9.00 0.0457.25 104.44 61.9 0.521 60 2.83 19.8 79.42 7130 6.67 8.57 8.86 0.0477.50 108.86 64.3 0.542 62 2.97 21.8 83.33 7300 6.59 8.44 8.72 0.0504.50 62.08 32.6 0.292 34 1.53 5.4 42.99 4560 9.20 11.33 11.71 0.0235.00 72.04 37.5 0.333 38 1.81 7.3 50.72 5240 8.75 10.84 11.20 0.0275.25 77.02 40.0 0.354 41 1.95 8.3 54.72 5590 8.54 10.62 10.97 0.0295.50 82.00 42.6 0.375 43 2.10 9.5 58.78 5950 8.35 10.41 10.76 0.0326.00 91.95 48.0 0.417 48 2.39 12.1 67.07 6530 8.01 10.02 10.36 0.0366.25 96.93 50.8 0.438 50 2.54 13.6 71.29 6730 7.86 9.84 10.17 0.0386.50 101.91 53.6 0.458 53 2.69 15.2 75.55 6920 7.71 9.68 10.00 0.0417.00 111.87 59.5 0.500 58 3.00 18.8 84.17 7340 7.44 9.36 9.67 0.0457.25 116.85 61.9 0.521 60 3.16 20.7 88.52 7500 7.32 9.21 9.52 0.0477.50 121.83 64.3 0.542 62 3.31 22.8 92.91 7670 7.24 9.07 9.38 0.0504.50 62.08 32.6 0.292 34 1.88 6.0 42.99 4560 10.49 12.57 12.99 0.0235.00 72.04 37.5 0.333 38 2.22 8.0 50.72 5240 9.96 12.03 12.43 0.0275.25 77.02 40.0 0.354 41 2.40 9.2 54.72 5590 9.72 11.78 12.18 0.0295.50 82.00 42.6 0.375 43 2.58 10.5 58.78 5950 9.50 11.55 11.94 0.0326.00 91.95 48.0 0.417 48 2.94 13.4 67.07 6700 9.11 11.13 11.50 0.0366.25 96.93 50.8 0.438 50 3.13 15.0 71.29 7090 8.93 10.94 11.30 0.0386.50 101.91 53.6 0.458 53 3.32 16.8 75.55 7490 8.76 10.75 11.11 0.0417.00 111.87 59.5 0.500 58 3.71 20.6 84.17 8150 8.45 10.40 10.75 0.0457.25 116.85 61.9 0.521 60 3.90 22.8 88.52 8310 8.31 10.24 10.59 0.0477.50 121.83 64.3 0.542 62 4.10 25.1 92.91 8480 8.22 10.09 10.43 0.050

Slab φφφφφMnf Ac Vol. W Sc Iav φφφφφMno φφφφφVnt AwwfDepth in.k in 2 ft3/ft2 psf in 3 in 3 in.k lbs. 1span 2span 3span

COMPOSITE PROPERTIES

22 g

age

20

gage

19

gage

18

gage

16

gage

Max. unshored spans, ft.

area above the arrowindicates 1 STUD/FT.

area below arrowindicates NO STUDS

39

The Uniform Live Loads are based onthe LRFD equation φMn = (l.6L+1.2D)l2 8.Although there are other load combinationsthat may require investigation, this willcontrol most of the time. The equationassumes there is no negative bendingreinforcement over the beams andtherefore each composite slab is a singlespan. Two sets of values are shown; φMnf

is used to calculate the uniform load whenthe full required number of studs is present;φMno is used to calculate the load when nostuds are present. A straight lineinterpolation can be done if the averagenumber of studs is between zero and therequired number needed to develop the“full” factored moment. The tabulated loadsare checked for shear controlling (it seldomdoes), and also limited to a live loaddeflection of 1/360 of the span.

An upper limit of 400 psf has been appliedto the tabulated loads. This has been doneto guard against equating large concen-trated to uniform loads. Concentrated loadsmay require special analysis and design totake care of servicibility requirements notcovered by simply using a uniform loadvalue. On the other hand, for any loadcombination the values provided by thecomposite properties can be used in thecalculations.

Welded wire fabric in the required amountis assumed for the table values. If weldedwire fabric is not present, deduct 10%from the listed loads.

Refer to the example problems for the useof the tables.

