Stiffness and Displacement Method

  • Upload
    faumijk

  • View
    232

  • Download
    1

Embed Size (px)

Citation preview

  • 7/23/2019 Stiffness and Displacement Method

    1/19

    .

    ...

    BRIDGE STRUDL M NU L

    November 973

    : : . : o : . : . : . ~ ; : &Ai , au;

    .a

    PPENDIX B

    STIFFNESS

    OR DISPL CEMENT

    METHOD

    Sect ion

    B l

    B.2

    B.3

    ONTENTS

    In t roduct ion

    Basic

    Displacement

    Approach

    Using

    Example

    Problem 2.3

    Direc t St i f f n e s s

    Approach

    Using

    Example Problem

    2.3

    Page

    B 2

    B 8

    B 14

    B-1

  • 7/23/2019 Stiffness and Displacement Method

    2/19

    APPENDIX B

    STIFFNESS OR DISPLACEMENT METHOD

    B . l In t roduc t ion :

    I . Br ie f Discussion

    o f

    Force o r F l e x i b i l i t y

    Method

    Inde terminate systems

    comprise the

    l a rge

    major i ty

    o f s t ruc tu res to be analyzed and designed

    and

    hence

    the

    so lu t ion

    process must s a t i s fy

    the condi t ions

    o f compat ib i l

    i t y

    and the mater ia l s t r e s s - s t r a i n

    behav ior .

    Trad i t iona l

    methods o f

    s t ru c t u ra l

    ana lys is

    employing

    the concept

    o f

    redundancies

    and

    cons i s t en t deformations have not proven

    to

    be as

    s imple and d i r e c t

    in

    appl ica t ion as the s t i f fness

    o r

    disp lacement

    approach

    to

    be

    t r e a t ed

    h e re

    and

    a l so

    used

    in the

    STRUDL

    program.

    The t r a d i t i o n a l

    method

    invo lv ing

    redundancies has been formal ized in to a matr ix

    approach

    and

    i s

    now r e fe r red to as the

    fo rce method.

    a.

    Propped Can t i l ev e r Example:

    The fo rce method

    o f s t ru c t u ra l

    ana lys is

    (often re fe r red to as

    the

    f l e x i b i l i t y

    method )

    i s

    probably

    most fami l i a r to us

    for the

    so lu t ion o f

    s t a t i c a l l y indeterminate

    s t ruc tu res .

    The

    propped

    can t i l eve r

    beam o f Figure

    B . l a

    prov ides a s imple example o f the use o f

    the

    fo rce method.

    rnA

    o l

    L

    .

    t

    R

    1

    Fig B la

    A

    concen t ra ted

    load,

    P,

    i s

    ac t ing

    a t

    a

    dis tance

    aL

    from

    the

    l e f t support . This load produces

    the reac t ions RA

    MA

    and

    PB

    as

    shown.

    Since we have only two

    equat ions

    o f

    equ i l ib r ium,

    LFv=

    and l:M

    =0

    and

    t h ree unknown

    reac t ions ,

    t h i s

    beam

    i s considered to be inde terminate to the f i r s t degree. To

    gain an

    add i t iona l

    equat ion we cons ider the de f l ec t ions o f

    the

    s t ruc tu re . The t r a d i t i o n a l

    way to approach t h i s problem

    i s

    to remove one o f

    t he

    redundant

    reac t ions ,

    in t h i s case

    B 2

  • 7/23/2019 Stiffness and Displacement Method

    3/19

    and determine

    the

    deflec t ion

    8

    0

    a t B

    on the s ta t i c a l ly

    determinate cant i lever due to the external load P, Figure

    B.lb . Since our actual

    s t ruc ture does

    not have a ver t ica l

    deflec t ion

    a t B

    the

    redundant react ion,

    ~ must

    be

    of such

    Fig.

    B.lb

    Fig. B.lc

    a magnitude tha t t pushes the beam of Figure B. lb upward

    with

    a displacement equal to

    Sc.

    I f we apply a uni t value

    of the

    redundant

    to the cant i l eve r shown in Figure B.lc

    we

    wil l

    have a

    deflec t ion a t

    B upward

    equal to

    8o

    .

