49
Structural Seismic Interpretation Dr. Ir. Eko Widianto, MT [email protected]

Structural Seismic Interpretation(1)

Embed Size (px)

DESCRIPTION

GSI

Citation preview

  • Structural Seismic Interpretation

    Dr. Ir. Eko Widianto, MT [email protected]

  • Interpretasi seismik

    Interpretasi struktur Interpretasi Seismik

    Stratigrafi Karakterisasi

    Reservoir

  • Tujuan

    Menafsirkan kondisi struktur geologi dan unsur-unsurnya, proses kejadiannya dan faktor yang mempengaruhi.

    Memberikan rekomendasi prospektifitas atau resiko yang terkandung di dalamnya

    (a)

    (d) (c) (b)

  • Identifikasi struktur geologi/tektonik

    Identifikasi stratigrafi Interpretasi fasies

    pengendapan/ lingkungan pengendapan

    Karakterisasi reservoir fluida

    Rekomendasi, mendefinisikan petroleum system

    Interpretasi Seismik

  • Seismic section

    Model geologi Interpretasi

    Alur pikir interpretasi seismik

    Seismic section

    Well log

    synthetic

    Fecies model

    Geology model

    Structure & Facies map

  • DATA COLLECTING

    DIAGRAM ALIR INTERPRETASI SEISMIK

    DATA SEISMIK (stack migration,PSTM)

    NAVIGASI (KOORDINAT)

    PETA DASAR (BASE MAP)

    SUMUR ( LOG) Sonic/ & densitas,

    VSP/WVS.

    DATA KECEPATAN

    SEISMIK

    verifikasi data)

    Looping /composite line untuk memeriksa kondisi data / mistie

    Periksa &verifikasi data sumur (log)

    OK?

    OK?

    PENYIAPAN DATA

    Mistie analysis / post stack prosesing (penyamaan amplitude vintage berbeda) Sintetik

    Seismogram

    TIDAK

    YA

    TIDAK

    YA

    SEISMIC-WELL TIE Pengikatan data seismik ke data sumur & Penentuan horison

    HORIZON PICKING

    HORIZON MAPPING

    PETA GEOLOGI, PETA STRUKTUR, DATA INTERPRETASI/EVALUASI , STUDI TERDAHULU

    STUDI PENDAHULUAN

    EVALUASI Penentuan interest area, rekomendasi dll (Laporan)

    standard

  • INTERPRETASI DATA SEISMIK

    Tektonik Regional, Struktural, dan Pola Pengendapannya Memahami tektonik dan system pengendapan pada daerah yang diinterpretasi, sehingga dalam interpretasi : fault, geometri struktur dan fasies sedimentasinya harus konsisten dengan tektonik regional dan system pengendapannya. Kenampakan atau pola dari seismic sangat bervariasi, sehingga harus dapat membedakan mana betul-betul signal refleksi (data) atau bukan (noise). Dalam hal ini harus diyakinkan di antaranya dengan data sumur (synthetic seismogram) untuk memprediksi respon dari litologi/kandungan fluidanya.

    Obyektif interpretasi Interpreter harus mengerti obyektif yang menjadi target interpretasi seismic. Sebab banyak sekali informasi yang tersedia pada penampang seismic, ini sangat penting untuk mengarahkan pada tujuan /obyektif

  • 2.Persiapan Beberapa tahapan dalam interpretasi data seismic yang harus diikuti : Peta Dasar dan Penampang seismik Peta Dasar mencakup :

    Posisi arah lintasan seismic dan perpotongan antar lintasan seismic. Koordinat, sistim koordinat yg digunakan Nama lintasan dan nomer shot point (titik tembak). Skala peta (tegantung tujuan), arah utara/mata angin Posisi sumur Culture dan legend/ keterangan.

