41
STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH RANDOM DATA Alex Bespalov , Catherine Powell, David Silvester School of Mathematics, University of Manchester, Manchester, United Kingdom Workshop “Numerical Analysis of Stochastic PDEs” Mathematics Institute, University of Warwick 11 – 12 June, 2012 A. Bespalov * sGFEM for saddle point problems with random data 1/22

STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR

SADDLE POINT PROBLEMS WITH RANDOM DATA

Alex Bespalov, Catherine Powell, David Silvester

School of Mathematics, University of Manchester,

Manchester, United Kingdom

Workshop “Numerical Analysis of Stochastic PDEs”

Mathematics Institute, University of Warwick

11 – 12 June, 2012

A. Bespalov ∗ sGFEM for saddle point problems with random data 1/22

Page 2: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

What is this talk about...

∗ Saddle point problems with random data

∗ Stochastic Galerkin mixed finite element method

∗ Inf-sup stability of discrete problem, solution regularity, error analysis

A. Bespalov ∗ sGFEM for saddle point problems with random data 2/22

Page 3: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Saddle point problems

Find (u, p) ∈ V ×W such that

a(u, v) + b(v, p) = f(v) ∀ v ∈ V,

b(u, q) = g(q) ∀ q ∈ W.

Here, V and W represent Hilbert spaces;

a : V × V → IR is a symmetric bounded bilinear form,

b : V ×W → IR is a bounded bilinear form and

f : V → IR and g : W → IR are linear functionals.

A. Bespalov ∗ sGFEM for saddle point problems with random data 3/22

Page 4: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Saddle point problems with random data

Random coefficient(s): find (u, p) ∈ V ×W such that

a(u, v) + b(v, p) = f(v) ∀ v ∈ V,

b(u, q) = g(q) ∀ q ∈ W.

Examples: groundwater flow modelling, steady state Navier-Stokes flow

A. Bespalov ∗ sGFEM for saddle point problems with random data 4/22

Page 5: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Saddle point problems with random data

Random coefficient(s): find (u, p) ∈ V ×W such that

a(u, v) + b(v, p) = f(v) ∀ v ∈ V,

b(u, q) = g(q) ∀ q ∈ W.

Random domain: find (u, p) ∈ V ×W such that

a(u, v) + b(v, p) = f(v) ∀ v ∈ V,

b(u, q) = g(q) ∀ q ∈ W.

Fictitious domain approach for elliptic PDEs in random domains:

[Canuto and Kozubek ’07].

A. Bespalov ∗ sGFEM for saddle point problems with random data 4/22

Page 6: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Saddle point problems with random data

Random coefficient(s): find (u, p) ∈ V ×W such that

a(u, v) + b(v, p) = f(v) ∀ v ∈ V,

b(u, q) = g(q) ∀ q ∈ W.

Random domain: find (u, p) ∈ V ×W such that

a(u, v) + b(v, p) = f(v) ∀ v ∈ V,

b(u, q) = g(q) ∀ q ∈ W.

Random forces and/or boundary conditions: find (u, p) ∈ V ×W such that

a(u, v) + b(v, p) = f(v) ∀ v ∈ V,

b(u, q) = g(q) ∀ q ∈ W.

A. Bespalov ∗ sGFEM for saddle point problems with random data 4/22

Page 7: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Example: steady flow over a step with data uncertainty

Model problem:

−ν∇2u + u · ∇u +∇p = f in D,

∇ · u = 0 in D,

u = g on ∂DDir,

ν∇u · n− n p = 0 on ∂DNeu.

Figure 1. The backward-facing step domain.

A. Bespalov ∗ sGFEM for saddle point problems with random data 5/22

Page 8: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Example: steady flow over a step with data uncertainty

Model problem:

−ν∇2u + u · ∇u +∇p = f in D,

∇ · u = 0 in D,

u = g on ∂DDir,

ν∇u · n− n p = 0 on ∂DNeu.

We can model uncertainty in the viscosity as ν(ω) = ν0 + ν1ξ1(ω).

