34
Successive robust design optimization of an electronic connector Dirk Roos dynardo – dynamic software and engineering GmbH Ralf Hoffmann & Thomas Liebl Tyco Electronics AMP GmbH

Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

  • Upload
    dodat

  • View
    231

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

Successive robust design optimization of an electronic connector

Dirk Roos

dynardo – dynamic software and engineering GmbH

Ralf Hoffmann & Thomas LieblTyco Electronics AMP GmbH

Page 2: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

2 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Design for Six Sigma

• Six Sigma is a concept to optimize the manufacturing processes such that they automatically produce parts conforming with six sigma quality

• Design for Six Sigma is a concept to optimize the design such that the parts conform with six sigma quality, i.e. quality and reliability are explicit optimization goals

Page 3: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

3 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Robust Design Optimization

Objective function

and additional stochastic constraints

Page 4: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

4 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Limit state function

Material limit

Successive Robust Design Optimization

Page 5: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

5 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

reads and writes parametric data to and from all ASCII input of

any external solverreads binary parametric data from

ABAQUS odb formatreads and writes parametric data to

EXCEL, CATIA and ANSYS Workbench

ANSYS Workbench reads and writes parametric data to and from many CAD software in order to explore a wide range of responses based on a limited number of actual solutions:

Autodesk Inventor,CATIA SolidWorks, Solid Edge, Mechanical Desktop, Unigraphics and Pro/ENGINEER

Process integration

Page 6: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

6 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

ANSYS WorkbenchStructural Mechanics - Fluid Dynamics - Heat Transfer - Electromagnetics

An adaptable multi-physics design and analysis system that integrates and coordinates different simulation tasks

CAD / PDMCAD / PDM

Sensitivity Robustness Optimization Robust DesignReliability

Process integration

Page 7: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

7 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Input datas from CeTol into Design Explorer / OptiSlang

3D Tolerance Simulation (CeTol)

ANSYS - WorkbenchCAD-Model (UG;ProE) CAD-Parameter

Statistical function ofer geometric – parameter

Kinematic Model

With rigid body

CAD – Plug In

Geometry-Tolerance

Result: statistical function of functional parameter

Analysis and comparison with manufacturing

Mathematical model to perform forecast

of Robustness & Reliability

Workflow Optimization, Robustness & Reliability Analysis Tyco Electronics

Parameter exchange

Process datas

Page 8: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

8 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Connector Problem description

Basic Design Idea:2 rows with double contacts

(2x 10 Contact points)

Contact reliablity increased due to parallel contact points

Problem description:Contact of each spring and

all other springs influenced to each other…

Contact force influenced by Body deformation…

Status quo:Optimization and Robustness Analysis by Design Explorer

Question:optimized Design to meet

contact force > 1N

Reliability of optimized Design

Page 9: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

9 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

ProE CAD model (with 36 design CAD parameters)

Connector Problem description

ANSYS Workbench model (with 10 contact force response parameters)

Page 10: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

10 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Design Explorer onlyreduced model possibleStudy single spring DX / optiSLangStudy reduced model DX

Study full model optiSLang

ProE CAD model (with n=36 design CAD parameters)

ANSYS Workbench model (with 10 contact force response parameters)

Connector Problem description

Page 11: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

11 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Model single springAnsys Workbench Simulation Model single spring with Input Geometry Parameter and Result Force Reaction @ Tab (front; rear)

most important aim: set up workflow CAD-ANSYS- optiSLang

Page 12: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

12 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Model single springComparison Results Design Explorer <-> optiSLang Response Surface Design Optimization

DOE-Design sample type md_y1 d_y2 F1 RSO F1 diff F2 RSO F2 diff F1/F1 targ F2/F2 targ

CCD CCD Auto Defined 0.271 0.241 3.00 2.93 102.3% 2.98 3.490 85.4% 97.8% 116.3%

CCD G-optimized 0.279 0.253 3.09 2.79 110.6% 3.080 2.790 110.4% 93.0% 93.0%

Opt Space Filling Auto Defined 0.281 0.256 3.34 2.87 116.4% 3.05 3.030 100.7% 95.7% 101.0%

Opt Space Filling full quadratic 0.279 0.253 3.09 2.79 110.8% 2.99 3.198 93.5% 92.8% 106.6%

ARSM OptiSlang CCD Aadaptive 0.278 0.254 3.00 3.00 100.0% 3 3.000 100.0% 100.0% 100.0%

Goal Driven Opimization

Page 13: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

13 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Design Explorer Analysis of Connector with reduced parameter model

Input Parameter: (outside and inner springs linked together)

Response Parameter:

Design Explorer Analysis

Page 14: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

14 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Design Explorer Analysis of Connector with reduced parameter model Optimization reduced parameter model

Target: F > 3N (1N+3s) ( y3=0.01 )

Design Explorer Analysis

Page 15: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

15 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Design Explorer Analysis of Connector with reduced parameter model

Robust Design Analysis; Reliability Estimation…

Design Explorer Analysis

mean s UGW OGWF1ov 5.08 0.71 0.82 9.34F2ov 1.58 0.47 -1.23 4.40F3ov 0.58 0.39 -1.75 2.91F4ov 1.92 0.51 -1.16 5.01F5ov 5.87 0.72 1.53 10.20F1oh 1.34 0.68 -2.75 5.44F2oh 2.08 0.62 -1.65 5.81F3oh 2.35 0.59 -1.21 5.92F4oh 1.98 0.65 -1.91 5.87F5oh 1.00 0.65 -2.91 4.90