    Penampang Seismik : bentuk stack migrasi dan umumnya adalah PSTM . Skala umumnya horisontal 1 : 20 000 dan vertikal 1 cm = 100 msec. Pada penampang seismik juga memuat informasi tentang : bagian atas : data kecepatan, nomer SP, Trace , posisi crossing line, topografi, shot hole depth bagian samping (kanan) : nama lintasan, nomer SP dan status processing, informasi data acquisition, informasi processing dan sekuennya, peta indeks

  • Data Sumur Final log, untuk mengetahui puncak formasi atau lapisan tertentu sebagai marker atau zona-zona mengandung HK (DST, UKL). Log sonic dan densitas, digunakan untuk membuat sintetik seismogram untuk seismic well tie WVS/VSP, untuk mengetahui kecepatan rata-rata tiap interval atau menkonversi data kedalaman ke data waktu atau sebaliknya, dan sebagai kalibrasi synthetic seismogram Data geologi Geologi permukaan, peta geologi untuk membantu menentukan batas litologi dengan horizon tertentu, analisis stratigrafis, hubungan fasies (mengetahui kondisi geologi regional daerah setempat ). Citra satelit, berupa landsat, spot dsb, digunakan menentukan pola/ kelurusan struktur permukaan dan penyebaran batuan (geologi regional). Data seismic survey terdahulu (sebelumnya), akan membantu interpretasi karena akan menambah data asal mempunyai kualitas yang memadai.

  • Verifikasi 1. Data navigasi 2. Data sumur dan data lainnya yang terkait. (dapat

    dikerjakan pada saat loading data ke workstation) 3. Kesesuaian penempatan lintasan-lintasan seismic

    ataupun penempatan in-line dan cross-line dari suatu set data seismic

    4. Penomoran SP/CDP ataupun penomoran inline/crossline arah-arah lintasan

    5. Kesesuaian nama lintasan seimik baik antara header data, data seismik tersebut maupun dalam peta dasar.

    6. Pastikan sistim koordinat yang digunakan.

  • Tahap : Penarikan horizon /picking Setelah selesai persiapan, berikutnya adalah Memadukan data yang tersedia. Membuat looping /composite line untuk memastikan kondisi data tersebut dan memeriksa ada tidaknya mistie. Pemilihan horizon : didasarkan pada : kontinuitas refleksi, amplitude yang mudah dikenal, sifat-sifat khusus yang mewakili atau horizon yang ekwivalen dengan lapisan produktif. Pengikatan data seismik dengan synthetic seismogram dari data sumur yang dijadikan acuan. Data sonic/ densitas serta data VSP/Checkshoot adalah dasar dalam pembuatan synthetic seismogram. Penentuan top-top lapisan/reservoir, top-top formasi pada penampang seismik berdasarkan data ikatan sumur acuan dan dilakukan penarikan horison dari lapisan-lapisan yang akan diinterpretasikan mulai dari lintasan yang diikatkan ke sumur acuan.

  • Pemetaan

    Persiapan Pemetaan Sebelum memetakan, cek ulang : lintasan yang melewati sumur apakah korelasi seismic dan data sumur sesuai (matching), pastikan pada perpotongan antar lintasan, horizon ataupun sesarnya sudah tie. Base map/peta dasar sudah dilengkapi lintasan dan nomer SPnya. Kwalitas mapping tergantung pada ketelitian interpretasi Pembacaan / Gridding Pembacaan /gridding untuk mengetahui harga dan posisi horizon atau fault yang akan dipetakan , dengan syarat seluruh data seismic sudah cocok (tie). Hasil pembacaan kemudian di plot pada peta dasar . Dalam beberapa kasus apabila lintasan seismic yang terdapat pada peta dasar masih jarang (jarak antar lintasannya jauh) maka harga pada posisi antar lintasan akan diinterpolasi .

  • Mistie Mistie adalah perbedaan waktu refleksi pada horizon dan posisi yang sama antara dua penampang seismic yang berpotongan. Mistie antara 1 - 10 msec, dapat diabaikan untuk kepentingan pemetaan regional (kontur intervalnya 20 - 50 msec), Untuk pemetaan detail dengan interval kontur 5 - 10 msec, mistie diatas 5 msec harus dikoreksi. Mistie ini dapat terjadi akibat adanya: 1. Kesalahan dalam interpretasi 2. Kesalahan dalam prosesing (perbedaan kecepatan, koreksi statik,

    filtering dll) 3. Migrasi akibat geometri dari dipping/kemiringan data, biasanya

    terdapat pada ujung lintasan dan sering disebut dengan end of line effect.

