26
Structural Implication of PostTensioned Ducts in Prestressed Concrete Girders By Josh Massey First Reader: _________________ Oguzhan Bayrak Second Reader: _________________ James Jirsa

Structural Implication Tensioned Prestressed Concrete

  • Upload
    others

  • View
    32

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Structural Implication Tensioned Prestressed Concrete

                   

Structural Implication of Post‐Tensioned Ducts in Prestressed Concrete Girders  

By Josh Massey                 

First Reader: _________________ Oguzhan Bayrak 

 Second Reader: _________________ 

James Jirsa   

Page 2: Structural Implication Tensioned Prestressed Concrete

JoshMassey ARE679HThesis 5/9/12

ii

 

TABLE OF CONTENTS 

1 INTRODUCTION  1

2 SPLICED GIRDER TECHNOLOGY  2

2.1 Basic Description ...................................................................................................................... 2

2.2 Comparison to Segmental Box Girders ..................................................................................... 2

2.3 Benefits of Spliced Girder Technology ...................................................................................... 3

2.4 Applications ............................................................................................................................. 3

3 LITERATURE REVIEW  5

3.1 Shear Strength of Post‐Tensioned Members ............................................................................. 5

3.1.1 Shear Strength Modeling ..................................................................................................... 5

3.1.2 Effects of Post‐Tensioning Ducts on Shear Strength .............................................................. 6

3.1.3 Relevant Parameters ........................................................................................................... 6

3.1.4 Need for HDPE Duct Data ..................................................................................................... 7

3.2 Results from Literature ............................................................................................................ 8

3.2.1 Current Code Provisions ...................................................................................................... 8

3.2.2 Panel Tests by Muttoni ........................................................................................................ 9

Page 3: Structural Implication Tensioned Prestressed Concrete

JoshMassey ARE679HThesis 5/9/12

iii

4 EXPERIMENTAL PROGRAM  10

4.1 Specimen Design .................................................................................................................... 10

4.2 Casting ................................................................................................................................... 11

4.3 Test Setup .............................................................................................................................. 12

4.4 Variables Tested .................................................................................................................... 13

4.4.1 Grouted Versus Ungrouted Ducts ....................................................................................... 13

4.4.2 Plastic Versus Steel Ducts .................................................................................................. 13

4.4.3 Size Effects ........................................................................................................................ 13

5 RESULTS  14

5.1 Ungrouted Ducts .................................................................................................................... 14

5.2 Steel Ducts ............................................................................................................................. 16

5.3 Plastic Ducts .......................................................................................................................... 17

5.4 Size Effects ............................................................................................................................. 18

6 CONCLUSIONS  20

8 BIBLIOGRAPHY  21

APPENDIX A: TABULATED RESULTS  22

Page 4: Structural Implication Tensioned Prestressed Concrete

JoshMassey ARE679HThesis 5/9/12

1

1 Introduction 

Prestressed concrete girders are used extensively to support bridge decks in

highway bridges. Themaximum length of a typical prestressed concrete girder is

generallylimitedtowhatcanbetransportedsafelybytruckstotheconstructionsite

– approximately 160 feet.With the use of post‐tensioned strands placed in ducts

castintothegirders,multiplepretensionedconcretegirderscanbesplicedtogether

to form a continuous member along the length of a bridge, allowing greater

structural continuity and more efficient use of materials. However, due to the

location of the ducts in the relatively thinweb regionsof the girders, new failure

modescancontroltheshearstrengthofthemembers.Thestructuralimplicationsof

corrugated steel and plastic ducts cast in the web regions of spliced Tx‐Girders

under the effects of compressive loading are studied in this report. Splicedgirder

technologyisdetailedinchapter2.AliteraturereviewofcurrentU.S.provisionsfor

designof splicedgirdersandhowtheyaremodeled isprovided inChapter3.The

experimental program is described in chapter 4. The experimental results and

conclusionsarediscussedinchapters5and6respectively.