DOE Central Composite Design50.00%55.00%60.00%65.00%70.00%75.00%80.00%85.00%90.00%95.00%

100.00%

all >=4 >=3 >=2 >=1

Probability Function front contact

50.00%55.00%60.00%65.00%70.00%75.00%80.00%85.00%90.00%95.00%

100.00%

all >=4 >=3 >=2 >=1

Probability Function rear contact

ReliabilityTarget failed

Page 16: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

16 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

ProE CAD model (with n=36 design CAD parameters)

ANSYS Workbench model (with 10 contact force response parameters)

Iterative RDO with optiSLang

ANSYS Workbench finite element model with mean number of nodes of 35.660

Mean calculation time 1 hour @ 2 Xeon 2.66 GHz CPU

Page 17: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

17 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Step 1 - Robustness analysis

n=31 random CAD parameters

Global variance-based robustness analysis

Advanced latin hypercube sampling with

N=90 parallel finite element calculations

Calculation time 20 hours with

Distributed calculation of ANSYS Workbench on 8 Xeon 2.66 GHz CPUs

Page 18: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

18 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Step 1 - Robustness analysis

First global variance- based robustness evaluation

Identification of n=15 most important design parameters

Page 19: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

19 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Step 1 - Robustness analysis

Performance critical contact force F3o_v

With failure probability of 89 %!

Large Number of numerical outliers

Page 20: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

20 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Step 2 - Optimization• n=15 most important CAD

design parameters• Deterministic optimization• Minimal distance function

approach defines optimal weighted objectives with objective term definition & scaling & weights

• Target contact forces are result from six sigma analysis based on the histograms

Page 21: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

21 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Step 2 - Optimization

Adaptive response surface method with D-optimal linear DOE

N=126 parallel finite element calculations

Calculation time 25 hours with

Distributed calculation of ANSYS Workbench on 8 Xeon 2.66 GHz CPUs

Page 22: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

22 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Step 2 - Optimization

Stagnation of the objective improvement after the 5th adaption

Performance critical contact force F3o_v

Page 23: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

23 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Step 3 – feasible design searchIntroducing of

constraints to obtain a feasible start design

Using an Evolutionary Algorithm

N=391 parallel finite element calculations

Calculation time 80 hours

Page 24: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

24 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Step 3 – feasible design search

Increasing the performance critical contact force F3o_v

1.6 N -> 2.3 N

Decreasing of the non-critical contact force F2o_h3.1 N -> 1.0 N

Page 25: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

25 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Step 4 – Design improvement

Target: Increasing of the non-critical contact force F2o_h

• Adaptive response surface method with D-optimal linear DOE

• Start design is based on best design resulting the EA optimization

• Start design range only 20 % of the total design space

• N=172 parallel finite element calculations

• Calculation time 35 hours

Page 26: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

26 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Step 4 – Design improvement

• Increasing the non-critical contact force F2o_h

• 3.1 N -> 1.0 N -> 1.6 N• All mean contact forces are

larger than the limit state of 1 N !

Page 27: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

27 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Step 5 - Robustness analysis

n=36 random CAD parameters

Global variance-based robustness analysis of the optimized design

Advanced latin hypercube sampling with

N=50 parallel finite element calculations

Calculation time 10 hours

Page 28: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

28 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Step 5 - Robustness analysis

Page 29: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

29 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Step 5 - Robustness analysis

Performance critical contact force F3o_v

With failure probability 9 %!

Contact force F2o_h with failure probability 1 %!

Page 30: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

30 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Results Robustness Analysis

Failure probabilities of the other contact forces lesser than 1%

Design without numerical outliers

Page 31: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

31 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Step 6 - Reliability analysis

Identification of n=12 most important random parameters using coefficients of importance

Defining the limit state condition for violation the minimal number of 10 contact forces

More than 50% of the contact forces are lesser than 1N

Using APDL command

Page 32: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

32 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Step 6 - Reliability analysisReliability analysis

using ARSM with N=137 D-optimal design of experiment

Adaptive sampling on the MLS surrogate model without samples in the unsafe domain

Probability of failure is near zero

Optimized design is an Six Sigma Design

Page 33: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

33 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Results

Variance and probability-based robust design optimization with n=36 random CAD parametersIncreasing the performance critical contact force F3o_v according failure probability 89% -> 9%Failure probabilities of the other contact forces lesser than 1%System failure probability (more than 50% of the contact forces are lesser than 1) is near zero! (Six Sigma Design)Optimized design without numerical outliers N=950 parallel finite element calculationsTotal calculation time 1 week

Page 34: Successive robust design optimization of an electronic ... · Successive robust design optimization of an electronic connector. ... Successive Robust Design Optimization. ... Input

34 Weimarer Optimierungs- und Stochastiktage 5.0, 20./21. November 2008

Identify product design parameters that are critical to achieve a performance characteristicQuantify the effect of variations on product behavior and performanceAdjust the design parameter to hit the target performance

Reduces product costReduces product costUnderstanding potential sources of variationsMinimize the effect of variations (noise) Qualify possible steps to desensitize the design to these variations

More robust and affordable designsMore robust and affordable designsCost-effective quality inspection

No inspection for parameters that are not critical to performancNo inspection for parameters that are not critical to performancee

Benefits significance of robust design optimization