*

Light Weight

2 x 12" DECK Fy = 33ksi f 'c = 3 ksi 115 pcf concrete

2" LOK-FLOOR

4.50 40.27 400 370 315 270 235 205 180 160 140 125 110 100 905.00 46.44 400 400 365 315 270 240 210 185 165 145 130 115 1055.25 49.53 400 400 390 335 290 255 225 195 175 155 140 125 1105.50 52.61 400 400 400 355 310 270 235 210 185 165 150 130 1206.00 58.78 400 400 400 400 345 300 265 235 210 185 165 150 1356.25 61.87 400 400 400 400 365 320 280 245 220 195 175 155 1406.50 64.95 400 400 400 400 380 335 295 260 230 205 185 165 1457.00 71.12 400 400 400 400 400 365 320 285 250 225 200 180 1604.50 48.60 400 400 385 335 290 255 225 200 175 155 140 125 1155.00 56.18 400 400 400 385 335 295 260 230 205 180 165 145 1305.25 59.96 400 400 400 400 360 315 275 245 220 195 175 155 1405.50 63.75 400 400 400 400 380 335 295 260 230 205 185 165 1506.00 71.32 400 400 400 400 400 375 330 290 260 230 210 185 1706.25 75.11 400 400 400 400 400 395 345 310 275 245 220 200 1806.50 78.90 400 400 400 400 400 400 365 325 290 255 230 210 1857.00 86.47 400 400 400 400 400 400 400 355 315 280 255 230 2054.50 55.85 400 400 400 385 335 295 260 230 205 185 165 150 1305.00 64.68 400 400 400 400 390 345 300 270 240 215 190 175 1555.25 69.10 400 400 400 400 400 365 325 285 255 230 205 185 1705.50 73.52 400 400 400 400 400 390 345 305 270 245 220 200 1806.00 82.35 400 400 400 400 400 400 385 345 305 275 245 220 2006.25 86.77 400 400 400 400 400 400 400 360 320 290 260 235 2106.50 91.19 400 400 400 400 400 400 400 380 340 305 275 245 2257.00 100.03 400 400 400 400 400 400 400 400 370 335 300 270 2454.50 62.08 400 400 400 400 375 330 290 260 230 205 180 155 1355.00 72.04 400 400 400 400 400 385 340 300 270 240 220 195 1805.25 77.02 400 400 400 400 400 400 365 325 290 260 235 210 1905.50 82.00 400 400 400 400 400 400 390 345 305 275 250 225 2056.00 91.95 400 400 400 400 400 400 400 385 345 310 280 250 2306.25 96.93 400 400 400 400 400 400 400 400 365 325 295 265 2406.50 101.91 400 400 400 400 400 400 400 400 385 345 310 280 2557.00 111.87 400 400 400 400 400 400 400 400 400 380 340 310 2804.50 62.08 400 400 400 400 375 330 290 260 230 205 180 155 1355.00 72.04 400 400 400 400 400 385 340 300 270 240 220 195 1805.25 77.02 400 400 400 400 400 400 365 325 290 260 235 210 1905.50 82.00 400 400 400 400 400 400 390 345 305 275 250 225 2056.00 91.95 400 400 400 400 400 400 400 385 345 310 280 250 2306.25 96.93 400 400 400 400 400 400 400 400 365 325 295 265 2406.50 101.91 400 400 400 400 400 400 400 400 385 345 310 280 2557.00 111.87 400 400 400 400 400 400 400 400 400 380 340 310 2804.50 28.13 300 250 215 180 155 135 120 105 90 80 70 60 555.00 33.12 355 295 250 215 185 160 140 125 110 95 85 75 655.25 35.69 380 320 270 235 200 175 150 135 115 105 90 80 705.50 38.29 400 345 290 250 215 185 165 145 125 110 100 85 756.00 43.58 400 395 335 285 245 215 185 165 145 130 115 100 906.25 46.26 400 400 355 305 260 230 200 175 155 135 120 105 956.50 48.97 400 400 375 320 280 240 210 185 165 145 130 115 1007.00 54.44 400 400 400 360 310 270 235 205 185 160 145 125 1154.50 33.77 365 305 260 225 195 170 145 130 115 100 90 80 705.00 39.80 400 360 310 265 230 200 175 155 135 120 105 95 855.25 42.91 400 390 335 285 245 215 190 165 145 130 115 105 905.50 46.05 400 400 360 305 265 230 205 180 160 140 125 110 1006.00 52.47 400 400 400 350 305 265 235 205 180 160 145 130 1156.25 55.73 400 400 400 375 325 280 250 220 195 170 155 135 1206.50 59.02 400 400 400 395 345 300 265 230 205 180 160 145 1307.00 65.67 400 400 400 400 385 335 295 260 230 205 180 160 1454.50 38.67 400 355 300 260 225 195 170 150 135 120 105 95 855.00 45.61 400 400 360 310 265 235 205 180 160 140 125 115 1005.25 49.19 400 400 385 330 290 250 220 195 175 155 135 125 1105.50 52.83 400 400 400 355 310 270 240 210 185 165 150 130 1206.00 60.25 400 400 400 400 355 310 270 240 215 190 170 150 1356.25 64.02 400 400 400 400 375 330 290 255 225 205 180 160 1456.50 67.83 400 400 400 400 400 350 310 270 240 215 190 175 1557.00 75.53 400 400 400 400 400 390 345 305 270 240 215 195 1754.50 42.99 400 395 340 290 255 220 195 170 150 135 120 110 955.00 50.72 400 400 400 345 300 260 230 205 180 160 145 130 1155.25 54.72 400 400 400 375 325 285 250 220 195 175 155 140 1255.50 58.78 400 400 400 400 350 305 270 235 210 190 170 150 1356.00 67.07 400 400 400 400 400 350 305 270 240 215 195 175 1556.25 71.29 400 400 400 400 400 370 325 290 255 230 205 185 1656.50 75.55 400 400 400 400 400 395 345 305 275 245 220 195 1757.00 84.17 400 400 400 400 400 400 390 345 305 275 245 220 2004.50 42.99 400 395 340 290 255 220 195 170 150 135 120 110 955.00 50.72 400 400 400 345 300 260 230 205 180 160 145 130 1155.25 54.72 400 400 400 375 325 285 250 220 195 175 155 140 1255.50 58.78 400 400 400 400 350 305 270 235 210 190 170 150 1356.00 67.07 400 400 400 400 400 350 305 270 240 215 195 175 1556.25 71.29 400 400 400 400 400 370 325 290 255 230 205 185 1656.50 75.55 400 400 400 400 400 395 345 305 275 245 220 195 1757.00 84.17 400 400 400 400 400 400 390 345 305 275 245 220 200

Slab φφφφφMn6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00 11.50 12.00Depth in.k

L, Uniform Live Loads, psf *22 g

age

20

gage

19

gage

18

gage

16

gage

22 g

age

20

gage

19

gage

18

gage

16

gage

United Steel Deck, Inc.

The Deck Section Properties are per foot of width. The Ivalue is for positive bending (in.4); t is the gage thickness ininches; w is the weight in pounds per square foot; Sp and Sn

are the section moduli for positive and negative bending (in.3);Rb and φφφφφVn. are the interior reaction and the shear in pounds(per foot of width); studs is the number of studs required per footin order to obtain the full resisting moment, φφφφφMnf.

The Composite Properties are a list of values for thecomposite slab. The slab depth is the distance from thebottom of the steel deck to the top of the slab in inches asshown on the sketch. U.L. ratings generally refer to the coverover the top of the deck so it is important to be aware of thedifference in names. φφφφφMnf is the factored resisting momentprovided by the composite slab when the “full” number ofstuds as shown in the upper table are in place; inch kips (perfoot of width). Ac is the area of concrete available to resistshear, in.2 per foot of width. Vol. is the volume of concrete inft.3 per ft.2 needed to make up the slab; no allowance for frameor deck deflection is included. W is the concrete weight inpounds per ft.2. Sc is the section modulus of the “cracked”concrete composite slab; in.3 per foot of width. Iav is theaverage of the “cracked” and “uncracked” moments of inertiaof the transformed composite slab; in.4 per foot of width. The Iav

transformed section analysis is based on steel; therefore, tocalculate deflections the appropriate modulus of elasticity to useis 29.5 x 106 psi. φφφφφMno is the factored resisting moment of thecomposite slab if there are no studs on the beams (the deckis attached to the beams or walls on which it is resting) inchkips (per foot of width). φφφφφVnt is the factored vertical shearresistance of the composite system; it is the sum of the shearresistances of the steel deck and the concrete but is notallowed to exceed φφφφφ4(f'c)½Ac; pounds (per foot of width). Thenext three columns list the maximum unshored spans infeet; these values are obtained by using the constructionloading requirements of the SDI; combined bending andshear, deflection, and interior reactions are considered incalculating these values. Awwf is the minimum area of weldedwire fabric recommended for temperature reinforcing in thecomposite slab; square inches per foot.