If ξ1 ∼ U(−√3,√

3), then ν is a uniform random variable with

E[ν(ω)] = ν0, Var[ν(ω)] = ν21 .

A. Bespalov ∗ sGFEM for saddle point problems with random data 5/22

Page 9: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Example: steady flow over a step with data uncertainty

Model problem:

−ν∇2u + u · ∇u +∇p = f in D,

∇ · u = 0 in D,

u = g on ∂DDir,

ν∇u · n− n p = 0 on ∂DNeu.

We can model uncertainty in the viscosity as ν(ω) = ν0 + ν1ξ1(ω).

If ξ1 ∼ U(−√3,√

3), then ν is a uniform random variable with

E[ν(ω)] = ν0, Var[ν(ω)] = ν21 .

Then ν ∼ U(νmin, νmax) with νmin = ν0 − ν1

√3, νmax = ν0 + ν1

√3, and

Re(ω) =constν(ω)

, E[Re] = const E[ν−1] =const∗

ν1log

(νmax

νmin

).

A. Bespalov ∗ sGFEM for saddle point problems with random data 5/22

Page 10: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Example: steady flow over a step with data uncertainty

Random viscosity: ν(ω) = ν0 + ν1ξ1(ω) with ν0 = 1/50 and ν1 = 1/500.

Figure 2. Streamlines of the mean flow field (top) and contours of the variance of

the magnitude of flow field (bottom).

A. Bespalov ∗ sGFEM for saddle point problems with random data 6/22

Page 11: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Example: steady flow over a step with data uncertainty

Random viscosity: ν(ω) = ν0 + ν1ξ1(ω) with ν0 = 1/50 and ν1 = 1/500.

mean pressure field

variance of the pressure field

Figure 3. The mean (top) and the variance (bottom) of the pressure field.

A. Bespalov ∗ sGFEM for saddle point problems with random data 7/22

Page 12: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Example: steady flow over a step with data uncertainty

More details on this problem (including stochastic Galerkin mixed finite element

scheme, properties of saddle point linear systems, and analysis of precondition-

ing strategies):

D. Silvester, A. B. and C. Powell, A framework for the development of implicit

solvers for incompressible flow problems, Discrete and Continuous Dynamical

Systems - Series S, 2012 (to appear).

C. Powell and D. Silvester, Preconditioning steady-state Navier-Stokes equa-

tions with random data, MIMS EPrint 2012.35, The University of Manchester,

2012 (submitted).

A. Bespalov ∗ sGFEM for saddle point problems with random data 8/22

Page 13: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Model problem

D ⊂ Rd (d = 2, 3) – spatial domain;

(Ω,F ,P) – complete probability space;

A−1(x, ω) : D × Ω → R – second-order correlated random field.

Model problem:

find random fields p(x, ω) and u(x, ω) such that P-almost everywhere in Ω

A−1 (x, ω)u (x, ω)−∇p (x, ω) = 0 x ∈ D,

∇ · u (x, ω) = 0 x ∈ D,

p (x, ω) = g(x) x ∈ ∂DDir,

u (x, ω) · n = 0 x ∈ ∂DNeu.

A. Bespalov ∗ sGFEM for saddle point problems with random data 9/22

Page 14: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Useful references

• Primal formulations, stochastic Galerkin FEM, error analysis

[Babuska, Tempone and Zouraris ’04],

[Frauenfelder, Schwab, Todor ’05].

• Stochastic collocation FEM, mixed formulation,

log-normal distribution of random data

[Ganis, Klie, Wheeler, Wildey, Yotov, and Zhang ’08].

• Stochastic Galerkin FEM, mixed formulation,

linear algebra and fast solvers

[Ernst, Powell, Silvester, and Ullmann ’09],

[Elman, Furnival, and Powell ’10].

A. Bespalov ∗ sGFEM for saddle point problems with random data 10/22

Page 15: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Weak formulation

X(D) – a Banach space of real-valued functions on D with norm ‖ · ‖X(D).