 

Page 5: Structural Implication Tensioned Prestressed Concrete

JoshMassey ARE679HThesis 5/9/12

2

2 Spliced Girder Technology 

2.1 Basic Description 

Splicing isessentiallyamethodwherebygirders thatwouldnormallybe too

heavy or large to transport may be created on‐site from precast segments. Once

spliced together using cast‐in‐place concrete, the structure is generally post‐

tensionedtoimprovethestructuralperformanceofthesplicedregions(Castrodale

&White, 5). Since their first use inNorthAfrica in 1944, over 250 spliced girder

bridgeshavebeenerected. IntheUnitedStates,splicingtechnologyhasbeenused

mostcommonlyinFlorida,Washington,Oregon,andColorado,thoughafairnumber

ofbridgeshavebeenbuiltinotherstates(Castrodale&White,17).

2.2 Comparison to Segmental Box Girders 

Spliced girder construction is essentially similar to segmental box girder

construction,butseveraldistinctdifferencessetthemapart.Bothmethodsusepost‐

tensionedstrands ingroutedducts tocreatecontinuousmembers from individual

precastpieces.However,precastsegmentsinsplicedgirderconstructiontendtobe

muchlongercomparedtotheoverallspanlength,aregenerallyI‐orU‐shaped,and

are referred to as “girder segments.” Also, segmental box girders are generally

splicedusingmatchcasting,wherebythesurfacestobesplicedinthefieldarecast

withshearkeysdesigned to fit together.Thismethod is lesspreferable tocast‐in‐

placesplicingwhenusinggirdersegmentsduetoopposinganglesintheendregions

induced by camber resulting from eccentric pretensioning force in the individual

girdersegments.Boxgirdersalsotendtohaveanintegralfullwidthdeck,whereas

Page 6: Structural Implication Tensioned Prestressed Concrete

JoshMassey ARE679HThesis 5/9/12

3

spliced girders are topped with a cast‐in‐place deck after erection (Castrodale &

White,10).

2.3 Benefits of Spliced Girder Technology 

When used properly, the spliced girder method can increase span lengths,

reduce overall structural depth and increase construction speeds, in addition to

improving overall aesthetics. Longer spans can allow designers to reduce the

amount of supporting piers, thus diminishing material costs, increasing driver

safety, andhelping to avoidobstacles orwaterwaysbeneath the structure.Useof

precast segments also decreases the amount of falsework and on‐site workers

required,effectivelyreducingconstructiontimeandcosts(Castrodale&White,5).

2.4 Applications 

Thereareseveralreasonswhydesignersmaychoosetousesplicedgirdersfora

givenprojectwhetheritisasimpleorcontinuousspanbridge.Ifasimplespanisto

beused,splicedgirdersareoftenmoreeconomicalwhenfull‐lengthprecastgirders

would bedifficult to erect or be transported to the site. In locationswhere roads

leadingtotheconstructionsitewouldbeunabletosupporttheweightorlengthof

trucks carrying a full‐length girder, breaking the girders into smallerpieces tobe

assembledon‐sitemayallow theuseofprecast concretegirders.Contractorsmay

choose touse splicedgirder segments toallowuseof a smaller,moreeconomical

craneduringconstruction,oriflocallyavailableequipmentwouldbeunabletolifta

full‐lengthgirderintoplace.Theprogramrequirementsofsomesituations,suchas

single‐point urban interchanges, call for aminimized girder depth. Use of spliced

Page 7: Structural Implication Tensioned Prestressed Concrete

JoshMassey ARE679HThesis 5/9/12

4

girder technologycanalleviate transportationproblemsof suchgirderscausedby

theextensivelengthandaddedweightcausedbydecreasingthedepth.Continuous

spanbridgeswithintermediatesupportsarethemosttypicalapplicationofspliced

girders.These include full‐spangirders,whichare joinedabove interior supports;

partialspangirders,whicharesplicedbothbetweenandat interiorsupports;and

haunchedgirders(Castrodale&White,6).Haunchedgirdershavevaryingstructural

depthsthatexpandnearsupportingpiersbyincreasingtheheightofeithertheweb

regionorbottomflangeof themember.Due to the immenseheightandweightof

suchmembers, theyaregenerallyonly feasibleabovenavigablewaterwayswhere

theycanbeassembleddirectlyfromabarge(Castrodale&White,37). 