    Therefore

    we can

    wri te

    This

    i s our compat ibi l i ty

    equation

    saying

    tha t

    the

    def lec t ion

    a t

    B

    i s zero. Here

    891

    i s

    the

    ver t i ca l

    deflec t ion

    a t

    B

    due

    to

    a

    uni t

    load a t

    B. We solve Eq. 1

    for

    ~

    =

    (2)

    Having al lows us

    to

    determine M and

    RA

    by s ta t i c s .

    b . Four

    Span Beam

    Example: For

    a beam

    with

    a

    la rger

    number of

    redundancies

    we

    could

    proceed

    in

    a

    very

    s imi lar manner. For example,

    consider

    the four span beam of

    Figure

    B.ld. In t h i s

    case

    we can

    consider

    R

    1

    R

    2

    R

    3

    and

    R

    4

    as the redundants, leaving us with the cant i lever beam

    of

    Figure

    B

    . l e .

    30

    Fig. B.ld

    Fig. B.le

    B-3

    4

  • 7/23/2019 Stiffness and Displacement Method

    4/19

    The appl ied loads

    produce

    de f l ec t ions 8

    10

    ,8

    20'8

    30

    and8

    4

    o.

    As before , these de f l ec t ions do not represen t the

    t r u e

    s t a t e

    o f our s t ruc tu re so

    w

    must cons ider t h a t the

    redundants

    push

    upward j u s t enough

    to

    e l imina te these displacements . In t h i s

    ins tance

    we

    s h a l l a r r i v e

    a t four

    compat ib i l i ty cond i t ions .

    For example,

    applying

    a u n i t

    load

    a t

    suppor t

    1 yie lds d e f l ec

    t i ons

    811

    t

    821

    ' 831

    and841

    ( see

    Figure

    B . l f ) .

    Simi la r ly ,

    a

    un i t load

    a t poin t

    2 y ie lds 8 2, 8

    22 '8

    32,

    8

    42.

    1

    Fig. B.lf

    Fig.

    8.1g

    We could cont inue

    applying

    the u n i t load a t each p o i n t

    and

    determining the def lec t ions .

    Our

    co mp a t i b i l i t y equat ions

    become

    1o

    +

    R1

    &11

    +

    R2

    ~ 2

    + R3 ~ 1 3 + R4

    s14

    =

    0

    d20

    + R1

    S21

    +

    R2

    ~

    +

    R3

    523

    +

    R4 S 24

    =

    0

    (

    3)

    ~ 3

    +

    R1

    b31

    + R2

    ~ 3 2

    + R3

    33

    + R4 634

    =

    0

    b4

    + Rl

    0

    41

    + R2 S42

    +

    R3

    s43

    +

    R

    4

    S44

    =

    0

    Note

    t h a t 8ij - i s

    the de f l ec t ion a t support

    due

    to

    a

    u n i t

    load a t

    suppor t

    j . The so lu t ion o f these four equat ions gives

    values fo r the redundants R

    1

    , R

    2

    , and R

    4

    One

    t h ing

    t h a t

    3

    we can observe s t h a t

    in

    order to determine t h e

    redundants

    we

    must ca lcu la te

    t he

    de f l ec t ions a t a l l o f

    t he

    redundant

    poin t s

    fo r a l l pos i t ions o f

    t he

    u n i t l o a d - . -

    I I . B r i e f Discussion o f t h e St i f fnes s o r Displacement

    Methods

    The prev ious discuss ion has

    d ea l t

    with the f l e x i b i l

    i t y

    o r

    fo rce

    method o f ana lys i s .

    vl can

    handle

    the same

    problems by cons ider ing the s t i f fn e s s o r

    di sp lacement

    method

    of ana lys is . In t h i s

    case

    we

    t ake

    the

    unknown di sp lacements

    of the

    s t r u c tu r e

    as t h e redundants .

    a .

