Survival signalling in myeloma Asim Khwaja UCL Cancer Institute & Department of Haematology ucl cancer institute

  • View
    220

  • Download
    3

Embed Size (px)

Text of Survival signalling in myeloma Asim Khwaja UCL Cancer Institute & Department of Haematology ucl...

  • Slide 1
  • Survival signalling in myeloma Asim Khwaja UCL Cancer Institute & Department of Haematology ucl cancer institute
  • Slide 2
  • Rationale for developing targeted therapies - we are likely to be close to the limits of what can be achieved with conventional cytotoxic drugs
  • Slide 3
  • Background Potential targets for therapeutic intervention PI3-Kinase and mTOR PIM kinases Todays talk
  • Slide 4
  • The molecular pathology of myeloma Kuehl & Bergsagel, JCI 2012
  • Slide 5
  • Myeloma microenvironment Kuehl & Bergsagel, JCI 2012
  • Slide 6
  • Potential signalling pathway targets in myeloma PathwayMicroenvironmentMolecular NF-kappa BTNF, BAFF, APRILDels/amp/mut of TRAF3, CYLD, BIRC2/3, NIK, NFKB1/2 etc RASIGF1, IL6, FGF, chemokinesActivating mutations NRAS, KRAS, BRAF, FGFR3 PI3-kinaseIGF1, IL6, chemokines, integrins etc PTEN del, PIK3CA mut, RAS mutation, (DEPTOR overexpression) JAK kinaseIL-6 WNTMultiple WNTs NOTCHJagged, Delta-like
  • Slide 7
  • Proteasome RIP1 IKK TRADD TAK1 TRAF2 IKK IKK p50p65 p50 p65 IkB TRAF2 TRAF3 cIAP1/2 NIK IKK degradation p100 RelB p52 RelB p52 RelB Canonical Alternative processing NF-kappaB signalling TNF BAFF, APRIL
  • Slide 8
  • Primary MM cells display constitutive NF-B activity that is largely resistant to high concentrations of bortezomib. Markovina S et al. Mol Cancer Res 2008;6:1356-1364 2008 by American Association for Cancer Research
  • Slide 9
  • Hideshima T et al. Blood 2009;114:1046-1052 2009 by American Society of Hematology Possible mechanism whereby bortezomib triggers canonical NF-B activation.
  • Slide 10
  • PIP2 PIP3 PI3K PTEN AKT PDK1 mTORC2 T308 S473 mTORC1 4EBP1 eIF4E S6K1 S6 Cell growth IRS1 GRB10 TSC1/2 RHEB ERK/RSK IKKB AMPK Rag A/B Rag C/D Amino acids AMP:ATP ULK1 ATG13 Autophagy PRAS40 FOXOs SGK p27BIM MDM2 p53 GSK3 Cyclin D1MYC Proliferation and Survival BAD INFLAMMATION RAS RAF/MEK PI3K, AKT and mTOR signalling Other targets eg RAC
  • Slide 11
  • YAP GAB2 RTKRTK GPCRGPCR G A B A (A) R Cytokine Receptor BCRBCR Cytokines Integrins BCRBCR Ag BCAP Akt GG GG Ras PI3K PI3K IRS1 GAB1 PI3K PIP2 PIP3 Synaptic Signaling Translation Regulation of Cyclic Nucleotide Blocks Apoptosis Protein Synthesis Survival Genes Genetic Stability Cell Cycle Progression Glycogen Synthesis Cell Cycle Death Genes Cell Survival Aggregation and Neurodegeneration Neuroprotection Cardiovascular Homeostasis PTEN CTMP ILK FAK Paxillin JAK1 PI3K SYK Cell Survival p73 Mediated Apoptosis Respiratory Brust Apoptosis Inhibition Insulin Stimulated Mitogenesis Glucose Uptake Elevation of Glucose Import NF- B Pathway JNK Pathway ERK Pathway Caspase Cascade PIP3 PDK-1 p70S6K Growth Factors mTOR eIF4E 4EBP1 Raf1 BAD P Akt P Ser87 XIAP P FKHR P Nucleus MDM2 P P p53 Ub Glycogen Synthase Chk1 P p27(KIP1) GSK3 CcnD JIP1 AR P eNOS P NO Production Ataxin p53 Degradation P Htt 14-3-3 p47Phox PRAS40 WNK1 P IKKs P DNA-PK PFK1 PFK2 P P PP2A HSP90 CDC37 Akt Signaling 14-3-3 PDE3B P 14-3-3 p21(CIP1) P 14-3-3 BAD P Caspase9 P CREB P P PDK-1 ASK1 P GLUT4 Vesicle TSC2 TSC1 GG GTP C 2007-2009 SABiosciences.com C 2007-2009 SABiosciences.com