 

 

Page 8: Structural Implication Tensioned Prestressed Concrete

JoshMassey ARE679HThesis 5/9/12

5

3 Literature Review 

3.1  Shear Strength of Post‐Tensioned Members 

3.1.1 Shear Strength Modeling 

Strutandtiemodelingisamethodofdeterminingthestrengthofa

reinforcedconcretememberbytreatingthebeamasatrussconsistingofseriesof

concretestruts,whichtransmitcompressiveforces;andsteelties,whichtransmit

tensileforces.Shearstrengthiscomputedbydisregardingthetensilestrengthof

concrete,andassumingcompressiveforceswillbecarriedbyconcretestruts

orientedat45°tothelongitudinalaxis,whichareresistedbytheverticalsteel

stirrupsloadedintension.Ithasbeenshownthattrussmodelswhichassumean

angleof45°areveryconservative,butaretypicallypreciseenoughfordesign

purposes(445R,5).

Compressionfieldtheory(CFT)isamoreadvancedformofstrutandtie

modelingwhichtakesintoaccounttheactualangleatwhichthediagonalstruts

form.TheanglecanbederivedfromMohr’scircleofstrain,andisafunctionofthe

ratioofsteelreinforcementtotheareaofconcreteinboththelongitudinaland

transversedirections(445R,6).

Modifiedcompressionfieldtheory(MCFT)isafurtherrefinementofstrut

andtiemodelingwhichtakesadvantageofcrackedconcrete’slimitedtensile

strength.Themethodalsotakesintoconsiderationthepossibilityoffailuredueto

highlocalizedstressesatcracklocations,aswellastheinfluenceofshearforceson

Page 9: Structural Implication Tensioned Prestressed Concrete

JoshMassey ARE679HThesis 5/9/12

6

thelongitudinalreinforcement(445R,9).ThoughMCFTcanpredicttheactual

strengthofagivensectiontoahighlevelofprecision,theprocedureisgenerally

viewedtobetootediousfortypicaldesignwork.

3.1.2 Effects of Post‐Tensioning Ducts on Shear Strength 

Theintroductionofapost‐tensioningductintothewebregionofagirder

createsanareaoftensilestressaboveandbelowtheductduetothedivergenceof

compressivestressflowaroundtheduct.Thesetensileregionstypicallycausesmall

crackstoformatthetopandbottomoftheduct,whichadvanceoutwardfromthe

ductasloadisincreased,resultinginasplittingfailureofthespecimen(Muttoni,

729).Thereducedstrengthoftheshearsectionistypicallymodeledinoneoftwo

ways:areducedeffectivewidthofweb,orareducedcompressivestrengthofthe

concreteitself(Muttoni,308).

3.1.3 Relevant Parameters 

Themainparametersaffectingtheshearstrengthofpost‐tensionedgirders

aretheductmaterial,thestiffnessofthegrout,whetherornottheductisgrouted,

andtheratioofductwidthtotheoverallwebthickness.Posttensioningductsare

commonlyavailableinsteelorhigh‐densitypolyethylene(HDPE)plastic.Plastic

ductsarelesscostlytomanufacture,butresultinalowerstrengththansteelducts

becauseofthelackofbondattheconcrete‐plasticinterface.Thestiffnessofgrout

usedrelativetothestiffnessoftheconcretealsoaffectsthestrengthofthesection.If

thestiffnessofthegroutismuchlowerthanthatofthesurroundingconcrete,more

stresswilltendtoflowthroughthesurroundingconcrete,increasingtheresulting

Page 10: Structural Implication Tensioned Prestressed Concrete

JoshMassey ARE679HThesis 5/9/12

7

tensilestressaboveandbelowtheduct(Figure1a).If

thestiffnessofthegroutisgreaterthanthatofthe

surroundingconcrete,morestresswilltendtoflow

throughductitself,creatingtensilestressfarther

awayfromthelocationoftheduct(Figure1b).Ducts

withgroutstrengthmostlikethesurrounding

concretewillhavethegreateststrength,because

stressiscarriedmoreuniformlyacrossthethickness

oftheweb.Similarly,ungroutedductsgreatlyreduce

theperformanceofthesection,becausenostress

canbecarriedthroughtheopenductregion.

