111
Universidad de Concepción Dirección de Postgrado Facultad de Agronomía - Programa de Doctorado en Ciencias Agropecuarias Detección y tipificación molecular de Staphylococcus aureus y Staphylococcus aureus resistente a meticilina (SARM) en Dakota del Norte, Estados Unidos Detection and molecular typing of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) in North Dakota, United States VALERIA CRISTINA VELASCO PIZARRO CHILLÁN-CHILE 2014 Profesor Guía: Pedro Rojas García Dpto. de Ciencias Pecuarias, Facultad de Ciencias Veterinarias Universidad de Concepción

Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

Universidad de Concepción

Dirección de Postgrado Facultad de Agronomía - Programa de Doctorado en Ciencias Agropecuarias

Detección y tipificación molecular de Staphylococcus aureus y Staphylococcus aureus resistente a meticilina

(SARM) en Dakota del Norte, Estados Unidos

Detection and molecular typing of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) in

North Dakota, United States

VALERIA CRISTINA VELASCO PIZARRO CHILLÁN-CHILE

2014

Profesor Guía: Pedro Rojas García Dpto. de Ciencias Pecuarias, Facultad de Ciencias Veterinarias

Universidad de Concepción

Page 2: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

Detección y tipificación molecular de Staphylococcus aureus y Staphylococcus aureus resistente a meticilina (SARM) en Dakota del Norte,

Estados Unidos

Aprobada por: Prof. Pedro Rojas García ________________________ Médico Veterinario, Dr. Med. Vet. Profesor Guía Prof. Álvaro Ruiz Garrido ________________________ Médico Veterinario, Ph. D. Evaluador Interno Prof. Cristián Balbontín Sepúlveda ________________________ Ing. Agrónomo, Dr. Cs. Evaluador Interno Prof. Heriberto Fernández Jaramillo ________________________ Tecnólogo Médico, Dr. Cs. Evaluador Externo Prof. Manuel Quezada Orellana ________________________ Médico Veterinario, Dr. Med. Vet. Director de Programa

Page 3: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

RECONOCIMIENTO

Agradezco el financiamiento otorgado por North Dakota State University (Fargo, ND, USA)

para el desarrollo de esta investigación, y a la Universidad de Concepción por apoyarme y

otorgarme la beca funcionario.

A mi profesor guía Dr. Pedro Rojas García, por su apoyo en esta tesis, por sus valiosos

consejos y su sincera amistad.

A mi profesora guía externa Dr. Catherine M. Logue, por su preocupación, entusiasmo,

energía y sencillez. Por creer en mí y ser un ejemplo para mí.

A mi familia, que me apoya en forma incondicional en cada desafío y me acompaña siempre.

A mis amigos en Chile y alrededor del mundo, gracias por alentarme a la distancia y por los

buenos momentos. A todos ellos, gracias por su tolerancia y respeto.

Y a la fuerza divina que recibo cada día.

Page 4: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

PRÓLOGO

Esta investigación fue desarrollada en North Dakota State University, Fargo, Dakota del Norte,

Estados Unidos durante los años 2010 y 2011.

El escrito de esta tesis consta de una parte general en idioma español (Introducción General,

Discusión General y Conclusiones Generales) y tres capítulos en inglés (Desarrollo 1., 2. y 3.)

que corresponden a tres artículos científicos. El formato de cada capítulo corresponde al

formato exigido por cada revista. La numeración de tablas y figuras se inicia en cada capítulo

para mantener el orden de citación dentro de cada artículo.

Las abreviaciones en español e inglés que aparecen en el texto se encuentran en el Glosario de

Abreviaciones.

Page 5: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

ÍNDICE

RESUMEN GENERAL ...............................................................................................................

GENERAL ABSTRACT .............................................................................................................

I. INTRODUCCIÓN GENERAL ...............................................................................................

1. Características de Staphylococcus aureus..............................................................................

2. Mecanismos de resistencia a meticilina.................................................................................

3. Tipificación molecular de Staphylococcus aureus y SARM.................................................

4. Prevalencia de Staphylococcus aureus y SARM...................................................................

5. Hipótesis y objetivos..............................................................................................................