    Propped

    Can t i l ev e r Example: Again cons ider

    the

    propped can t i l ever beam o f

    Figure

    B. lh .

    B-4

  • 7/23/2019 Stiffness and Displacement Method

    5/19

    Fig. B lh

    F.ig B lc

    In

    t h i s

    case

    the only unknown

    displacement i s

    the

    r o t a t i o n ,

    a a t end B. We then say t h a t t h i s

    s t r u c tu r e

    only has one

    degree o f

    freedom. In

    order to e l imina te

    t h i s

    unknown d i s -

    placement we clamp

    the

    end. The app l ied loads then produce

    f ixed end

    moments MA

    and

    as shovm in Figure

    B

    li

    How-

    ever , we know t h a t

    t h i s

    i s not

    the ac tua l cond i t ion o f our

    s t ruc tu re .

    The

    redundant

    ro ta t ion ,

    Be

    ,

    produces

    a

    moment

    o f

    magnitude

    equal to M b u t o f o p p o s ~ t e

    d i r ec t i o n .

    We can

    cons ider the

    e f f e c t

    of t h i s

    r o t a t i o n by

    cons ider ing the e f f e c t

    of a

    un i t ro ta t ion

    a t

    end

    B

    Figure B . l j .

    1

    .

    ~

    Fig.

    B lj

    Then our

    compat ib i l i ty

    condi t ion becomes

    e + mss e =o

    3)

    e ~

    4)

    ms

    where ~ B i s

    the

    moment a t

    B

    due to

    a

    u n i t r o t a t i o n

    a t

    B.

    Having BB

    ,

    we can

    determine

    a l l

    other moments

    and

    r eac t ions .

    For

    example,

    the

    moment

    a t

    A, MA i s given by

    M = F M , m

    5)

    A

    B

    B

    where

    mAB i s the moment

    a t

    A due to a u n i t r o t a t i o n

    a t

    B.

    B-5

  • 7/23/2019 Stiffness and Displacement Method

    6/19

    b . Four Span Beam Example: This may

    b e

    a s t r an g e

    way

    to look a t t h i s problem because it s normally more

    d i f f i c u l t t o c a l cu l a t e

    the reac t ion

    caused by

    a

    u n i t dis- .

    placement than to ca l cu l a t e the displacement

    caused

    by a

    u n i t

    reac t ion .

    Hm.,ever, we sha l l

    soon

    see t h a t t he re s

    an

    advantage in looking

    a t

    the

    problem from t h i s p o in t

    o f

    view.

    Consider

    again

    the cont inuous beam

    o f

    Figure B. lk . e see

    t h a t

    t he re a re fOUr

    Unknown rota t iOnS,

    81 2 I 3

    1

    4

    Fig.

    B.lk

    e beg in

    by

    f ix ing

    a l l

    suppor t s

    aga ins t

    ro ta t ion and

    d e t e r

    mine t he

    FEM's

    (Figure B. lL) .

    A ___,

    8' c

    f -,, , / ~ - , -'- ' , S f

  • 7/23/2019 Stiffness and Displacement Method

    7/19

    Ne can cont:.J.nue to apply the

    un i t

    ro ta t ion and ge t

    t h r ee

    addi t iona l

    co mp a t i b i l i t y equat ions fo r example, a t j o i n t 2

    o =

    e

    M

    8

    +

    m

    e +

    m

    e +

    m

    (7)

    20

    20 2 1 22 2 23 93

    Solving

    t h i s system

    o f equat ions

    g ives va lues fo r 8 82 8

    and

    8

    The th ing to note i s t h a t these equat ions only

    involve the e f f ec t s produced by members

    ad jacen t to

    the j o i n t

    in

    quest ion . In othe r -v1ords

    we

    do

    not have

    to determine

    ef fec t s on the s t r u c tu r e due to ro t a t ions a t d i s t a n t p o in t s .

    This a l lows an e f f i c i e n t

    manner o f s to r ing the

    problem in

    the

    computer

    and al lows the

    computer

    t ime to

    b e

    reduced .

    Furthermore , the

    method

    i s app l icab le to determinate

    and

    inde terminate systems wi th

    equal

    ease

    and

    the

    degree o f

    indeterminancy

    need

    not even be determined .