Vector spaces of random fields

L2P(Ω, X(D)) :=

v (x, ω) ; v : D × Ω → R,

‖v‖L2P(Ω,X(D)) :=

(E

[‖v‖2X(D)

])1/2

< ∞

;

V := L2P(Ω,H0(div, D)) and W := L2

P(Ω, L2(D)).

A. Bespalov ∗ sGFEM for saddle point problems with random data 11/22

Page 16: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Weak formulation

X(D) – a Banach space of real-valued functions on D with norm ‖ · ‖X(D).

Vector spaces of random fields

L2P(Ω, X(D)) :=

v (x, ω) ; v : D × Ω → R,

‖v‖L2P(Ω,X(D)) :=

(E

[‖v‖2X(D)

])1/2

< ∞

;

V := L2P(Ω,H0(div, D)) and W := L2

P(Ω, L2(D)).

Weak formulation:

find u(x, ω) ∈ V and p(x, ω) ∈ W such that

E[(

A−1(x, ω)u,v)]

+ E [(p,∇ · v)] = E[(g,v · n)∂DDir

],

E [(w,∇ · u)] = 0

for all v(x, ω) ∈ V and w(x, ω) ∈ W.

A. Bespalov ∗ sGFEM for saddle point problems with random data 11/22

Page 17: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Discretisation strategy

Discretisation method: stochastic Galerkin mixed finite elements.

Three levels of approximation

• Approximation of random data, A−1 (x, ω) ≈ A−1M (x, ξ(ω)):

e.g., using the truncated Karhunen-Loeve expansion of A−1 (x, ω);

• Spatial discretisation on D:

e.g., by the lowest-order mixed FEM with mesh-size h;

• Discretisation on Γ = ξ(Ω) ⊂ RM :

e.g., global polynomial approximation of total degree ≤ k.

A. Bespalov ∗ sGFEM for saddle point problems with random data 12/22

Page 18: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Discretisation strategy

Discretisation method: stochastic Galerkin mixed finite elements.

Three levels of approximation

• Approximation of random data, A−1 (x, ω) ≈ A−1M (x, ξ(ω)):

e.g., using the truncated Karhunen-Loeve expansion of A−1 (x, ω);

• Spatial discretisation on D:

e.g., by the lowest-order mixed FEM with mesh-size h;

• Discretisation on Γ = ξ(Ω) ⊂ RM :

e.g., global polynomial approximation of total degree ≤ k.

Three levels of approximation =⇒ three discretisation parameters (M, h, k)

and three sources of error.

A. Bespalov ∗ sGFEM for saddle point problems with random data 12/22

Page 19: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Approximation of random data

A−1(x, ω) ≈ A−1M (x, ω)

... leads to

Perturbed weak formulation:

find uM (x, ω) ∈ V and pM (x, ω) ∈ W such that

E[(

A−1M (x, ω)uM ,v

)]+ E [(pM ,∇ · v)] = E

[(g,v · n)∂DDir

],

E [(w,∇ · uM )] = 0

for all v(x, ω) ∈ V and w(x, ω) ∈ W.

A. Bespalov ∗ sGFEM for saddle point problems with random data 13/22

Page 20: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Estimating the perturbation error

Lemma 1. Assume that

0 < Amin ≤ A−1(x, ω) ≤ Amax < ∞ a. e. in D × Ω,

0 < AMmin ≤ A−1

M (x, ω) ≤ AMmax < ∞ a. e. in D × Ω.

Then there exist unique solution pairs (u, p) ∈ V×W, (uM , pM ) ∈ V×W and

‖u− uM‖V + ‖p− pM‖W ≤ C ‖A−1 −A−1M ‖L∞(D×Ω). (1)

A. Bespalov ∗ sGFEM for saddle point problems with random data 14/22

Page 21: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Estimating the perturbation error

Lemma 1. Assume that

0 < Amin ≤ A−1(x, ω) ≤ Amax < ∞ a. e. in D × Ω,

0 < AMmin ≤ A−1

M (x, ω) ≤ AMmax < ∞ a. e. in D × Ω.