6. Referencias.............................................................................................................................

II. DESARROLLO

1. Molecular typing of Staphylococcus aureus and methicillin-resistant S. aureus

(MRSA) isolated from animals and retail meat in North Dakota, United States...............

1.1 Introduction..........................................................................................................................

1.2 Materials and methods.........................................................................................................

1.2.1 Samples.......................................................................................................................

1.2.2 Isolation of S. aureus and MRSA...............................................................................

1.2.3 Multiplex polymerase chain reaction (PCR)...............................................................

1.2.4 PFGE...........................................................................................................................

1.2.5 Multilocus sequence typing (MLST)..........................................................................

1.2.6 Antimicrobial susceptibility testing............................................................................

1.2.7 Statistical analysis.......................................................................................................

1.3 Results..................................................................................................................................

1.4 Discussion............................................................................................................................

1.5 Conclusion...........................................................................................................................

1.6 References...........................................................................................................................

2. Multiplex real-time PCR for detection of Staphylococcus aureus, mecA and Panton-

Valentine Leukocidin (PVL) genes from selective enrichments from animals and retail

meat...........................................................................................................................................

2.1 Introduction..........................................................................................................................

2.2 Materials and methods.........................................................................................................

1

5

9

10

11

13

15

18

19

27

27

28

29

29

30

31

31

32

33

33

33

34

36

37

51

52

54

Page 6: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

2.2.1 Samples.......................................................................................................................

2.2.2 Culture method............................................................................................................

2.2.3 Conventional multiplex PCR method.........................................................................

2.2.4 Multiplex real-time PCR assay...................................................................................

2.2.5 Characterization of S. aureus strains isolated by culture method...............................

2.2.6 Statistical analysis.......................................................................................................

2.3 Results..................................................................................................................................

2.4 Discussion............................................................................................................................

2.5 References............................................................................................................................

3. Staphylococcus aureus harboring mecA gene and genes encoding Panton-Valentine

Leukocidin (PVL) exotoxin from humans.............................................................................

3.1 Introduction..........................................................................................................................

3.2 Materials and methods.........................................................................................................

3.2.1 Samples.......................................................................................................................

3.2.2 Multiplex polymerase chain reaction (mPCR)............................................................

3.2.3 Statistical analysis.......................................................................................................

3.3 Results..................................................................................................................................

3.4 Discussion............................................................................................................................

3.5 Conclusion...........................................................................................................................

3.6 References...........................................................................................................................

III. DISCUSIÓN GENERAL ......................................................................................................

IV. CONCLUSIONES GENERALES ........................................................................................

V. REFERENCIAS......................................................................................................................

54

54

55

56

57

58

58

61

64

73

74

75

75

76

76

77

77

78

79

86

92

93

Page 7: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

ÍNDICE DE TABLAS

Table 1 (Desarrollo 1)

Table 2 (Desarrollo 1)

Table 3 (Desarrollo 1)

Table 4 (Desarrollo 1)

Table 5 (Desarrollo 1)

Table 1 (Desarrollo 2)

Table 2 (Desarrollo 2)

Table 3 (Desarrollo 2)

Table 4 (Desarrollo 2)

Nucleotide sequence of the primers used in multiplex polymerase

chain reaction for detection of 16S rRNA, mecA, and Panton-

Valentine leukocidin genes (McClure et al., 2006); and multilocus

sequence typing analysis for detection of arcC, aroE, glpF, gmk, pta,

tpi, and yqiL genes (Enright et al., 2000)...............................................

Identification of 16S rRNA, mecA and Panton-Valentine leukpcidin

(PVL) genes in Staphylococcus aureus and methicillin-resistant

Staphylococcus aureus isolates from animals and retail meat...............

Antimicrobial resistance of Staphylococcus aureus and methicillin-

resistant S. aureus (MRSA) isolates from animals and retail meat........

Minimum inhibitory concentrations (MICs) of resistant

Staphylococcus aureus and methicillin-resistant S. aureus isolates

from animals and retail meat..................................................................