    The

    preced ing

    discuss ion

    o f

    s t i f fn e s s

    method

    was

    presen ted

    to

    give

    an

    overview of the method. We

    s h a l l

    nex t

    cons ider

    a more

    d e t a i l ed

    app l i ca t ion of the s t i f f ne s s o r d i s -

    placement approach.

    B-7

  • 7/23/2019 Stiffness and Displacement Method

    8/19

    .

    B.2 Basic Displacement Approach Using Example Problem 2.3

    Inde terminate Truss

    ~ ~ ~ ~ P 4 _ a

    Fs Us

    t ~ t ~ t . tR3,A3 '

    I

    8'

    . JOINT

    LOADS

    BAR FffiCES

    GEOMETRY

    AND

    DISPLACEMENTS

    AND ELQNGATIONS

    fig. B 2a

    -

    .

    Note t ha t the

    exte rna l

    appl ied loads P, have a

    one-to-one

    correspondence

    with

    the

    ex te rna l

    j o i n t

    d isp lace

    ments, X, and the

    i n t e r n a l

    b a r forces

    F, have

    a one- to -one

    correspondence with

    the

    member

    e longa t ions u.

    Also note

    the one-to-one correspondence between unknown reac t ion com

    ponents ,

    R and known support

    displacements

    (not neces sa r i ly

    zero) .

    a . Equi l ibr ium Matr ix: Rewri t ing the equi l ibr ium

    matr ix

    shown

    on

    Page

    A-10,

    to

    inc lude

    the add i t i ona l b a r gives

    F11

    F12l

    3 ..

    0._

    0

    -1

    0

    0

    0

    : 8

    F21

    F22

    -4. -10.

    1.

    0

    0

    0

    0

    .6

    F31 F32

    tP}

    =

    [A)

    ( F}

    o

    -4.

    =

    0

    1

    0

    .8

    0

    .o

    0.

    o

    0

    0

    0 0

    1

    .8

    F41

    F42

    -10

    0:

    0

    0 1

    .6.

    0

    0

    Fs1

    F;;2

    (8)

    F51

    Fs2

    F11.

    F12

    -1 0 0

    - .6

    0

    0

    11

    R12

    F21

    F22

    R21 . R22

    =

    0

    0

    "()

    -.

    8

    -1

    0

    F31

    F32

    R31

    R32

    0

    0 .1

    0

    0 - .6

    {Rj

    [AR] [F

    F41

    F42

    Fs1

    Fs2

    Fs1

    F52

    B-8

  • 7/23/2019 Stiffness and Displacement Method

    9/19

    b .

    Compat ib i l i ty Matr ix : The equ i l ib r ium

    matr ix

    i s no longer

    square

    A

    5

    x

    6

    } and

    hence cannot be

    i nve r t ed .

    The degree

    o f

    indeterminacy

    i s

    NF - NP

    =

    6 - 5

    =

    1

    Therefore , we must apply the s t r e s s - s t r a in r e la t ionsh ips and

    the

    condi t ions

    of

    compat ib i l i ty .

    The

    s t r e s s - s t r a i n

    assumption

    fo r

    ax i a l l y

    loaded

    members i s

    s imply

    r

    X

    = Eex or Fx = E

    Ux

    or

    (9)

    Ax

    L

    One

    such

    equat ion can be wri t t en

    for

    each

    ba r , hence

    :: .

    tF) 6x2

    [5]

    6x6

    {u

    1

    6x2

    l

    u11

    u12

    EA1 L1

    u21

    u22

    EA2 L2

    EA3 L3

    ZEROS

    u31

    u32

    EA41L4

    (10)

    u41

    u42

    tFl

    =

    EA

    5

    !L

    5

    EA

    6

    EROS

    u51

    u52

    us1 u62

    Applying

    compat ib i l i ty condi t ions to a

    t r u s s

    means

    s imply t h a t the member

    elongat ions

    u ~ must be cons i s ten t

    with the

    j o i n t

    displacements [x and ~ }

    .

    u1

    =

    b11x1 b12x2

    b15x5

    b 1 6 ~ 1

    b1a ~ 3

    .

    u2

    =

    b21x1

    b22x2

    b25x5

    b 2 6 ~ 1

    u3

    =

    b31xl

    b36 ~ 1

    1 1

    u4

    =

    b41x1 b46

    ~ 1

    us

    =

    b51x1

    b 5 6 ~ 1

    us

    =

    bslxl

    b62x2

    bssxs

    b66

    ~ 1

    bsa D-3

    (12)

    B-9

  • 7/23/2019 Stiffness and Displacement Method

    10/19

    What

    we

    a re

    saying i s t ha t

    b a r e longat ions

    are some l i ne a r

    combination

    o f

    the

    exte rna l

    j o in t displacements .