Then there exist unique solution pairs (u, p) ∈ V×W, (uM , pM ) ∈ V×W and

‖u− uM‖V + ‖p− pM‖W ≤ C ‖A−1 −A−1M ‖L∞(D×Ω). (1)

Remark 1. The constant C in (1) depends on Amin, Amax, AMmin, AM

max, on

the inf-sup constant and the Dirichlet data...

A. Bespalov ∗ sGFEM for saddle point problems with random data 14/22

Page 22: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Estimating the perturbation error

Lemma 1. Assume that

0 < Amin ≤ A−1(x, ω) ≤ Amax < ∞ a. e. in D × Ω,

0 < AMmin ≤ A−1

M (x, ω) ≤ AMmax < ∞ a. e. in D × Ω.

Then there exist unique solution pairs (u, p) ∈ V×W, (uM , pM ) ∈ V×W and

‖u− uM‖V + ‖p− pM‖W ≤ C ‖A−1 −A−1M ‖L∞(D×Ω). (1)

Remark 1. The constant C in (1) depends on Amin, Amax, AMmin, AM

max, on

the inf-sup constant and the Dirichlet data...

...but if ‖A−1 − A−1M ‖L∞(D×Ω) → 0 as M →∞ (see next Lemma), then,

for sufficiently large M , we can set

AMmin := 1

2Amin, AMmax := Amax + 1

2Amin.

Then, the constant C in (1) is independent of M .

A. Bespalov ∗ sGFEM for saddle point problems with random data 14/22

Page 23: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Estimating the error in approximation of random data

Goal: upper bound for ‖A−1 −A−1M ‖L∞(D×Ω).

A. Bespalov ∗ sGFEM for saddle point problems with random data 15/22

Page 24: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Estimating the error in approximation of random data

Goal: upper bound for ‖A−1 −A−1M ‖L∞(D×Ω).

Representation of random data using Karhunen-Loeve (KL) expansion:

A−1(x, ω) = E[A−1](x) +∑∞

n=1

√λn ϕn(x) ξn(ω)

≈ E[A−1](x) +∑M

n=1

√λnϕn(x) ξn(ω) =: A−1

M (x, ω).

Lemma 2 [Frauenfelder, Schwab, Todor ’05]. Assume:

(i) ξn∞n=1 is uniformly bounded;

(ii) covariance function C[A−1](x,x′) is (piecewise) analytic on D×D. Then

‖A−1 −A−1M ‖L∞(D×Ω) ≤ Ce−cM1/d

.

A. Bespalov ∗ sGFEM for saddle point problems with random data 15/22

Page 25: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Estimating the error in approximation of random data

Goal: upper bound for ‖A−1 −A−1M ‖L∞(D×Ω).

Representation of random data using Karhunen-Loeve (KL) expansion:

A−1(x, ω) = E[A−1](x) +∑∞

n=1

√λn ϕn(x) ξn(ω)

≈ E[A−1](x) +∑M

n=1

√λnϕn(x) ξn(ω) =: A−1

M (x, ω).

Lemma 2 [Frauenfelder, Schwab, Todor ’05]. Assume:

(i) ξn∞n=1 is uniformly bounded;

(ii) covariance function C[A−1](x,x′) is (piecewise) analytic on D×D. Then

‖A−1 −A−1M ‖L∞(D×Ω) ≤ Ce−cM1/d

.

Lemma 1 + Lemma 2 =⇒Theorem 1. ‖u− uM‖V + ‖p− pM‖W = O

(e−cM1/d

).

A. Bespalov ∗ sGFEM for saddle point problems with random data 15/22

Page 26: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

More assumptions ...

We further assume that

• random variables ξn : Ω → R (n = 1, 2, . . .) are independent;

• images Γn = ξn(Ω) are bounded intervals in R;

• ∃ ρn : Γn → R+ – a density function of ξn (n = 1, . . . , M);

A. Bespalov ∗ sGFEM for saddle point problems with random data 16/22

Page 27: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

More assumptions ...