Antimicrobial resistance profiles of Staphylococcus aureus and

methicillin-resistant S. aureus (MRSA) isolates from animals and

retail meat...............................................................................................

Nucleotide sequence of the primers and probes used in conventional

multiplex PCR, multiplex real-time PCR...............................................

Detection of S. aureus, mecA and PVL genes from animals and retail

meat using a conventional culture/PCR method and a real-time PCR

assay.......................................................................................................

Raw agreement indices among conventional culture/PCR method and

real-time PCR assay, with two-step enrichment procedure for

detection of S. aureus from animals and retail meat..............................

Raw agreement indices among conventional culture/PCR method and

real-time PCR assay, with two-step enrichment procedure for

detection of mecA gene from animals and retail meat...........................

44

45

46

47

48

68

69

70

71

Page 8: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

Table 5 (Desarrollo 2)

Table 1 (Desarrollo 3)

Table 2 (Desarrollo 3)

Antimicrobial resistance profiles and sequence types of S. aureus

isolated by conventional culture/PCR method from animals and retail

meat........................................................................................................

Nucleotide sequence of the primers used in the multiplex PCR for

detection of the 16S rRNA gene, the mecAgene and the PVL genes

(McClure et al., 2006)............................................................................

Identification of 16S rRNA, mecA and Panton-Valentine Leukocidin

(PVL) genes in Staphylococcus aureus isolates from healthy people

and methicillin-resistance Staphylococcus aureus (MRSA) isolates

from hospital patients.............................................................................

72

84

85

Page 9: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

ÍNDICE DE FIGURAS

Figura 1 (Resumen

General)

Prevalencia de Staphylococcus aureus en animales, carne cruda y

productos cárnicos..................................................................................

3

Figure 2 (General

Abstract)

Prevalence of Staphylococcus aureus in animals, raw meat, and deli

meat........................................................................................................

7

Figure 1 (Desarrollo 1) Dendrogram showing the genetic relatedness of 100 Staphylococcus

aureus isolates as determined by the analysis of pulsed-field gel

electrophoresis (PFGE) profiles by the unweighted-pair group method

with arithmetic averages with the sequence type (ST). The scale

indicates levels of similarity within this set of isolates. Red line

indicates the cutoff at 80%. Numbers represent the samples codes,

followed on the right by the STs and the type of the sample. Clusters

are separated by horizontal lines and labeled with correlative

numbers. Asterisks indicate methicillin-resistant Staphylococcus

aureus isolates determined by multiplex polymerase chain reaction

targeting the mecA gene.........................................................................

49

Page 10: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

GLOSARIO DE ABREVIACIONES

AR: Antimicrobial-resistant

BP: Baird Parker

CA-MRSA: Community-associated MRSA

CDC: Centers for Disease Control and Prevention

CHL: Chloramphenicol

CIP: Ciprofloxacin

ERY: Erythromycin

FDA: Food and Drug Administration

GEN: Gentamicin

GPID: Gram positive identification

HA-MRSA: Health care-associated MRSA

KAN: Kanamycin

LA-MRSA: Livestock-associated MRSA

LINC: Lincomycin

MDR: Multidrug resistance (resistant)

MHB: Mueller-Hinton broth

MIC: Minimum inhibitory concentration

MLST: Multilocus sequence typing

mPCR: Multiplex PCR

MR: Multirresistente (resistencia a múltiples agentes antimicrobianos)

MRSA: Methicilin-resistant S. aureus

MSSA: Methicillin-susceptible S. aureus

NARMS: National Antimicrobial Resistance Monitoring System

QUI/DAL: Quinupristin/dalfopristin

PBP2a: Proteína de unión a la penicilina alterada

PCR: Polymerase chain reaction

PCRm: PCR múltiple

PEN: Penicillin

PFGE: Pulsed-field gel electrophoresis

PHMB+: Phenol red mannitol broth + ceftizoxime + aztreonam

Page 11: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

PVL: Leucocidina de Panton-Valentine

SARM: Staphylococcus aureus resistente a meticilina

SB: Sheep blood

SCCmec: Cassette cromosómico estafilocócico mec

ST: Serotipo

STR: Streptomycin

TET: tetracycline

TSA: Trypticase soy agar

USDA: U.S. Department of Agriculture

Page 12: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

1

Detección y tipificación molecular de Staphylococcus aureus y

Staphylococcus aureus resistente a meticilina (SARM) en Dakota del Norte,

Estados Unidos.