    4. Kesalahan posisioning 5. Adanya perbedaan dalam parameter akusisi. 6. Pada pemetaan manual, diakibatkan kesalahan dalam pembacaan

    gridding.

  • Contouring Sebelum penggambaran garis kontur, 1. Plotting posisi sesar (fault), pola sesar dan simbolnya harus

    dilakukan terlibih dulu.

    2. Pemetaan ini adalah contouring yaitu titik titik harga tersebut dapat dikontur dengan interval atau jarak antar kontur yang disesuaikan dengan skala peta (1/2000 x skala peta) atau disesuaikan dengan kebutuhan

  • Cakupan pembahasan struktur

    Pembahasan struktur geologi pada eksplorasi hidrokarbon mengharuskan kita untuk menganalisa hal-hal yang berkaitan dengan: - Geometry : menyangkut bentuk, ukuran, arah, pola suatu

    struktur - Genesa : meliputi interpretasi mekanisme pembentukan, arah

    gaya pembentukanya, urutannya - Potensi menjadi perangkap hidrokarbon.

    Hasilnya berupa peta: harus jelas menginformasikan seperti nilai kontur, interval kontur, arah bidang sesar, arah pergerakan sesar, sifat sesar dll.

  • Pembentukan graben

    Graben menjadi unsur yang sangat penting dalam pembentukan daerah dapur hidrokarbon. Isolated sediment biasanya sangat bagus sebagai dapur hidrokarbon sebagai produk endapan lacustrine.

    Dalam model yang dibuat dari material lumpur yang dilengkungkan seperti busur menunjukkan deformasi dengan membentuk graben.

    Model lain menunjukkan bahwa graben dapat terbentuk akibat gaya tensional atau terjadinya rifting.

    Syntesa lainnya adalah adanya akibat arus konveksi dari dalam bumi yang menyebabkan terjadinya seri sesar listrik membentuk graben.

  • Karakter regime tensional Sesar normal dengan sudut

    kemiringan besar ( + 600 ) Domino style Listric normal faulting Sesar utama biasanya diikuti sesar

    antitetik

  • Karakter regime kompresi

    Thrust fault dengan Basement involve Thin skin deformation Inconsistency deformation, perbedaan pertumbuhan pensesaran. Bentuk thrust di pengaruhi oleh kemiringan bidang pergeseran, kedalaman sesar, stratigrafi

  • RCD-A BKP-A

    MRT-A SPT-B

    TIGA PULUH HIGH

    A.MENDAHARA-1 GERAGAI-1 TIUNG-1 TIUNG-2

    MANIS MATA-1

    SOGO-1

    BETUNG-1 AAB-1

    SG-5 KT-3

    N-1 S.MEDAK-1

    MUARA SABAK-1

    MERANG-1

    G-1 SIAPO -1 NIKAM -1

    BAKUNG-1 KUKU

    LAMBAR-1

    TUNGKAL-1

    KALIBERAU-5 BL-2

    P-1 P-2

    JANGGA-1

    HARI-1 GEGER KALONG-1

    MERSAM-1 P-1A

    M-1

    GERAGAI DEEP TUNGKAL

    DEEP

    AWS 0 5 15 km

    1 0 3 0 0

    1 0 3 1 5

    1 0 3 3 0

    1 0 3 4 5

    1 0 3 3 0

    1 0 3 1 5

    1 0 4 4 5

    1 0 4 3 0

    1 0 4 1 5

    1 0 4 0 0

    K E N A L I

    E

    SPT-B MRT-B

    BKP-B RCD-B

    LEGEND:

    TAF >300m

    TAF 100-300m

    TAF

  • Model Penampang seismik pada sesar naik

  • Karakter strike-slip fault Kondisinya cenderung komplek Perubahan orientasi komponen struktur

    sangat menonjol Pola en-echelon fold, en-echelon tension

    fracture sering dijumpai Kemenerusan/releasing bend Pembentukan pull-apart

  • Parallel, side by side wrenching

  • A horizon slice of the productive sand. The high amplitudes against the salt dome and noted in yellow indicates minor amounts of gas in solution downdip. And the red (high amplitudes) along the major fault is interpreted as gas migrating toward the trap after migrating up the fault.

    !Figure reprinted through courtesy of Chevron USA, Inc.