40

Light Weight

Gage t w A s I S p S n R b φφφφφVn studs

22 0.0295 1.7 0.505 0.797 0.454 0.500 718 2190 0.4920 0.0358 2.1 0.610 0.993 0.583 0.620 1020 3220 0.5919 0.0418 2.4 0.710 1.158 0.708 0.726 1350 4310 0.6918 0.0474 2.8 0.810 1.324 0.832 0.832 1720 4880 0.7916 0.0598 3.5 1.020 1.666 1.045 1.045 2540 6130 0.99

DECK PROPERTIES

3" LOK-FLOOR

3 x 12" DECK Fy = 33ksi f 'c = 3 ksi 115 pcf concrete

24" and 36" cover (36" shown)

3"

12"

t

Slab Depth

3" LOK-FLOOR

5.50 52.80 37.6 0.333 38 1.27 7.6 35.57 4810 8.06 10.49 10.83 0.0236.00 59.89 42.0 0.375 43 1.46 9.7 40.92 5120 7.70 10.06 10.39 0.0276.25 63.43 44.3 0.396 46 1.56 10.9 43.68 5280 7.54 9.86 10.18 0.0296.50 66.97 46.6 0.417 48 1.66 12.1 46.49 5440 7.39 9.67 9.99 0.0327.00 74.05 51.3 0.458 53 1.86 15.0 52.24 5770 7.11 9.33 9.63 0.0367.25 77.59 53.8 0.479 55 1.97 16.6 55.17 5950 6.99 9.17 9.47 0.0387.50 81.13 56.3 0.500 58 2.07 18.3 58.14 6120 6.87 9.02 9.31 0.0418.00 88.22 61.3 0.542 62 2.29 22.0 64.15 6470 6.68 8.73 9.02 0.0458.25 91.76 63.9 0.563 65 2.40 24.1 67.20 6660 6.61 8.60 8.88 0.0478.50 95.30 66.6 0.583 67 2.50 26.3 70.27 6840 6.54 8.47 8.75 0.0505.50 62.81 37.6 0.333 38 1.51 8.1 42.29 5250 9.35 11.75 12.14 0.0236.00 71.37 42.0 0.375 43 1.73 10.4 48.61 5870 8.92 11.27 11.65 0.0276.25 75.65 44.3 0.396 46 1.85 11.7 51.89 6180 8.73 11.06 11.43 0.0296.50 79.92 46.6 0.417 48 1.97 13.0 55.23 6470 8.55 10.85 11.21 0.0327.00 88.48 51.3 0.458 53 2.21 16.1 62.07 6800 8.23 10.48 10.82 0.0367.25 92.76 53.8 0.479 55 2.34 17.8 65.57 6980 8.08 10.30 10.64 0.0387.50 97.03 56.3 0.500 58 2.46 19.6 69.10 7150 7.94 10.13 10.47 0.0418.00 105.59 61.3 0.542 62 2.72 23.6 76.28 7500 7.72 9.82 10.15 0.0458.25 109.87 63.9 0.563 65 2.85 25.7 79.92 7690 7.64 9.67 9.99 0.0478.50 114.15 66.6 0.583 67 2.98 28.0 83.59 7870 7.56 9.53 9.85 0.0505.50 72.04 37.6 0.333 38 1.72 8.7 48.35 5250 10.47 12.73 13.16 0.0236.00 82.00 42.0 0.375 43 1.98 11.0 55.60 5870 9.98 12.23 12.64 0.0276.25 86.97 44.3 0.396 46 2.12 12.4 59.36 6180 9.77 11.99 12.40 0.0296.50 91.95 46.6 0.417 48 2.25 13.8 63.20 6510 9.56 11.78 12.17 0.0327.00 101.91 51.3 0.458 53 2.53 17.0 71.08 7170 9.19 11.37 11.75 0.0367.25 106.89 53.8 0.479 55 2.68 18.8 75.10 7510 9.02 11.18 11.56 0.0387.50 111.87 56.3 0.500 58 2.82 20.7 79.17 7860 8.87 11.00 11.37 0.0418.00 121.83 61.3 0.542 62 3.12 24.9 87.46 8570 8.62 10.67 11.02 0.0458.25 126.81 63.9 0.563 65 3.27 27.2 91.65 8780 8.52 10.51 10.86 0.0478.50 131.78 66.6 0.583 67 3.42 29.6 95.89 8960 8.43 10.36 10.71 0.0505.50 80.96 37.6 0.333 38 1.94 9.1 54.28 5250 11.48 13.61 14.07 0.0236.00 92.32 42.0 0.375 43 2.23 11.6 62.43 5870 10.94 13.07 13.51 0.0276.25 98.00 44.3 0.396 46 2.38 13.0 66.67 6180 10.70 12.83 13.26 0.0296.50 103.68 46.6 0.417 48 2.53 14.5 70.99 6510 10.48 12.59 13.01 0.0327.00 115.04 51.3 0.458 53 2.85 17.9 79.88 7170 10.07 12.16 12.57 0.0367.25 120.72 53.8 0.479 55 3.01 19.8 84.42 7510 9.88 11.96 12.36 0.0387.50 126.40 56.3 0.500 58 3.17 21.8 89.03 7860 9.71 11.77 12.16 0.0418.00 137.76 61.3 0.542 62 3.51 26.2 98.39 8570 9.43 11.42 11.80 0.0458.25 143.44 63.9 0.563 65 3.68 28.6 103.15 8930 9.33 11.25 11.62 0.0478.50 149.12 66.6 0.583 67 3.85 31.1 107.94 9300 9.23 11.09 11.46 0.0505.50 80.96 37.6 0.333 38 2.36 10.1 54.28 5250 13.04 15.20 15.71 0.0236.00 92.32 42.0 0.375 43 2.72 12.8 62.43 5870 12.43 14.61 15.10 0.0276.25 98.00 44.3 0.396 46 2.90 14.3 66.67 6180 12.15 14.34 14.82 0.0296.50 103.68 46.6 0.417 48 3.09 16.0 70.99 6510 11.89 14.08 14.55 0.0327.00 115.04 51.3 0.458 53 3.48 19.7 79.88 7170 11.42 13.60 14.06 0.0367.25 120.72 53.8 0.479 55 3.68 21.7 84.42 7510 11.21 13.38 13.83 0.0387.50 126.40 56.3 0.500 58 3.89 23.9 89.03 7860 11.01 13.17 13.61 0.0418.00 137.76 61.3 0.542 62 4.30 28.7 98.39 8570 10.69 12.78 13.20 0.0458.25 143.44 63.9 0.563 65 4.51 31.3 103.15 8930 10.57 12.59 13.01 0.0478.50 149.12 66.6 0.583 67 4.72 34.1 107.94 9300 10.46 12.41 12.83 0.050

Slab φφφφφMnf Ac Vol. W Sc Iav φφφφφMno φφφφφVnt AwwfDepth in.k in 2 ft3/ft2 psf in 3 in 3 in.k lbs. 1span 2span 3span

COMPOSITE PROPERTIES

22 g

age

20

gage

19

gage

18

gage

16

gage

Max. unshored spans, ft.

area above the arrowindicates 1 STUD/FT.

area below arrowindicates NO STUDS

41

The Uniform Live Loads are based onthe LRFD equation φMn = (l.6L+1.2D)l2 8.Although there are other load combinationsthat may require investigation, this willcontrol most of the time. The equationassumes there is no negative bendingreinforcement over the beams andtherefore each composite slab is a singlespan. Two sets of values are shown; φMnf

is used to calculate the uniform load whenthe full required number of studs is present;φMno is used to calculate the load when nostuds are present. A straight lineinterpolation can be done if the averagenumber of studs is between zero and therequired number needed to develop the“full” factored moment. The tabulated loadsare checked for shear controlling (it seldomdoes), and also limited to a live loaddeflection of 1/360 of the span.