We further assume that

• random variables ξn : Ω → R (n = 1, 2, . . .) are independent;

• images Γn = ξn(Ω) are bounded intervals in R;

• ∃ ρn : Γn → R+ – a density function of ξn (n = 1, . . . , M);

... then

• uM (x, ω) = uM (x, ξ1(ω), . . . , ξM (ω)),pM (x, ω) = pM (x, ξ1(ω), . . . , ξM (ω));

A. Bespalov ∗ sGFEM for saddle point problems with random data 16/22

Page 28: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

More assumptions ...

We further assume that

• random variables ξn : Ω → R (n = 1, 2, . . .) are independent;

• images Γn = ξn(Ω) are bounded intervals in R;

• ∃ ρn : Γn → R+ – a density function of ξn (n = 1, . . . , M);

... then

• uM (x, ω) = uM (x, ξ1(ω), . . . , ξM (ω)),pM (x, ω) = pM (x, ξ1(ω), . . . , ξM (ω));

• ρ(y) :=∏M

n=1 ρn – the joint probability density of (ξ1, . . . , ξM ), where

y = (y1, . . . ,yM ) ∈ Γ with yn = ξn(ω) (n = 1, . . . ,M), and

Γ = supp ρ = Γ1 × . . .× ΓM ⊂ RM ;

A. Bespalov ∗ sGFEM for saddle point problems with random data 16/22

Page 29: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

More assumptions ...

We further assume that

• random variables ξn : Ω → R (n = 1, 2, . . .) are independent;

• images Γn = ξn(Ω) are bounded intervals in R;

• ∃ ρn : Γn → R+ – a density function of ξn (n = 1, . . . , M);

... then

• uM (x, ω) = uM (x, ξ1(ω), . . . , ξM (ω)),pM (x, ω) = pM (x, ξ1(ω), . . . , ξM (ω));

• ρ(y) :=∏M

n=1 ρn – the joint probability density of (ξ1, . . . , ξM ), where

y = (y1, . . . ,yM ) ∈ Γ with yn = ξn(ω) (n = 1, . . . ,M), and

Γ = supp ρ = Γ1 × . . .× ΓM ⊂ RM ;

• (Ω,F ,P) can be replaced by(Γ,B(Γ), ρ(y)dy

);

• for any measurable ϕ = ϕ(ξ1, . . . , ξM ), one has E[ϕ] =∫Γ

ϕ(y) ρ(y)dy.

A. Bespalov ∗ sGFEM for saddle point problems with random data 16/22

Page 30: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

... and another weak formulation

Denote

V := L2ρ(Γ,H0(div; D)), W := L2

ρ(Γ, L2(D));

aM (u,v) =(A−1

M u,v), b(p,v) = (p,∇ · v); `(v) = (g,v · n)∂DDir

.

Parametric deterministic formulation:

find uM (x,y) ∈ V and pM (x,y) ∈ W such that

E [aM (uM ,v)] + E [b (pM ,v)] = E [`(v)] ,

E [b (w,uM )] = 0

for all v(x,y) ∈ V and w(x,y) ∈ W.

Remark 2. This problem is uniquely solvable under the assumptions in the

statement of Lemma 1.

A. Bespalov ∗ sGFEM for saddle point problems with random data 17/22

Page 31: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Stochastic Galerkin mixed FEM

Discrete subspaces

(i) on the spatial domain D ⊂ Rd: Xdivh ⊂ H0(div; D), X0

h ⊂ L2(D);(ii) on the outcomes set Γ ⊂ RM : Sk ⊂ L2

ρ(Γ).

A. Bespalov ∗ sGFEM for saddle point problems with random data 18/22

Page 32: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Stochastic Galerkin mixed FEM

Discrete subspaces

(i) on the spatial domain D ⊂ Rd: Xdivh ⊂ H0(div; D), X0

h ⊂ L2(D);(ii) on the outcomes set Γ ⊂ RM : Sk ⊂ L2

ρ(Γ).