  • In doing seismic interpretation, it must be remembered, it still contains noises which is any reflection unrelated to geology objects. Common noises which are multiples, diffraction and velocity anomaly. This noises can act as pitfalls for interpreter, and thus need to be recognized.

    1.Multiple Multiple occurs when the wavefront is reflected more than one time. Data acquisition parameters can be designed to minimize multiple, mainly by using stacking and deconvolution technique However, multiple still often appear in the record even though the data have been intensively processed

    Pitfalls in Seismic Interpretation

  • source geophone surface

    Seismic reflector

    1st multiple t = two way time

    t

    2t

    Figure 1. Illustration of simple multiple

    P

    RIM

    AR

    Y R

    EFL

    EC

    TIO

    N

    LON

    G P

    ATH

    M

    ULT

    IPLE

    LON

    G P

    ATH

    M

    ULT

    IPLE

    PEG LEG GHOST GHOST SURFACE

    Figure 2. General type of multiple

    Sei

    smic

    re

    flect

    or

  • Figure 5. Examples of multiple : WB water bottom multiple, IBM-interbed multiple and sideswide

    WBM

    WBM sideswipe

  • 2.Diffraction Diffraction occurs due to the sharp change of reflector plane geometry, for examples due to the faults, instrusion, karst, etc (Figure 9). The sharp plane refract energy to all direction and recorded as hyperbolic trace with diffraction source as its apex. The position of fault plane can be estimated by joining the apexes (Figure 10). Even though diffraction can be minimized using migration technique, they still appear in seismic records and interfere interpretation.

  • Sketch showing a diffraction from a fault. The hyperbolic form of diffractions arises from the assumption made by the CMP method that reflections arise from mid-point locations between the source and geophone

    Figure 9 . Illustration of diffraction effect due to fault plane (Badley, 1985)

    Geophone Source

    Diffraction from fault

    Assumed mid-point locationst

  • Figure 10d. Seismic examples of a burried focus. (a) Stacked section showing the bow-tie effect. (b) Migrated section, revealing the true synclinal shape of the reflector (courtesy Norsk Hydro)

    (a)

    (b)

  • 3.Velocity Efect Changes of rock properties, for instances due to formation thickness and facies can create velocity change. The change can give distortion between the stacked time section and the real thickness and depth. Down-dip apparent thinning occurs due to the increasing interval velocity with depth for a constant thickness bed. This makes the bed become thinner to the depth in time section (Figure 11). Apparent thinning can also accur along fault plane due to the change of rock velocity across the fault plane (Figure 12). Velocity anomaly also often occurs beneath low-angle dip fault plane like in the case of thrust and lystric normal fault because of the lateral velocity change due to the faulting (Figure 13-14) Pull-up velocity anomaly will also develop under salt structure, and high-velocity carbonate or channel (Fig.15-17). On the contrary, push down velocity anomaly can occur beneath shale diapir or carbonates with lower velocity than the surroundings (Figure 18). Extreme change of water depth can also cause severe velocity anomaly (Figure 19).

  • Velocity anomaly beneath carbonate reef. (a)and (b) Pull-up. (b) (c) and (d) pull-down (Badley, 1985)

    SEISMIC SECTION SEISMIC SECTION

    SEISMIC SECTION SEISMIC SECTION

  • The effect of increasing velocifty with depth on the seismic expression of a dipping unit.

    (a) Geological model of a thick dipping sandstone unit. The sandstones interval velocity increases with depth due to diagenesis, but its thickness remains constant.

    (b) Seismic expression : The sandstone unit appears to thin. It takes less time for the seismic signal to travel through the sandstone as its interval velocity increase.

    Figure 11. Apparent bed thinning due to velocity effect (Badley, 1985)

    Interval velocity increases

    Interval thins in time Time (b)

    Depth (a)

    surface

  • Downbending of reflections into a fault. This can occur when low-velocity material is faulted by a dipping fault. In the zone beneath the fault plane, downbending of reflections can occur due to the lower velocities (and, there-for, longer traveltimes) in lower-velocity downthrown rocks.

    Figure 12. Apparent downbending effect due to the velocity effect (Badley, 1985)

    Downbending of reflection

    V = Velocity V3>V2>V1

    V1 V1

    V2

    V2

    V3

    V3