3.1.4 Need for HDPE Duct Data 

Currently,thereisverylittledataontheeffectsofplasticductsonshear

strengthofconcretegirders.Becauseconcretebindstosteelwhilecuring,some

stresscanbetransferredthroughtheductratherthanthroughthesurrounding

concrete,thusincreasingthestrengthofthesection.However,concretewillnot

bindtohigh‐densitypolyethylene,andthereforenostresscanbetransferredatthe

concrete‐HDPEinterface.Becauseofthis,sectionswithHDPEandsteelductswill

havedifferentstrengthcharacteristics,asconfirmedbyprevioustesting(Muttoni,

731).Currentcodeprovisionsdonotdistinguishbetweensteelandplasticductsin

strengthreductioncalculations.

 

(a) (b)

Figure1:ComparisonofStiffGrout(a)andSoftGrout(b)

Page 11: Structural Implication Tensioned Prestressed Concrete

JoshMassey ARE679HThesis 5/9/12

8

3.2 Results from Literature 

3.2.1 Current Code Provisions 

IntheUnitedStates,theprincipalcodesforreinforcedandprecast

concretestructuresareAASHTO,whichgovernstheconstructionofhighway

bridges,andACI318,whichgovernsconcretebuildingdesign.The2010editionof

AASTHOhastwoprovisionsforthecalculationofshearstrengthofmemberswith

imbeddedpost‐tensioningducts:section5.8.6.1forsegmentalconstruction,and

section5.8.2.9forgeneralconstruction.ACIcurrentlyhasnoprovisionsforthe

effectofductsonshearcapacity.InAASHTOLRFD,thereductionfactorsare

implementedbyuseofaweb‐widthreductionfactoroftheform:

1 ∙ Equation1

where istheinnerductdiametertowebthicknessratio,and isafactorto

accountforlossofstrengthduetoductpresence.Forgeneralconstruction, is

equalto½forungroutedductsand¼forgroutedducts.Forsegmental

construction, isequalto1forungroutedductsand½forgroutedducts.The

segmental factorsarehigherduetoalackofredundancyinsegmentalboxgirder

construction,whichcallsforahigherfactorofsafety.

 

Page 12: Structural Implication Tensioned Prestressed Concrete

JoshMassey ARE679HThesis 5/9/12

9

3.2.2 Panel Tests by Muttoni PrevioustestswereconductedbyAurelioMuttonietal.atEcole

PolytechniqueFederaledeLausanneinSwitzerland.Thetestscomparedstrengthof

aseriesof12panelscastinthelaboratoryand4panelsextractedfromanactual

bridgegirderinthefield.ThelaboratorypanelsincludedspecimenswithbothHDPE

andsteelducts,someofwhichwereinjectedwithgroutandsomeleftempty.These

werecomparedtotwopanelswithnoductpresent,whichservedascontrols

(Muttoni,734).

 

Page 13: Structural Implication Tensioned Prestressed Concrete

JoshMassey ARE679HThesis 5/9/12

10

4 Experimental Program 

4.1 Specimen Design 

Becauseofthelargecostsassociatedwithfull‐scalebeamtesting,full‐scale

webtestswereconductedinordertodeterminethestrengthcharacteristicsofweb

sectionswithsteelandplasticductscomparedtothatofanormalweb.Full‐scale

webspecimensconsistof24”squarepanelsofvaryingwidthtorepresentweb

regionsofdifferentthicknesses.Allpanelscontain#4deformedbarsasrepresented

inFigure.Specimenswithsteelorplasticductscasthorizontallyinthecenterofthe

panelwerecomparedtocontrolspecimenscontainingnoducts.

 

Figure2:TypicalPanelReinforcement

Page 14: Structural Implication Tensioned Prestressed Concrete

JoshMassey ARE679HThesis 5/9/12

11

4.2 Casting 

PanelswerecastatFergusonStructuralEngineeringLabusing30‐footlong

sideformsbolteddowntotwolayersof3/4‐inchplywoodsupportedby4x4lumber

spacedatregularintervals.Partitionformsheldtheductsinplaceduringcasting

separatedindividualpanelsasshowninFigure3.Reinforcementwasheldintoplace

bytyingthemto#2bars,whichweresetintothepartitionforms.Oncetheconcrete

hadhardened,panelswereremovedfromtheformsandsetasideforfurthercuring.