    To obta in

    the

    co e f f i c i en t s

    o f [ B] def in ing

    the

    compat ib i l i ty

    matr ix we may apply a un i t displacement in

    t he

    d i rec t ion o f each of the

    exte rna l j o in t

    disp lacements .

    For

    example,

    xl =1 x

    ' 2

    ul

    =

    bll

    u2

    b21

    u3 b31

    etc

    t4

    ul

    bll

    0

    (small

    deflections)

    u2

    =

    bzl

    -1.0

    1

    us

    =

    bs1

    =

    -0.8

    u3

    =

    u

    4

    =

    u

    5

    =

    0

    Fig. 8.2b

    as another example s e t

    1;

    x

    1

    . =x

    2

    - A Ax

    3

    x A

    4

    =ul

    =u2

    = ~

    =

    u2

    =

    b25

    =

    0

    (small

    deflections)

    u3

    b35

    =

    +1.

    u4

    =

    b45

    =

    +O.S

    ul

    = u5 = us

    =

    o.

    Fig.

    8.2c

    B-10

  • 7/23/2019 Stiffness and Displacement Method

    11/19

    Each column

    may b e determined success ive ly

    t o y i e ld

    0

    1.

    0 0

    1.

    0 0

    -1.

    0

    1.

    0 0

    0 0

    0

    0

    0 0 0 0

    -1.

    [8]=

    0

    0

    .8

    0

    .6

    [BRJ=

    -. 6

    -.

    8 0

    (13)

    0 0 0 1.

    0 0 - 1.

    0

    .8

    .6

    0

    .8

    0

    0

    0 -.6

    (we've

    j u s t

    done columns

    1

    and

    5)

    c .

    Rela t ionsh ip

    o f Compat ib i l i ty

    and

    Equil ibr ium

    Matrices : t i s

    ext remely

    i n t e r e s t i n g

    and

    s i g n i f i c a n t to

    note a t t h i s t ime the t ranspose re l a t ionsh ip

    between

    the

    equ i l ib r ium and

    t he compa t ib i l i t y

    matr ices o r

    [8]

    =

    [A]T

    [8R] = [ARJT (14)

    This re l a t ionsh ip always holds fo r l i n e a r l y

    e l a s t i c

    s t r u c -

    t u re s

    and can

    be

    proved

    by

    the

    p r in c ip l e o f

    v i r t u a l

    work.

    d . System

    S t i f f n e s s Matr ix:

    In

    summary

    {P)

    =

    [A]

    {F)

    Equilibrium

    R}

    =

    ~ ] { }

    (15)

    {F)

    =

    [S] { }

    Stress-Strain

    (16)

    {u}

    =

    [A]T

    {xJ

    [ARJT

    Compatibili_ty

    (17)

    S u b s t i t u t e (17)

    i n to

    (16) to obta in

    (18)

    B-11

  • 7/23/2019 Stiffness and Displacement Method

    12/19

    Then s u b s t i t u t e

    18 i n t o

    15

    P}

    =

    [ASAT

    J {x} + [ A S A ~ ] fa} . (19)

    {Pj - [ A S A ~ ] {a) = [K] (xj

    {x} = [K]-1 [

    PJ

    [ A S A ~ ] ] (20)

    1

    J

    =

    [ARSAT] fxJ + A R S A ~

    J fa)

    (21)

    f

    a l l suppor t d isplacements a re zero the

    bas ic so lu t ion

    process fo r the example i s

    (22)

    (x}5x2 =

    [ASATJ5!s (Plsx2

    = [KJ5 s

    {PJsx2

    ]

    6x2

    =

    [SAT] 6x5

    fxlsx2

    2.3)

    0 EA

    1

    0

    0 0

    Ll

    -EA

    2

    0

    EA

    2

    o.