An upper limit of 400 psf has been appliedto the tabulated loads. This has been doneto guard against equating large concen-trated to uniform loads. Concentrated loadsmay require special analysis and design totake care of servicibility requirements notcovered by simply using a uniform loadvalue. On the other hand, for any loadcombination the values provided by thecomposite properties can be used in thecalculations.

Welded wire fabric in the required amountis assumed for the table values. If weldedwire fabric is not present, deduct 10%from the listed loads.

Refer to the example problems for the useof the tables.

*

Light Weight

3 x 12" DECK Fy = 33ksi f 'c = 3 ksi 115 pcf concrete

3" LOK-FLOOR

5.50 52.80 240 215 190 170 150 135 125 110 100 90 80 75 706.00 59.89 275 245 215 195 175 155 140 125 115 105 95 85 756.25 63.43 290 255 230 205 185 165 150 135 120 110 100 90 806.50 66.97 305 270 240 215 195 175 155 140 130 115 105 95 857.00 74.05 340 300 270 240 215 190 175 155 140 130 115 105 957.25 77.59 355 315 280 250 225 200 180 165 150 135 120 110 1007.50 81.13 375 330 295 260 235 210 190 170 155 140 130 115 1058.00 88.22 400 360 320 285 255 230 205 185 170 155 140 125 1155.50 62.81 295 260 230 205 185 170 150 135 125 115 105 95 856.00 71.37 335 295 265 235 210 190 175 155 140 130 120 110 1006.25 75.65 355 315 280 250 225 205 185 165 150 135 125 115 1056.50 79.92 375 330 295 265 240 215 195 175 160 145 130 120 1107.00 88.48 400 365 330 295 265 240 215 195 175 160 145 135 1257.25 92.76 400 385 345 310 275 250 225 205 185 170 155 140 1307.50 97.03 400 400 360 320 290 260 235 215 195 175 160 150 1358.00 105.59 400 400 390 350 315 285 255 235 210 195 175 160 1455.50 72.04 340 300 270 240 220 195 180 160 145 135 125 110 1056.00 82.00 390 345 305 275 250 225 205 185 170 155 140 130 1206.25 86.97 400 365 325 295 265 240 215 195 180 165 150 135 1256.50 91.95 400 385 345 310 280 250 230 205 190 170 160 145 1357.00 101.91 400 400 385 345 310 280 255 230 210 190 175 160 1457.25 106.89 400 400 400 360 325 295 265 240 220 200 185 170 1557.50 111.87 400 400 400 380 340 310 280 255 230 210 195 175 1608.00 121.83 400 400 400 400 370 335 305 275 250 230 210 195 1755.50 80.96 385 345 305 275 250 225 205 185 170 155 140 130 1206.00 92.32 400 390 350 315 285 255 235 210 195 175 160 150 1356.25 98.00 400 400 370 335 300 275 245 225 205 190 170 160 1456.50 103.68 400 400 395 355 320 290 260 240 220 200 180 165 1557.00 115.04 400 400 400 395 355 320 290 265 240 220 205 185 1707.25 120.72 400 400 400 400 370 335 305 280 255 235 215 195 1807.50 126.40 400 400 400 400 390 355 320 290 265 245 225 205 1908.00 137.76 400 400 400 400 400 385 350 320 290 265 245 225 2055.50 80.96 385 345 305 275 250 225 205 185 170 155 140 130 1206.00 92.32 400 390 350 315 285 255 235 210 195 175 160 150 1356.25 98.00 400 400 370 335 300 275 245 225 205 190 170 160 1456.50 103.68 400 400 395 355 320 290 260 240 220 200 180 165 1557.00 115.04 400 400 400 395 355 320 290 265 240 220 205 185 1707.25 120.72 400 400 400 400 370 335 305 280 255 235 215 195 1807.50 126.40 400 400 400 400 390 355 320 290 265 245 225 205 1908.00 137.76 400 400 400 400 400 385 350 320 290 265 245 225 2055.50 35.57 155 135 120 105 90 80 75 65 60 50 45 40 356.00 40.92 175 155 135 120 105 95 85 75 65 60 55 45 406.25 43.68 190 165 145 130 115 100 90 80 70 65 55 50 456.50 46.49 200 175 155 140 125 110 95 85 75 70 60 55 507.00 52.24 230 200 175 155 140 125 110 100 90 80 70 65 557.25 55.17 240 210 185 165 145 130 115 105 95 85 75 65 607.50 58.14 255 225 200 175 155 140 125 110 100 90 80 70 658.00 64.15 280 250 220 195 175 155 140 125 110 100 90 80 705.50 42.29 185 165 145 130 115 105 90 80 75 65 60 55 506.00 48.61 215 190 170 150 135 120 105 95 85 75 70 60 556.25 51.89 230 205 180 160 145 130 115 105 90 85 75 65 606.50 55.23 245 215 195 170 155 135 120 110 100 90 80 70 657.00 62.07 280 245 220 195 175 155 140 125 110 100 90 80 757.25 65.57 295 260 230 205 185 165 145 130 120 105 95 85 807.50 69.10 310 275 245 215 195 175 155 140 125 115 100 90 858.00 76.28 345 305 270 240 215 190 170 155 140 125 115 105 955.50 48.35 220 195 170 150 135 120 110 100 90 80 70 65 606.00 55.60 250 225 200 175 155 140 125 115 105 95 85 75 706.25 59.36 270 240 210 190 170 150 135 120 110 100 90 80 756.50 63.20 285 255 225 200 180 160 145 130 120 105 95 90 807.00 71.08 325 285 255 225 205 185 165 150 135 120 110 100 907.25 75.10 345 305 270 240 215 195 175 155 140 130 115 105 957.50 79.17 360 320 285 255 230 205 185 165 150 135 125 110 1008.00 87.46 400 355 315 280 255 225 205 185 165 150 135 125 1155.50 54.28 250 220 195 175 155 140 125 115 105 95 85 75 706.00 62.43 285 255 225 200 180 160 145 130 120 110 100 90 806.25 66.67 305 270 240 215 195 175 155 140 130 115 105 95 856.50 70.99 325 290 260 230 205 185 165 150 135 125 115 105 957.00 79.88 370 325 290 260 235 210 190 170 155 140 130 115 1057.25 84.42 390 345 310 275 245 225 200 180 165 150 135 125 1157.50 89.03 400 365 325 290 260 235 210 190 175 160 145 130 1208.00 98.39 400 400 360 325 290 260 235 215 195 175 160 145 1355.50 54.28 250 220 195 175 155 140 125 115 105 95 85 75 706.00 62.43 285 255 225 200 180 160 145 130 120 110 100 90 806.25 66.67 305 270 240 215 195 175 155 140 130 115 105 95 856.50 70.99 325 290 260 230 205 185 165 150 135 125 115 105 957.00 79.88 370 325 290 260 235 210 190 170 155 140 130 115 1057.25 84.42 390 345 310 275 245 225 200 180 165 150 135 125 1157.50 89.03 400 365 325 290 260 235 210 190 175 160 145 130 1208.00 98.39 400 400 360 325 290 260 235 215 195 175 160 145 135

Slab φφφφφMn9.00 9.50 10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00Depth in.k

L, Uniform Live Loads, psf *22 g

age

20

gage

19

gage

18

gage

16

gage

22 g

age

20

gage

19

gage

18

gage

16

gage

42

United Steel Deck, Inc.