Afterroughlytwoweeks,thepanelswerepositionedwiththeductoriented

verticallyandfilledwithgroutand0.5inchstrandstorepresentpost‐tensioning

steel.Thenumberofstrandsdifferedwitheachsizeofduct,with7strandsin2.5

inchducts,9strandsin3inchducts,and12strandsin3‐5/8inchducts.Thestrands

wereonlyplacedtoaugmentthestiffnessoftheductregion,andwerenotstressed

duringgroutplacement.

  Figure3:PanelForms

Page 15: Structural Implication Tensioned Prestressed Concrete

JoshMassey ARE679HThesis 5/9/12

12

4.3 Test Setup 

PaneltestswereperformedusingthetestsetupshowninFigure4.The

resistingframeconsistedoftwolargebeamssalvagedfromapriorproject,which

wererestrainedby8steelrods3inchesindiameter.Twohydraulicramswitha

combinedcapacityof4millionpoundswereusedtocreatecompressiveforce,

whichwastransmittedtothepanelusingahighstiffnesstransferbeam.The

transferbeamwasallowedtoslidebyattaching4”by6”piecesofTeflontothe

undersideofthetransferbeam,whichweresupportedbytwopiecesofTeflonglued

tothetopofthetrackbeam.

Figure2:TestingFrame

(a)TopView

(b)SideView

Page 16: Structural Implication Tensioned Prestressed Concrete

JoshMassey ARE679HThesis 5/9/12

13

4.4 Variables Tested 

4.4.1 Grouted Versus Ungrouted Ducts 

Ductsaregenerallygroutedtopreventtheintrusionofwaterintothetendon,

whichcouldcausecorrosivedamageinstrands.Beforegroutisplaced,thelarge

voidinthewebsectioncreatedbytheductgreatlyreducesthestrengthofthe

member.Bytestingbothgroutedandungroutedspecimens,theirstrengthcanbe

comparedtothatofanunreducedsection,i.e.onewithnoduct.

4.4.2 Plastic Versus Steel Ducts 

Becauseconcreteisabletoformabondwithasteelduct,someloadisableto

betransferredintotheductwhengroutispresent.HDPEductsdonotformabond

withtheconcreteandthereforehavedifferentstrengthcharacteristics.Current

codesdonotdistinguishbetweenthem.

4.4.3 Size Effects 

Varyingthicknessesofpanelsweretestedtoexploretheeffectsofincreasing

thewebthicknessonstructuralperformance.Thewebsofbulbteegirderscan

easilybemadewiderbyincreasingthedistancebetweensideformsduringcasting.

Theeffectsofwebwidthonoverallstrengthwerecompareddirectlybycasting5,7

and9inchpanelsinoneset.

 

Page 17: Structural Implication Tensioned Prestressed Concrete

JoshMassey ARE679HThesis 5/9/12

14

5 Results 

5.1 Ungrouted Ducts 

Whennogroutispresentintheduct,thestrengthofthesectionwasfoundto

beinsignificantlyaffectedbytheductmaterial.Figure5iskeyfigurewhichexplains

theplotsgiveninfigures6through9.ResultsfrombothdatacollectedatFerguson

StructuralEngineeringLab(AppendixA)andpreviousresearchareplottedagainst

thereductionfactorthatwouldbegivenbyACIandAASHTOprovisions,whichwere

discussedinSection3.2.1.Anydatapointsthatfallbelowthelinesrepresentingthe

variouscodeequationswouldbedesignedunconservatively,i.e.theirmodeled

strengthwouldbegreaterthanthatwhichwillbeactuallyattainedinthefield.

AscanbeseeninFigure6,neitherthegeneralorsegmentalprovisionsfor

ungroutedductsadequatelyaccountforthereductioninstrengthduetoanopen

voidbeingpresentinthewebregionofagirder.Becauseavastmajorityofthedata

pointshaveanactualstrengthbelowwhatthecodewouldapplytothesection,any

beamdesignedusingthoseprovisionswouldbedesignedunconservatively.