Discrete formulation (sGFEM):

find uhk(x,y) ∈ Xdivh ⊗ Sk and phk(x,y) ∈ X0

h ⊗ Sk satisfying

E [aM (uhk,v)] + E [b (phk,v)] = E [` (v)] ,

E [b (w,uhk)] = 0

for all v ∈ Xdivh ⊗ Sk and w ∈ X0

h ⊗ Sk.

A. Bespalov ∗ sGFEM for saddle point problems with random data 18/22

Page 33: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Stochastic Galerkin mixed FEM

Discrete subspaces

(i) on the spatial domain D ⊂ Rd: Xdivh ⊂ H0(div; D), X0

h ⊂ L2(D);(ii) on the outcomes set Γ ⊂ RM : Sk ⊂ L2

ρ(Γ).

Discrete formulation (sGFEM):

find uhk(x,y) ∈ Xdivh ⊗ Sk and phk(x,y) ∈ X0

h ⊗ Sk satisfying

E [aM (uhk,v)] + E [b (phk,v)] = E [` (v)] ,

E [b (w,uhk)] = 0

for all v ∈ Xdivh ⊗ Sk and w ∈ X0

h ⊗ Sk.

Theorem 2. Let Xdivh , X0

h be a deterministic inf-sup stable pairing with

discrete inf-sup constant β. Then, for any choice of Sk ⊂ L2ρ(Γ), the pairing(

Xdivh ⊗ Sk

),(X0

h ⊗ Sk

)for the sGFEM is inf-sup stable with the same discrete

inf-sup constant β, and the sGFEM converges quasi-optimally.

A. Bespalov ∗ sGFEM for saddle point problems with random data 18/22

Page 34: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Estimating the stochastic Galerkin error

Total error of the stochastic Galerkin FEM:

Ehk := ‖uM − uhk‖V + ‖pM − phk‖W .

A. Bespalov ∗ sGFEM for saddle point problems with random data 19/22

Page 35: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Estimating the stochastic Galerkin error

Total error of the stochastic Galerkin FEM:

Ehk := ‖uM − uhk‖V + ‖pM − phk‖W .

Decomposition of the error

Ehk ¹ infv∈Xdiv

h ⊗Sk

‖uM − v‖V + infw∈X0

h⊗Sk

‖pM − w‖W

¹ ‖uM −Πdivh uM‖V + ‖pM −Π0

h pM‖W

+ ‖uM −Π0,ρk uM‖V + ‖pM −Π0,ρ

k pM‖W

=‘spatial’ h-error

+

‘stochastic’ k-error

,

Πdivh is an H(div; D)-conforming interpolation operator (defined elementwise),

Π0h is L2(D)-projector onto X0

h ⊂ L2(D),

Π0,ρk is L2

ρ(Γ)-orthogonal projection onto Sk ⊂ L2ρ(Γ).

A. Bespalov ∗ sGFEM for saddle point problems with random data 19/22

Page 36: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Regularity of the solution

Parameterised coefficient:

A−1M (x,y) = E[A−1](x) +

∑Mn=1

√λn ϕn(x) yn.

Spatial regularity

If E[A−1] ∈ C1(D) and C[A−1] is smooth on D ×D, then ∃ r > 0 such that(uM , pM

) ∈ L2ρ(Γ;Hr(div, D))× L2

ρ(Γ; Hr(D)).

A. Bespalov ∗ sGFEM for saddle point problems with random data 20/22

Page 37: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Regularity of the solution

Parameterised coefficient:

A−1M (x,y) = E[A−1](x) +

∑Mn=1

√λn ϕn(x) yn.

Spatial regularity

If E[A−1] ∈ C1(D) and C[A−1] is smooth on D ×D, then ∃ r > 0 such that(uM , pM

) ∈ L2ρ(Γ;Hr(div, D))× L2

ρ(Γ; Hr(D)).

Regularity with respect to y1, . . . , yM

Lemma 4. If Γn (n ∈ 1, 2, . . . ,M) is a bounded interval in R then the

functions uM and pM , as functions of variable yn, can be analytically extended

to the same region of the complex plane:

A. Bespalov ∗ sGFEM for saddle point problems with random data 20/22

Page 38: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Regularity of the solution

Parameterised coefficient:

A−1M (x,y) = E[A−1](x) +

∑Mn=1

√λn ϕn(x) yn.