LOK-FLOOR DETAILS

DETAILS A THROUGH F ARE APPLICABLE WITH OR WITHOUT SHEAR STUDS.The following details are used to obtain full coverage and to provide a seal against concrete leakage. B-lok details are similar.

A B C

D E F

G H I

GAP GAGE0 to 5" 20

5 to 7½" 167½ to 9" 14

43COMPOSITE BEAM DETAILS

For best construction of compositebeams place studs in the portion ofthe deck rib closest to the beam end.

Special deck arrangements-whenshear studs are present.

All LOK-FLOOR is furnished in 24inch or 36 inch widths. Any cuttingthat is required shall be done in thefield by the deck erector.

Lateral and longitudinal spacingis controlled by sec. I5 A.I.S.C.Manual of Steel Construction.For location of stud to edge offlange see Structural WeldingCode AWS 7.4.5.

N = Number of studs per rib.H = Length of stud.h = Height of rib.w = Average width of rib.

BUTT JOINT

When studs are used deck must not belapped in order to permit welding of studs.

A

DETAILS A THROUGH F MAY BE USED AT THE OPTION OF THE DECK SUPPLIER TO SATISFY VARIOUS DESIGN CASES.

cut hi-hat in field(by erector)

start newsheet

EHIGH HATON FLANGE

edge to edge7/8" min.for 3/4 φ studs(diam. plus 1/8") D

SIDE LAPON FLANGE

There is nominimum lateralconcrete coverreq’d when metaldeck is used(See A.I.S.C.Spec. I4)

CDECKCONTINUOUSOVERFLANGE

w h H

Rib Coefficient = 0.85 ≤ 1.0wh( ))( − 1.0H

h( ))(N√√√√√

fc' , ksi

3.03.03.53.54.04.0

weight, pcf

115145115145115145

145 pcf concrete made with ASTM C33 aggregates. 115 pcf concrete madewith ASTM C330 aggregates.

*

STUD STRENGTHCONCRETE*

STUDS ARE 3/4" DIAMETER

LRFD Q

n, kips

17.721.019.823.621.926.1

ASDQ

n, kips

9.911.510.812.511.413.3

DECK RIB RATIOS

DECK TYPE

1.5" B Lok1.5" Inverted B Lok

1.5" Lok Floor2" Lok Floor3" Lok Floor

w/h

1.52.53.853.02.0

DECK SPLITOVERFLANGE

B

Girder Details

cut hi-hat in field(by erector)

HIGH HATON FLANGE

F

Closures not required forgap " or less.2

1

" min21

" min21

" min21

44

United Steel Deck, Inc.

b WIDTHDECK SECTION PITCH AVERAGE RIB WIDTH FOR NEGATIVE BENDING

B-LOK 6" 2.25" 4.5"INV B-LOK 6" 3.75" 7.5"

LOK FLOOR 12" 6" 6"

NEGATIVE BENDING INFORMATION

Use Standard concrete design procedures as per ACI.

NORMAL WEIGHT CONCRETE (150 PCF)

SLAB 22 20 18 16 22 20 18 16 22 20 18 16 22 20 18 16DEPTH

4.00" 1'11" 2'3" 2'10" 3'4" 1'11" 2'4" 3'0" 3'6"4.50" 1'10" 2'2" 2'9" 3'3" 1'10" 2'3" 2'10" 3'4" 2'6" 2'11" 3'8" 4'3"5.00" 1'10" 2'2" 2'8" 3'2" 1'10" 2'3" 2'9" 3'3" 2'5" 2'10" 3'6" 4'1" 3'8" 4'3" 5'3" 6'0"5.50" 1'9" 2'1" 2'7" 3'0" 1'9" 2'2" 2'9" 3'2" 2'4" 2'9" 3'5" 4'0" 3'7" 4'1" 5'0" 5'9"6.00" 1'9" 2'0" 2'6" 2'11" 1'9" 2'1" 2'8" 3'1" 2'3" 2'8" 3'4" 3'10" 3'5" 3'11" 4'10" 5'7"6.50" 1'8" 2'0" 2'6" 2'11" 1'9" 2'1" 2'7" 3'0" 2'3" 2'8" 3'3" 3'9" 3'4" 3'10" 4'8" 5'5"7.00" 1'8" 1'11" 2'5" 2'10" 1'8" 2'0" 2'6" 2'10" 2'2" 2'7" 3'2" 3'8" 3'3" 3'9" 4'6" 5'3"7.50" 1'8" 1'11" 2'4" 2'9” 1'8" 2'0" 2'6" 2'10" 2'2" 2'6" 3'1" 3'7" 3'2" 3'8" 4'5" 5'1"8.00" 1'7" 1'11" 2'4" 2'8” 1'7" 1'11" 2'5" 2'10" 2'1" 2'5" 3'0" 3'6" 3'1" 3'6" 4'3" 4'11"

United Steel Deck, Inc. DECK PROFILEB-LOK 1.5 LOK-FLOOR 2.0 LOK-FLOOR 3.0 LOK-FLOOR

floor deck cantilevers

GAGE GAGE GAGE

bearing widthsee note 3

pour stop

cell closure

reinforcing steel for negative bending

slab depth

deck

deck depth

pitch

distribution steel

average rib width per pitch

concrete cover

negative bending d

pitchb = 12 x average rib width

1. Allowable bending stress of 20 ksi with loading of concrete + deck + 20 psf or concrete + deck + 150 lb. concentrated load, whichever is worse.2. Allowable deflection of free edge (based on fixed end cantilever) of 1/120 of cantilever span under loading of concrete + deck.3. Bearing width of 3 " assumed for web crippling check; concrete + deck + 20 psf over cantilever and adjacent span: if width is less than 3 "

check with the Summit, New Jersey office.1 2 1 2

GAGE

45

pour stop selection chart0 1 2 3 4 5 6 7 8 9 10 11 12

20 20 20 20 18 18 16 14 12 12 12 10 1020 20 20 18 18 16 16 14 12 12 12 10 1020 20 20 18 18 16 16 14 12 12 12 10 1020 20 18 18 16 16 14 14 12 12 10 10 1020 20 18 18 16 16 14 14 12 12 10 1020 18 18 16 16 14 14 12 12 12 10 1020 18 18 16 16 14 14 12 12 12 10 1020 18 16 16 14 14 12 12 12 12 10 1018 18 16 16 14 14 12 12 12 10 10 1018 18 16 14 14 12 12 12 12 10 1018 16 16 14 14 12 12 12 12 10 1018 16 14 14 14 12 12 12 10 10 1018 16 14 14 12 12 12 12 10 10 1016 16 14 14 12 12 12 10 10 1016 14 14 12 12 12 12 10 10 1016 14 14 12 12 12 10 10 10 1014 14 12 12 12 12 10 10 1014 14 12 12 12 10 10 10 1014 12 12 12 12 10 10 1014 12 12 12 12 10 10 1014 12 12 12 10 10 1012 12 12 12 10 10 1012 12 12 10 10 1012 12 12 10 10 1012 12 10 10 10 1012 12 10 10 1012 12 10 10 1012 10 10 1012 10 10 1012 10 1010 10 1010 1010 10