Page 18: Structural Implication Tensioned Prestressed Concrete

JoshMassey ARE679HThesis 5/9/12

15

Figure3:KeyFigure

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

ηd(Failure/Control)

δ (DuctDiameter/WebThickness)

FSELData‐Plastic

FSELData‐Steel

PreviousResearch‐Steel

ACI318‐08

AASHTO2010GeneralShear

AASHTO2010SegmentalShear

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

ηd(Failure/Control)

δ (DuctDiameter/WebThickness)

AASHTO2010SegmentalShear

Figure4:UngroutedDuctResults

CodeReductionFactor

Conservative

Unconservative

1 ∙

Page 19: Structural Implication Tensioned Prestressed Concrete

JoshMassey ARE679HThesis 5/9/12

16

5.2 Steel Ducts 

Thoughsteelductswereshowntoperformbetterthanplasticducts,current

reductionfactorsstillmaynotadequatelyaccountforthestrengthreductioncaused

bytheirpresence.Thevastmajorityofpreviousresearchdatawasconductedusing

steelducts.Ourresultsgenerallyagreedwiththesedata,withtheexceptionofafew

outliers,notincludedontheplot,whichmayhavehaddefectswithinthepanelsor

non‐uniformloadingconditions.Theseresultsindicatethatcurrentreduction

factorsmaynotbeadequatetoaccuratelypredicttheshearstrengthofgirderswith

post‐tensionedducts.

Figure5:SteelDuctResults

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6

ηd(Failure/Control)

δ (DuctDiameter/WebThickness)

FSELdata

PreviousResearch

ACI318‐08

AASHTO2010GeneralShear

AASHTO2010SegmentalShear 1 ∙

Page 20: Structural Implication Tensioned Prestressed Concrete

JoshMassey ARE679HThesis 5/9/12

17

5.3 Plastic Ducts 

Priortoourtesting,verylittlelaboratorydatawasavailableontheeffectsof

plasticducts.GiveninFigure7isourexperimentaldataaswellasdatafrom

previousresearch.Becausecurrentcodesdonotaccountforthedifferencebetween

steelandplasticducts,theirstrengthisnotaccuratelymodeledbycurrentcode

provisions.Asexpected,ourcomparisonofsteelductstoplasticducts,givenin

Figure8,foundthatthoughtheductmaterialhadlittleeffectonthestrengthwhen

leftungrouted,ductswhichweregroutedhadsignificantlyhigherstrengthswith

steelductsthanplasticducts.Thisismostlikelybecauseconcretecanforma

chemicalbondwiththesteelductasitcures,allowingamechanismtotransmit

someoftheloadfromthesurroundingconcreteintotheductregion.WhenaHDPE

ductisused,theconcretecannotformabondwiththeduct,andthereforecan

transfermuchlessloadthroughthegroutinsidetheduct.Inordertomodelthis

behaviormoreaccurately,differentfactorsshouldbeimplementedtodistinguish

betweenplasticandsteelducts.

Figure6:PlasticDuctResults

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6

ηd(Failure/Control)

δ (DuctDiameter/WebThickness)

FSELDataPreviousResearchACI318‐08AASHTO2010GeneralShearAASHTO2010SegmentalShear

Figure7:PlasticDuctResults

1 ∙

Page 21: Structural Implication Tensioned Prestressed Concrete

JoshMassey ARE679HThesis 5/9/12

18

Figure8:ComparisonofPlasticandSteelDuctData 

5.4 Size Effects 

Inonespecificsetofpanels,5,7,and9inchpanelsweredirectlycompared

againsteachotherusingbothplasticandsteelducts.Thoughdesignersusing

currentcodeprovisionswouldpredictanincreaseinrelativestrengthastheduct

diametertoweb‐thicknessratioisdecreased,ourresults,giveninFigure9,show

thatwhenthewebthicknessisincreased,therelativestrengthactuallydecreased.

Thisisbecausecurrentcodeequationsuseareducedwebwidthtoaccountforthe

presenceofaduct,whichdoesnottakeintoaccountthedifferentfailuremodesof

webregionswithandwithoutducts.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.3 0.35 0.4 0.45 0.5

ηd(Failure/Control)

δ (DuctDiameter/WebThickness)

Steel‐Grouted Plastic‐GroutedSteel‐Ungrouted Plastic‐Ungrouted

Page 22: Structural Implication Tensioned Prestressed Concrete

JoshMassey ARE679HThesis 5/9/12

19

Figure9:DirectComparisonof5,7and9InchPanelData

Whenthereisaductpresentinthemember,thefailuremodeisasplitting

failurewhichisafunctionofthetensilestrengthofconcreteandtheeffectiveheight

oftheshearregionasshowninFigure10.Whennoductispresent,thefailuremode

isacrushingtypefailure,whichisgovernedbythecompressivestrengthofthe

concreteandthewidthofthewebregion.Thesefailuremodesarenotlinearly

dependentononeanother,andthereforeareducedwebwidthisnotaneffective

wayofmodelingthereductioninstrengthduetothepresenceofaduct.Futurecode

provisionsshouldthereforehaveadifferentform,whichtakesintoaccountthe

tensilefailuremode.  