    0

    0

    0 0

    0

    EA

    3

    L3

    [SAT]=

    24)

    0 0

    .8EA

    4

    0 .6EA

    4

    L4

    L4

    0

    0

    0

    EA

    5

    0

    Ls

    -..

    8EA

    6

    .6EA

    6

    0

    .8EA6

    0

    s

    L

    Ls

    6

    B-12

  • 7/23/2019 Stiffness and Displacement Method

    13/19

    nd

    As

    A

    0

    ~ ~ - 6 ~

    48

    .

    L Ls

    Ls

    L

    -.

    48 __

    A

    {I-+

    .36

    ~ : - . 4 8 ~ - -

    Ls

    Ls

    IK E) .

    0

    .48

    L

    (2

    6

    .

    0

    _

    0

    4 8 L '

    . 4

    .

    .____...,___ ,

    ,___

    These two matr ices

    plus the load

    matr ix

    {PJ

    a re what i s

    required to so lve fo r t he displacements and fo rces in the

    s t ru c t u ra l

    system

    under

    inves t iga t ion .

    The method i s

    genera l ly

    re fe r red to

    as

    the

    displacement

    method

    because

    disp lacements are the pr imary unknown quan t i t i e s .

    Also

    note

    the symmetr ical condi t ion of the s t i f f ne s s

    matr ix .

    This

    i s

    proved by the r ec ip roc i ty

    theorem.

    B-13

  • 7/23/2019 Stiffness and Displacement Method

    14/19

    B.3 "Direc t

    St i f fne ss" Approach

    Using Example Problem 2 .3 ,

    Inde terminate Truss

    D i rec t

    s t i f f n e s s simply

    impl ies t h a t

    one i s

    going

    to

    ob ta in the

    s t i f f n e s s

    matr ix [ ~

    withou t

    genera t ing

    the [A]

    [s] ,

    and

    [B]

    matr ices

    and

    t hen pe r fo rming

    the matr ix

    mul t i -

    p l i ca t i o n

    opera t ions .

    This

    method i s

    much

    more e f f i c i e n t

    computa t ional ly

    and

    requ i res cons iderab ly l e s s

    e f fo r t

    in the

    prepara t ion o f

    da ta

    i n p u ~

    a .

    Discuss ion

    o f

    the development o f the system

    s t i f fn e s s matr ix d i r e c t l y from

    phys ica l

    co n s i d e ra t i o n s

    To

    motivate the development cons ider

    the i n d e t e r -

    minate t r u s s j u s t

    i nves t iga t ed and

    wri t e t h e bas i c s t i f f ne s s

    equat ions as

    Pl

    =

    K11X1

    + K12X2 + K13X3 +

    K14X4

    +

    K1sXs

    p2

    =

    K21X1 +

    K22X2

    .K23X3 +

    K24X4

    +

    K2sXs

    p3

    =

    K31X1

    +

    K32X2 +

    K33X3

    +

    K34X4

    +

    K35X5

    26)

    p4

    K41X1

    +

    K42X2

    + K43X3

    +

    K44X4

    +

    K 4 5 X ~

    p

    K51X1

    + K52X2 +

    K53X3

    +

    Ks4X4

    +

    KssXs

    5

    Again these

    co e f f i c i en t s

    may

    be

    determined by

    def in ing a se t

    o f

    values fo r the independent va r i ab le s x] ,

    in

    order

    to

    i s o l a t e

    one

    column

    of

    the

    matr ix .

    For

    example,

    i

    x

    1

    = = =

    o

    then P

    1

    = K

    11

    , = K

    21

    ,

    2

    =

    x

    3

    =

    x

    4

    x

    5

    P

    2

    P

    3

    = K

    31

    , P

    4

    = K

    41

    ,

    and

    = K

    51

    .