  • Slide 12
  • PI3Ki PIK90, GDC0941, ZSTK474 mTORi PP242, KU006, WYE-354 PI3K+mTORi (dual inhibitors) PI103, BEZ235, XL765 AKTi Akti1/2, AZD5363, MK2206 Targeting PI3K, Akt and mTOR
  • Slide 13
  • Increased PI3K activity is associated with distinct myeloma IgH translocation categories pAKT t(4;14)t(14;16)t(11;14) t(14;16)t(4;14)t(11;14) *** PIP3 LEVELS Phospho-Flow Akt t(4;14)t(14;16) t(11;14) undetectable
  • Slide 14
  • Increased PI3K activity correlates with high level of cell death induced by dual PI3K/mTOR inhibition t(14;16)t(4;14)t(11;14) *** r=0.813, p=0.0001 PI3K AKT mTOR PI103 Patient samples
  • Slide 15
  • Optimal cell killing requires inhibition of both PI3K and mTOR PI3K AKT mTOR PI103 Bez235 Rapa/EveroPIK90 PP242 etc Akti1/2
  • Slide 16
  • Potent feedback activation of PI3K by inhibitors of mTOR in myeloma cells pAktS473 pS6 tubulin CON PI PP1 PP2 PP5 8 24 8 24 8 24 8 24 8 24 pAktT308 * * *** PIP3 (pmol/million cells) PIP3 LEVELS PI3K AKT mTORC1 mTORC2 PP242 RAPA
  • Slide 17
  • There is significant PI3K-independent mTOR activity in myeloma cells pS6 pAkt S473 tubulin 4 8 4 8 4 8 4 8 4 8 4 8 hours CON PI103 PIK90 BEZ RAP P90+RAP p4EBP1 PI3K AKT mTORC1 ERK/RSK IKKB AMPK Cell growth Proliferation and Survival PI3K AKT mTOR PI103 Bez235 RapaPIK90
  • Slide 18
  • The role of DEPTOR in modulating PI3K and mTOR signalling in myeloma t(4;14)t(14;16) Deptor GAPDH t(11;14) PI3K AKT mTORC1 ERK/RSK IKKB AMPK Cell growth Proliferation and Survival DEPTOR pS6 p4EBP1 tubulin HMCL
  • Slide 19
  • PI3K/mTOR in myeloma There is a significant PI3K-independent component leading to mTOR activation Dual inhibition of PI3K and mTOR kinase activities induces maximal cytotoxic effects PI3K activity correlates with response to dual inhibitors Cytogenetics may predict pathway activation and hence response Evidence for synergy with glucocorticoids The role of DEPTOR is unclear
  • Slide 20
  • Combined targeting of MEK/MAPK and PI3K/Akt signalling in multiple myeloma Steinbrunn et al British Journal of Haematology Volume 159, Issue 4, pages 430-440, 17 SEP 2012 DOI: 10.1111/bjh.12039 http://onlinelibrary.wiley.com/doi/10.1111/bjh.12039/full#bjh12039-fig-0002 Volume 159, Issue 4, http://onlinelibrary.wiley.com/doi/10.1111/bjh.12039/full#bjh12039-fig-0002
  • Slide 21
  • Combined targeting of MEK/MAPK and PI3K/Akt signalling in multiple myeloma Steinbrunn et al British Journal of Haematology
  • Slide 22
  • Some conclusions Targeting single cell signalling pathways unlikely to be effective Activity of various combinations PI3K+MEK PI3K+mTOR PI3K/AKT+PIM Identification of biomarkers mutation analysis cytogenetics as surrogate expression of signalling proteins Integration with existing therapies
  • Slide 23
  • Acknowledgements Chloe Stengel Koremu Meja Ching Cheung Clare Shepherd Lolly Banerjee Kwee Yong ucl cancer institute