Page 23: Structural Implication Tensioned Prestressed Concrete

JoshMassey ARE679HThesis 5/9/12

20

 

 

 

 

 

 

6 Conclusions 

Moreinformationonthebehaviorofpost‐tensionedbeamswillberequiredas

splicedgirderbridgesbecomemoreprevalentintheUnitedStates.Currentcode

equationsmaybeunconservative,andneedtoberecalibratedtoaccuratelydepict

thestrengthofmemberswithincreasedwebthicknesses,aswellasbeamswhich

useplasticductsratherthansteel.Itwasshownthatthematerialwhichtheductis

madefromdoesnotaffectsignificantlystrengthwithoutpresenceofgrout.

FurthertestingiscurrentlybeingconductedatFergusonStructuralEngineeringLab

tocorrelatedatacollectedfromfull‐scalepanelteststofull‐scalebeams.Thesedata

willbeusedtoformulatenewequationstobesuggestedtoorganizationswho

dictatebuildingcodessuchastheACIandAASHTO.

   

Figure10:ComparisonofCrushingandSplittingFailureModes

Page 24: Structural Implication Tensioned Prestressed Concrete

JoshMassey ARE679HThesis 5/9/12

21

8 Bibliography 

 AASHTO.LRFDBridgeDesignSpecifications.Washington,D.C.:American

AssociationofStateHighwayandTransportationOfficials,2007.ACI318.BuildingCodeRequirementsforStructuralConcrete.FarmingtonHills:

AmericanConcreteInstitute,2008.ACI‐ASCEJointCommittee445.RecentApproachestoShearDesignofStructural

Concrete.FarmingtonHills:AmericanConcreteInstitute,2000Castrodale,R.W.,&White,C.D.(2004).ExtendingSpanRangesofPrecast

PrestressedConcreteGirders(ReportNo.517).RetrievedfromNationalCooperativeHighwayResearchProgramwebsite:http://www.national‐academies.org/trb/bookstore

Hawkins,NeilM.,andDanielA.Kuchma.NCHRPReport579:ApplicationofLRFD

BridgeDesignSpecificationstoHigh‐StrengthStructuralConcreteShearProvisions.NationalCooperativeHighwayResearchProgram,WashingtonD.C.:TransportationResearchBoard,2007.

Hawkins,NeilM.,DanielA.Kuchma,RobertF.Mast,M.LeeMarsh,andKarl‐Heinz

Reineck.NCHRPReport549:SimplifiedShearDesignofStructuralConcreteMembers.NationalCooperativeHighwayResearchProgram,Washington,D.C.:TransportationResearchBoard,2005.

Muttoni,A.,Burdet,O.L.,&Hars,E.(2006).Effectofducttypeonshearstrengthof

thinwebs.ACIStructuralJournal,103(5),729‐35.Muttoni,A.,&Ruiz,M.F.(2008).Shearstrengthofthin‐webbedpost‐tensioned

beams.ACIStructuralJournal,105(3),308‐317.Ronald,H.D.(2001).Designandconstructionconsiderationsforcontinuouspost‐

tensionedbulb‐teegirderbridges.PCIJournal,2001(May‐June),44‐66.

Page 25: Structural Implication Tensioned Prestressed Concrete

JoshMassey ARE679HThesis 5/9/12

22

Appendix A: Tabulated Results 

Set and Specimen Number 

Actual Specimen Width (in) 

Actual Specimen Thickness 

(in) 

Concretef’c (ksi) 

Duct Type 

Grout Presence 

Inner Duct Diam. (in) 

Diameter to 

Thickness Ratio 

Failure Load (kips) 

Failure Load Normalized Against 

Control (ηd) 