OVERHANG (INCHES)

4.004.254.504.755.005.255.505.756.006.256.506.757.007.257.507.758.008.258.508.759.009.259.509.75

10.0010.2510.5010.7511.0011.2511.5011.7512.00

SLABDEPTH

(INCHES) POUR STOP TYPES

optional hanger accessories

Non-piercingand Integraltabs are forlight ceiling loads.

INTEGRAL HANGER TAB

TYPE 20 18 16 14 12 10

DESIGNTHK. 0.0358 0.0474 0.0598 0.0747 0.1046 0.1345

NON-PIERCING HANGER TAB

PIERCING HANGER TAB

Pull out resistance greater than 1400 lbs. in 3400P.S.I. concrete.Allowable load per tab: 250 lbs.+

2" weld @ 12"* pour stop

reinforcing steel (not byUSD or NJB)

slab thickness

2"composite floor deck byUnited Steel Deck, Inc.

overhang

* see note 5

" m

in.

1 2

#12 wire minimum.Allowable load per tab: 100 lbs.Can accomodate " φ rod (N.Y.C. Requirement).Available in 16, 18, and 20 gage (deck thickness).NOT FOR SUSPENDED PLASTER CEILINGSOR WALKWAYS.

14

1. Normal weight concrete (150 PCF).

2. Horizontal and vertical deflectionis limited to " maximum forconcrete dead load.

3. Design stress is limited to 20 KSIfor concrete dead load temporarilyincreased by one-third for theconstruction live load of 20 PSF.

4. Pour Stop Selection Chart doesnot consider the effect of theperformance, deflection, orrotation of the pour stop supportwhich may include both thesupporting composite deck and/orthe frame.

5. Vertical leg return lip isrecommended (1" on 10 gage, "on 12 gage, all others ").

6. This selection is not meant toreplace the judgement ofexperienced Structural Engineersand shall be considered as areference only.

This Selection Chart isbased on following criteria:

14

34

12

46

United Steel Deck, Inc.

GAGE I Sp Sn φφφφφV, lbs. Weight, psf

20/20 1.54 0.66 0.65 3220 3.520/18 1.65 0.66 0.68 3220 418/20 1.90 0.93 0.85 4880 4.518/18 2.04 0.94 0.88 4880 518/16 2.16 0.96 0.91 4880 5.516/18 2.44 1.17 1.09 6130 5.516/16 2.59 1.19 1.13 6130 620/20 1.45 0.60 0.71 5020 4.520/18 1.58 0.60 0.86 5020 518/20 1.97 0.88 0.88 6980 518/18 2.13 0.90 1.04 6980 5.518/16 2.28 0.91 1.28 6980 616/18 2.74 1.24 1.22 8770 6.516/16 2.94 1.26 1.46 8770 720/20 1.43 0.62 0.82 3220 418/20 1.77 0.81 0.89 4880 4.518/18 1.94 0.83 1.21 4880 518/16 2.07 0.84 1.37 4880 5.516/16 2.52 1.09 1.64 6130 620/20 1.74 0.83 1.28 6440 518/20 2.07 1.01 1.39 9760 618/18 2.25 1.04 1.79 9760 6.518/16 2.41 1.06 1.94 9760 716/16 2.83 1.29 2.29 12160 820/20 0.64 0.40 0.40 2410 3.520/18 0.69 0.41 0.41 2410 418/20 0.79 0.56 0.52 3180 418/18 0.85 0.58 0.53 3180 4.518/16 0.90 0.58 0.55 3180 516/18 1.02 0.72 0.66 3990 516/16 1.08 0.73 0.69 3990 5.520/20 0.58 0.37 0.50 2410 3.518/20 0.76 0.52 0.54 3180 418/18 0.84 0.53 0.75 3180 4.518/16 0.90 0.54 0.87 3180 516/16 1.14 0.76 1.06 3990 5.520/20 0.67 0.45 0.75 4820 4.518/20 0.81 0.57 0.81 6360 518/18 0.89 0.59 1.08 6360 618/16 0.95 0.60 1.21 6360 6.516/16 1.14 0.74 1.46 7980 720/20 0.38 0.30 0.31 3170 3.520/18 0.41 0.31 0.39 3170 418/20 0.52 0.45 0.40 4160 4.518/18 0.56 0.46 0.47 4160 518/16 0.60 0.47 0.55 4160 5.516/18 0.71 0.64 0.56 5210 5.516/16 0.77 0.65 0.68 5210 6

CELLULCELLULCELLULCELLULCELLULAR FLAR FLAR FLAR FLAR FLOOR DECKOOR DECKOOR DECKOOR DECKOOR DECK

✔ ✔ ✔ ✔ ✔ Check the fire rating requirements — Designs Dxxx in U.L. Fire Resistance Directory. If floors are accessed for electric (power) or communications, and afire rating is required, then the deck must be “fireproofed” and a 2.5" cover of concrete is usually chosen. Galvanized steel is always required for cellular deck.

✔ ✔ ✔ ✔ ✔ Check to determine which blend of cellular and non cellular decks will provide the needed wiring - blending of units saves money. ✔ ✔ ✔ ✔ ✔ Check load requirements in the trench header span. The trench interrupts the slab and the loads must be handled by:

1. shortening the deck span that carries the trench; or, 2. using a heavier gage deck; or, 3. reinforcing the slab as a cantilever; or, 4. placing the trenchover (or close to) a beam; or, 5. a combination of these methods.

In electrified floors, cellular units are usually blended with non cellular units — the load tables for the weaker section controls. For total cellular applications usethese section properties or call the Summit, N.J. office for individual load tables. Live loads can be obtained from the composite deck tables in this manual.Use the deck gage that is the same as the top hat of the cellular deck; i.e., for 18/20 LFC3 use the properties shown for 18 gage (0.0474")LF3.U.S.D. offers a complete line of trench headers and activation kits. Preset inserts are available with most sections. Cellular units that show 36 inch cover havean additional cell to make up the width. Call or write for the Activ-Way brochure.