Spatial regularity

If E[A−1] ∈ C1(D) and C[A−1] is smooth on D ×D, then ∃ r > 0 such that(uM , pM

) ∈ L2ρ(Γ;Hr(div, D))× L2

ρ(Γ; Hr(D)).

Regularity with respect to y1, . . . , yM

Lemma 4. If Γn (n ∈ 1, 2, . . . ,M) is a bounded interval in R then the

functions uM and pM , as functions of variable yn, can be analytically extended

to the same region of the complex plane:

Σn :=

z ∈ C; |z − y0

n| <infx∈D

(A−1

M (x, y0n,y∗n)

)√

λn ‖ϕn‖L∞(D)

∀ y0n ∈ Γj

,

where y∗n = (y1, . . . , yn−1, yn+1, . . . , yM ) for any n ∈ 1, 2, . . . , M.

A. Bespalov ∗ sGFEM for saddle point problems with random data 20/22

Page 39: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

Estimating the stochastic Galerkin error

Theorem 3. Assume:

(i) KL-expansion of A−1 with uniformly distributed random variables ξn;

(ii) given k = (k1, . . . , kM ) ∈ NM0 , Sk := Sk1(Γ1)⊗ . . .⊗ SkM (ΓM );

(iii) technical coercivity assumption. Then there holds

‖uM − uhk‖V + ‖pM − phk‖W ≤ C

(hmin r,1 +

M∑n=1

ηnkn+1

),

where ηn =(χn +

√χ2

n − 1)−1

∈ (0, 1) with χn = 1 + const√λn ‖ϕn‖L∞(D)

for n = 1, . . . ,M .

A. Bespalov ∗ sGFEM for saddle point problems with random data 21/22

Page 40: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

References

More details of this work:

A. B., C. Powell and D. Silvester, A priori error analysis of stochastic Galerkin

mixed approximations of elliptic PDEs with random data, SIAM J. Numer.

Anal., 2012 (to appear).

Useful references

[1] I. Babuska, R. Tempone and G. E. Zouraris, SINUM, 42 (2004).

[2] H.C. Elman, D.G. Furnival and C.E. Powell, Math. Comp., 79 (2010).

[3] O.G. Ernst, C.E. Powell, D.J. Silvester and E. Ullmann, SISC, 31 (2009).

[4] P. Frauenfelder, C. Schwab and R.A.Todor, CMAME, 194 (2005).

[5] B. Ganis, H. Klie, M. Wheeler, T. Wildey, I. Yotov and D. Zhang, CMAME,

197 (2008).

A. Bespalov ∗ sGFEM for saddle point problems with random data 22/22

Page 41: STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR …web.mat.bham.ac.uk/A.Bespalov/talks/naspde12_talk.pdf · STOCHASTIC GALERKIN FINITE ELEMENT METHODS FOR SADDLE POINT PROBLEMS WITH

References

More details of this work:

A. B., C. Powell and D. Silvester, A priori error analysis of stochastic Galerkin

mixed approximations of elliptic PDEs with random data, SIAM J. Numer.

Anal., 2012 (to appear).

Useful references

[1] I. Babuska, R. Tempone and G. E. Zouraris, SINUM, 42 (2004).

[2] H.C. Elman, D.G. Furnival and C.E. Powell, Math. Comp., 79 (2010).

[3] O.G. Ernst, C.E. Powell, D.J. Silvester and E. Ullmann, SISC, 31 (2009).

[4] P. Frauenfelder, C. Schwab and R.A.Todor, CMAME, 194 (2005).

[5] B. Ganis, H. Klie, M. Wheeler, T. Wildey, I. Yotov and D. Zhang, CMAME,

197 (2008).

Thank you for your attention!

A. Bespalov ∗ sGFEM for saddle point problems with random data 22/22