Set1: P5  24  5  6.23 Contr 0 0 625.2  100%

Set1: P7  24  5  6.23  Plastic  Grouted  2.37  0.474  409.6  66% 

Set1: P9  24  5  6.23  Plastic  Grouted  2.37  0.474  403.3  65% 

Set1: P4  24  5  6.23  Steel  Ungroute 2.5  0.5  267.7  43% 

Set1: P6  24  5  6.23  Steel  Grouted  2.5  0.5  504.0  81% 

Set1: P8  24  5  6.23  Steel  Grouted  2.5  0.5  536.3  86% 

Set3: P5  23.9375  7  9.39 Contr 0 0 1192.7  100%Set3: P1  24  7.0625  9.39  Plastic  Grouted  3  0.424  506.0  42% 

Set3: P2  24.125  7.0625  9.39  Plastic  Grouted  3  0.425  499.9  41% 

Set3: P3  24.125  7  9.39  Plastic  Ungroute 3  0.428  294.2  24% 

Set3: P6  24.0625  7  9.39  Plastic  Grouted  3  0.428  482.4  40% 

Set3: P4  23.9375  7  9.39  Steel  Ungroute 3  0.428  298.8  25% 

Set3: P7  23.9375  7.0625  9.39  Steel  Grouted  3  0.425  778.6  65% 

Set3: P8  24.125  7.0625  9.39  Steel  Grouted  3  0.424  720.7  59% 

Set4: P1  23.875  7.125  8.17 Contr 0 0 1016.9  100%Set4: P2  24  7.125  8.6  Contr 0  0.000  1143.5  100% 

Set4: P5  23.9375  7.125  8.17  Plastic  Grouted  3  0.421  401.6  39% 

Set4: P6  24.0625  7.125  8.6  Steel  Grouted  3  0.421  606.9  53% 

Set5: P1  23.75  7  3.62 Contr 0 0 515.4  103%Set5: P2  24  7.0625  3.62  Contr 0  0.000  493.9  97% 

Set5: P4  24.125  7  3.62  Plastic  Grouted  3  0.428  302.8  60% 

Set5: P6  24  7.125  3.62  Plastic  Grouted  3  0.421  328.9  64% 

Set5: P8  24  7.125  3.62  Plastic  Grouted  3  0.421  414.3  81% 

Set5: P5  24  7.125  3.62  Steel  Grouted  3  0.421  422.8  82% 

Set5: P7  24  7.125  3.62  Steel  Grouted  3  0.421  524.9  102% 

Set5: P9  24  7.125  3.62  Steel  Grouted  3  0.421  560.5  109% 

Set7: P1  23.9375  7  10.15 Contr 3 0.428  1217.0  100%Set7: P2  23.9375  7  10.62  Contr 3  0.429  1219.3  100% 

Set7: P8  24.1875  7.0625  10.62  Plastic  Grouted  2 3/8  0.336  529.4  43% 

Set8: P1  23.875  7.125  11.16 Contr 0 0 1643.4  100%Set8: P2  23.875  7  11.16  Contr 0  0.000  1653.7  100% 

Set8: P3  24.3125  7.0625  11.16  Plastic  Grouted  3 3/8  0.477  456.1  28% 

Set8: P7  24  7.125  11.16  Plastic  Grouted  3  0.421  535.5  32% 

Set9: P2  23.9375  7.125  10.19  Contr 0  0.000  1475.0  93% 

Set9: P3  24.0625  7.0625  10.19  Plastic  Grouted  3  0.424  548.7  34% 

Set11: P1  24  9.25  9.25 Contr 0 0 1354.6  96%Set11: P2  24.125  9.1875  9.25  Plastic  Grouted  3.375  0.367  528.2  38% 

Set11: P3  24.125  9.25  9.25  Steel  Grouted  3.375  0.364  750.3  53% 

Set11: P4  24  7.25  9.25  Contr 0  0  1461.5  100% 

Set11: P6  23.875  7.25  9.25  Steel  Grouted  3  0.414  785.1  54% 

Set11: P7  24.125  5.125  9.25  Contr 0  0.000  842.0  100% 

Set11: P8  24.125  5.25  9.25  Plastic  Grouted  2.375  0.452  518.2  62% 

Set11: P9  24.1875  5.1875  9.25  Steel  Grouted  2.375  0.457  709.5  84% 

Page 26: Structural Implication Tensioned Prestressed Concrete

JoshMassey ARE679HThesis 5/9/12

23