    Phys ica l ly t h i s means

    t h a t

    5

    for

    a

    given

    s t a t e o f displacement , what

    a re

    the r e q ~ i r e d

    app l ied loads to produce t h i s

    s t a t e?

    Therefore, the s t i f f ne s s

    co e f f i c i en t K

    . .

    i s def ined to be

    t he load

    a t

    coord ina te

    i given

    l.J

    a u n i t displacement a t coord ina te j , a l l

    othe r

    displacements

    equal to zero .

    For t h i s s t a t e o f

    displacements

    t h e

    member e longat ions

    are :

    ul

    =

    0;

    u2

    -1;

    u3

    =

    0;

    Fig.

    8.3a

    u4.

    0;

    us

    =

    0;

    u

    6

    =-o.a

    B-14

  • 7/23/2019 Stiffness and Displacement Method

    15/19

    27

    Hence

    the assoc ia ted b a r

    forces are

    =

    -0.8

    EAs

    Ls

    Then

    consider the

    equ i l ib r ium

    o f

    the

    j o i n t s

    Fig. B.3b

    EA2

    K n + - L

    2

    EA

    ) + 0 . 8 - . 8 - - 2 ) = 0

    s

    EA

    K

    21

    - o .o.s

    < 0 . 8 ~ >

    = o.

    EA

    K31 -(-L

    2

    ) -0.8

    (0)

    =0

    28)

    2

    K41

    -0

    -0.8 (-0.8 EA2 = 0

    L2

    K

    51

    o o.s = o

    These

    co e f f i c i en t s

    a re

    the

    same as

    those

    obta ined in

    the

    f i r s t

    column

    o f the [K] matr ix

    when

    the

    t r i p l e

    matr ix mul t i

    p l i ca t ion was

    employed. I f

    a

    s imi la r

    operat ion

    i s employed

    fo r each of the ex te rna l displacement coordinates

    the

    remaining four columns o f

    the

    s t i f f ne s s matr ix could b e

    obta ined

    and

    would agree with

    those

    obtained prev ious ly .

    ~

    Using t h i s concept to

    develop the s t i f f ne s s matr ix

    i nd ica t e s the

    composi t ion

    of the indiv idua l terms and a l so

    c l e a r l y i de n t i f i e s which members o f the

    system

    w i l l con t r ibu te

    to the indiv idua l coef f i c i en t s .

    In p a r t i c u l a r , any given

    member w i l l only con t r ibu te to those

    co e f f i c i en t s

    assoc ia ted

    with

    the

    ex te rna l

    coordinates of the

    ends

    o f the

    member. The

    co e f f i c i en t s Kii

    w i l l

    cons i s t

    o f con t r ibu t ions from

    each

    member

    framing

    i n to

    the

    j o i n t assoc ia ted with

    coordinate i

    In more

    genera l terms

    each member

    con t r ibu te s to the s t i f f ne s s o f t he

    j o in t s i n to which they frame. This suggests t ha t

    the s t i f f

    ness matr ix could be genera ted from the s t i f f ne s s proper t i e s

    o f

    the component

    p a r t s

    o r as the summation o f the element

    s t i f f ne s s matr ices .

    B-15

  • 7/23/2019 Stiffness and Displacement Method

    16/19

    F i r s t

    t ake

    an ind iv idua l

    t rus s

    ba r sub jec ted to

    an ax ia l

    fo rce F.

    y

    GEOMETRY

    Fig.

    B.3c.

    EQUILIBRIUM

    STRESS STRAIN

    COMPATIBILITY

    pl

    =

    -Fi

    cos o

  • 7/23/2019 Stiffness and Displacement Method

    17/19

    , j

    l

    -

    cos

    2

    cc:. i

    .

    ,

    cos oc::.

    l .

    s in oc:.

    l .

    I

    cos

    2

    oc::

    l .

    cos

    ex:.

    l .

    sinoc.

    l .

    E l e ~ e

    '-.

    2

    2

    -

    cos:.

    ;

    s in

    oci

    s in

    ex: cos

    oc.

    sinoc.

    s i n

    oc:.

    St i f fn

    i

    l . l . i

    2

    l.

    cos oc:

    s in

    ex:.

    cos

    2

    o