SECTION

17.7 in.2 per cell

24", 36" cover(24" preferred)

17.4 in.2 per cell

24" cover

18.6, 6.7, 18.6 in.2 per cell

24" cover

11.6, 6.7, 11.6 in.2 per cell

12" cover

11.7 in.2 per cell

24", 36" cover(24" preferred)

12.2, 3.8, 12.2 in.2 per cell

24" cover

7.8, 3.8, 7.8 in.2 per cell

12" cover

Check List for Electrified Floor Deck

AW

C3-

12LF

C2

AW

C2-

24A

WC

2-12

BLC

LFC

3N

LCA

WC

3-24

6 in.2 per cell

24" cover

47

D502 S 2 ½ NW BL,BLC,NL,NLC,LF2,LFC2,LF3,LFC3D703 C 2 ½ LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*D712 C 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*D722 C 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*D739 C 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,AWC2,AWC3*D743 C 2 NW,LW LF2,LFC2,LF3,LFC3*D750 C 2 ½ NW,LW BL,INV.BL,LF2,LF3,NL*D759 C 2 ½ NW,LW BL,LF15,LF2,LF3,NL*D767 C 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,AWC2,AWC3D779 C 2 ½ NW,LW BL,LF15,LF2,LF3D832 F 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*D847 F 2 ½ NW,LW LF2,LFC2,LF3,LFC3,NLC*D858 F 2 ½ NW,LW LF2,LFC2,LF3,LFC3,AWC2,AWC3*D859 F 2 NW,LW LF2,LFC2,LF3,LFC3*D902 N 4 NW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD902 N 3 LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD916 N 4 NW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD916 N 3 LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD918 N 4 NW LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD919 N 4 NW LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD919 N 3 LW LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD922 N 4 NW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD922 N 3 LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD923 N 4 NW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD923 N 3 LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD925 N 4 NW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD925 N 3 LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD927 N 4 NW B,BLC,LF2,LF2C,LF3,LF3C,NC,NLCD927 N 3 LW B,BLC,LF2,LF2C,LF3,LF3C,NC,NLCD929 N 3 ½ NW B,BLC,LF2,LF2C,LF3,LF3C,NC,NLCD929 N 3 LW B,BLC,LF2,LF2C,LF3,LF3C,NC,NLC

1. United Steel Deck, Inc., is notresponsible for the adhesive ability ofany spray applied fire protectionmaterial, or for any treatment, cleaning,or preparation of the deck surfacerequired for adhesion of fire protectionmaterial.

2. The live loads shown in thecomposite tables may require areduction if a U.L. fire rating is required.The worst load reduction for any designis 40%. Designs D733, D742, D825,D840, D860, D902, D907, D914, andD916 do not require a reduction if thesidelaps are attached at 24" o.c. aswas used in the fire test.

3. Be sure to check the U.L. FireResistance Directory for all details ofconstruction.

4. Listings marked with * allow theuse of phosphatized/painted noncellulardeck except LF15. All D9xx listingsallow the use of phosphatized/paintednoncellular deck.

5.

FIRE RATINGS - B-LOK, N-LOK, & LOK-FLOOR SLABS

6. The concrete cover is measuredfrom the top of the deck - add the deckdepth to get the total slab thickness.

7. The BSA approvals for use in NewYork City are 620-76-SM (2 hours) and621-76-SM (3 hours).

8.

IN THE F.P. COLUMN:S = suspended ceilingF = fibrous fireproofingC = cementitiousN = no fireproofing on the deck.

U.L. Fire Ratings - Composite Deck

FIRE RATINGS ARE CONTINUED ON PAGES 48 AND 49.

PRODUCT CODES:BL = B-LOKBLC = B-LOK cellularINV. BL = inverted B-LOKLF15 = 1½" LOK floorLFC1 = 1½" LOK floor cellularLF2 = 2" LOK floorLFC2 = 2" LOK floor cellularLF3 = 3" LOK floorLFC3 = 3" LOK floor cellularNL = N LOKNLC = N LOK cellularINV. NL = inverted N LOKAWC2AWC3

three service compactcell sections

D216 S 2 ½ NW,LW BL,BLC,LF2,LFC2,LF3,LFC3,NL,NLCD703 C 2 ½ LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD712 C 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*D722 C 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD739 C 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC,AWC2,AWC3*D743 C 2 NW,LW LF2,LFC2,LF3,LFC3*D759 C 2 ½ NW,LW BL,LF15,LF2,LF3,NL*D767 C 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,AWC2,AWC3D779 C 2 ½ NW,LW BL,LF15,LF2,LF3D832 F 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*D847 F 2 ½ NW,LW LF2,LFC2,LF3,LFC3,NLC*D858 F 2 ½ NW,LW LF2,LFC2,LF3,LFC3,AWC2,AWC3*D859 F 2 NW,LW LF2,LFC2,LF3,LFC3*D902 N 3 ½ NW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD902 N 2 ½ LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD902 N 2 LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD914 N 2 ½ LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD916 N 3 ½ NW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD916 N 2 ½ LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD916 N 2 LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD918 N 3 ½ NW LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD918 N 2 ½ LW LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD919 N 3 ½ NW LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD919 N 2 ½ LW LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD922 N 3 ½ NW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD922 N 2 LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD923 N 3 ½ NW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD923 N 2 LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD925 N 3 ½ NW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD925 N 2 LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD927 N 3 ½ NW B,BLC,LF2,LF2C,LF3,LF3C,NC,NLCD927 N 2 LW B,BLC,LF2,LF2C,LF3,LF3C,NC,NLCD929 N 3 ½ NW B,BLC,LF2,LF2C,LF3,LF3C,NC,NLCD929 N 2 LW B,BLC,LF2,LF2C,LF3,LF3C,NC,NLC

11

½

U.L. DES. NO. F.P. USD PRODUCTSCONCRETE COVER

RE

ST

RA

INE

D A

SS

EM

BLY

RA

TIN

GS

(H

OU

RLY

)

5 8

5 8

5 8

5 8

5 8

5 8

5 8

48

United Steel Deck, Inc.

U.L. DES. NO. F.P.

FIRE RATINGS, CONT�D

USD PRODUCTSCONCRETE COVER

2R

ES

TR

AIN

ED

AS

SE

MB

LY

RA

TIN

GS

(H

OU

RLY

)

D216 S 2 ½ NW,LW BL,BLC,LF2,LFC2,LF3,LFC3,NL,NLCD502 S 2 ½ NW BL,BLC,LF2,LFC2,LF3,LFC3,NL,NLCD703 C 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*D704 C 2 ½ NW BL,BLC,LF15,LFC1D706 C 2 ½ NW LF3,LFC3D712 C 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*D716 C 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3*D722 C 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*D726 C 2 ½ NW,LW LF15,LF2,LF3,NL *D727 C 2 ½ NW INV.BL,INV. NL *D730 C 2 ½ NW LF2,LFC2,LF3,LFC3,NL,NLC*D733 N 3 ¼ LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*D739 C 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC,AWC2,AWC3*D742 C 2 ½ NW LF15,LF2,LF3,NL*D743 C 2 NW,LW LF2,LFC2,LF3,LFC3*D745 C 2 ½ NW,LW LF2,LF3 *D746 C 2 ½ LW BL *D747 C 2 ½ LW LF2 *D750 C 2 ½ NW,LW BL,INV.BL,LF2,LF3,NL *D752 C 2 ½ LW BL,BLC,,LF2,LFC2,LF3,LFC3*D755 C 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*D759 C 2 ½ NW,LW BL,LF15,LF2,LF3,NL*D760 C 2 ½ NW,LW LF2,LF3D767 C 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,AWC2,AWC3D777 C 2 ½ NW LF15,LF2,LF3,NL*D772 C 2 ½ NW,LW LF2,LF3*D773 C 2 ½ LW BL*D774 C 2 ½ LW LF2*D775 C 2 ½ NW,LW BL,INV. BL,LF2,LF3*D779 C 2 ½ NW,LW BL,LF15,LF2,LF3D822 F 2 ½ NW,LW LF2,LFC2,LF3,LFC3,NL,NLC*D824 F 2 ½ NW,LW BL,BLC,LF15,LFC1D825 F 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*D826 N 3 ¼ LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*D831 F 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*D832 F 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*D833 F 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3*D837 F 2 ½ NW BL,BLC,LF15,LFC1*D840 N 3 ¼ LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*D847 F 2 ½ NW,LW LF2,LFC2,LF3,LFC3,NLC*D852 F 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3*D858 F 2 ½ NW,LW LF2,LFC2,LF3,LFC3,AWC2,AWC3*D859 F 2 NW,LW LF2,LFC2,LF3,LFC3*D860 F 3 ¼ LW LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*D861 F 2 ½ NW,LW LF2,LF3*D862 F 2 ½ LW LF2,LF3*D870 F 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3*D902 N 4 ½ NW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD902 N 3 ¼ LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD902 N 3 ½ LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD906 N 3 ¼ LW NLCD907 N 3 ¼ LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3D908 N 3 ¼ LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD913 N 3 ¼ LW BL,LF15,LF2,LFC2,LF3,LFC3D916 N 4 ½ NW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD916 N 3 ¼ LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD916 N 3 ½ LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD918 N 4 ½ NW LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD918 N 3 ¼ LW LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD918 N 3 ½ LW LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD919 N 3 ¼ LW LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD919 N 3 ½ LW LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD920 N 3 ¼ LW LF2,LFC2,LF3,LFC3D922 N 4 ½ NW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD922 N 3 ½ LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD923 N 4 ½ NW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD923 N 3 ½ LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD925 N 4 ½ NW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD925 N 3 ½ LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD927 N 4 ½ NW B,BLC,LF2,LF2C,LF3,LF3C,NL,NLCD927 N 3 ¼ LW B,BLC,LF2,LF2C,LF3,LF3C,NL,NLCD929 N 4 ½ NW B,BLC,LF2,LF2C,LF3,LF3C,NL,NLCD929 N 3 ¼ LW B,BLC,LF2,LF2C,LF3,LF3C,NL,NLC

U.L. Fire Ratings - Composite Deck, cont�d.

49

D216 S 3 ½ NW,LW BL,BLC,LF2,LFC2,LF3,LFC3,NL,NLCD701 C 2 ½ NW BL,BLC,LF15,LFC1,LF3,LFC3D703 C 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC *D708 C 2 ½ NW,LW BL,BLC,LF15,LFC1, LF2,LFC2,LF3,LFC3*D709 C 2 ½ NW,LW LF3,LFC3D715 C 2 ½ NW,LW LF2,LF3,NL *D739 C 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*D742 C 3 ½ NW LF15,LF2,LF3*D743 C 2 NW,LW LF2,LFC2,LF3,LFC3*D746 C 2 ½ LW BL *D754 C 3 ¼ LW LF15,LF2,LF3,NL*D755 C 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*D760 C 2 ½ NW,LW LF2,LF3D767 C 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3LD768 C 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3D771 C 3 ½ NW LF15,LF2,LF3,NL*D773 C 2 ½ LW BL*D777 C 3 ¼ LW LF15,LF2,LF3,NL*D779 C 2 ½ NW,LW BL,LF15,LF2,LF3D814 F 2 ½ NW,LW BL,BLC,LF15,LFC1,LF3,LFC3*D816 F 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC *D831 F 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*D832 F 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*D833 F 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3*D838 F 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3D849 F 2 ½ NW LF3,LFC3,NL,NLCD858 F 2 ½ NW,LW LF2,LFC2,LF3,LFC3*D859 F 2 NW,LW LF2,LFC2,LF3,LFC3*D860 F 3 ¼ LW LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*D867 F 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3D869 F 2 ½ NW LF3,LFC3,NL,NLC*D902 N 4 LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD902 N 4 LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD902 N 5 ¼ NW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD916 N 4 LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD916 N 4 LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD916 N 5 ¼ NW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD918 N 5 ¼ NW LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD918 N 4 LW LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD918 N 4 LW LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD919 N 5 ¼ NW LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD919 N 4 LW LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD919 N 4 LW LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD922 N 5 ½ NW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD922 N 4 LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD923 N 5 ¼ NW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD923 N 4 LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD925 N 5 ¼ NW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD925 N 4 LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLCD927 N 5 ¼ NW B,BLC,LF2,LF2C,LF3,LF3C,NC,NLCD927 N 4 LW B,BLC,LF2,LF2C,LF3,LF3C,NC,NLCD739 C 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC*D754 C 3 ¼ LW LF15,LF2,LF3,NL*D760 C 2 ½ NW,LW LF2,LF3D767 C 2 ½ NW,LW BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,AWC2,AWC3D777 C 3 ¼ LW LF15,LF2,LF3,NL*D779 C 2 ½ NW,LW BL,LF15,LF2,LF3D858 F 2 ½ NW,LW LF2,LFC2,LF3,LFC3*D860 F 3 ¼ LW LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC

The following information is takenfrom the Steel Deck Institutepublication “Composite DeckDesign Handbook,” 1997 edition:

“In the Underwriter Fire ResistanceDirectory the composite deckconstructions show hourly ratings forrestrained and unrestrainedassemblies. ASTM E119 providesinformation in appendix X3 called“Guide for Determining Conditions ofRestraint for Floor and RoofAssemblies and for IndividualBeams”. After a careful review of thisguide the Steel Deck Institutedetermined that all interior andexterior spans of multispan deckproperly attached to steel framing arerestrained. Additonally, all multiplespan composite deck slabs attachedto bearing walls are restrained. Infact, there is almost no realisticcondition in which a composite deck-slab could not be considered to berestrained - perhaps a single spandeck system which is unattached toframing or a wall in order to providea removable slab.”

FIRE RATINGS, CONT�D

3R

ES

TR

AIN

ED

AS

SE

MB

LY

RA

TIN

GS

(H

OU

RLY

)

U.L. DES. NO. F.P. USD PRODUCTSCONCRETE COVER

4U.L. Fire Ratings - Composite Deck, cont�d.

3 167 16

3 167 16

3 167 16

3 167 16

7 16

7 16

7 16

3 16