Detection and molecular typing of Staphylococcus aureus and methicillin-

resistant Staphylococcus aureus (MRSA) in North Dakota, United States.

RESUMEN GENERAL

La emergencia y la propagación de patógenos resistentes a agentes antimicrobianos ha

aumentado la preocupación en materia de salud pública a nivel mundial. El uso de antibióticos

en producción animal, en profilaxis, terapia y promoción del crecimiento, se asocia a la

emergencia de patógenos resistentes en el ganado. La exposición del ganado a dosis

subterapéuticas de agentes antimicrobianos genera un reservorio de patógenos resistentes en

los animales con el riesgo de transmisión a las personas a través de la cadena productiva de la

carne. Uno de los patógenos que desarrolla rápidamente resistencia a múltiples agentes

antimicrobianos (MR) es Staphylococcus aureus. En especial, las cepas de S. aureus resistente

a meticilina (SARM) constituyen una causa importante de infecciones asociadas a hospitales

(HA-MRSA), a la comunidad (CA-MRSA) y al ganado (LA-MRSA). La capacidad de

colonizar las fosas nasales y piel de humanos y animales que posee S. aureus y la detección de

cepas de SARM y S. aureus MR en animales de abasto y en carne, aumentan la probabiliadad

de contaminación de los alimentos en las diferentes etapas de la cadena productiva. La

resistencia a la meticilina se atribuye a la proteína de unión a la penicilina 2a (PBP2a)

codificada en el gen mecA, que forma parte del casssette cromosómico estafilocócico mec

(SCCmec). Esta proteína le confiere a las cepas de SARM una baja afinidad por antibióticos β-

lactámicos. A su vez, las cepas CA-MRSA produccen generalmente la exotoxina Leucocidina

de Panton-Valentine (PVL), la cual constituye un factor de virulencia asociado a infecciones

de la piel y necrosis de tejidos. Por lo tanto, debido al impacto que pueden tener estas cepas de

S. aureus en la salud humana, resulta relevante evaluar si los productos alimenticios pueden

ser un foco de contaminación que facilite la propagación de estas infecciones.

Page 13: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

2

El objetivo de este estudio fue establecer la prevalencia y los tipos moleculares de S.

aureus y SARM en animales de abasto, carne cruda, productos cárnicos y humanos,

determinando la relación filogenética entre las cepas.

Se aisló S. aureus desde 167 muestras nasales de animales, 145 muestras de carne

cruda y 46 muestras de productos cárnicos, utilizando una etapa de enriquecimiento selectivo

en dos pasos, seguido de cultivo en placa. Los aislados que resultaron ser positivos se

sometieron al análisis por PCR múltiple (PCRm) para identificar los genes: ARNr 16S

(identificación de S. aureus), mecA (detección de SARM) y PVL (factor de virulencia

asociado a CA-MRSA). Para la tipificación molecular de las cepas de S. aureus se utilizó

electroforesis en gel de campo pulsado (PFGE) y tipificación de secuencias multilocus

(MLST). El análisis de susceptibilidad antimicrobiana se llevó a cabo a través del método de

microdilución en caldo. Además, se aisló e identificó S. aureus desde muestras de fosas

nasales de 550 personas sanas a través de métodos de cultivo y análisis bioquímico. Un total

de 108 aislados clínicos de cepas SARM obtenidos de pacientes hospitalizados se analizaron a

través de PCRm para confirmar la presencia de S. aureus y detectar las cepas con los genes

mecA y PVL. Se desarrolló un método de PCR múltiple en tiempo real con el fin de disminuir

el tiempo de análisis de muestras de animales y carne y para aumentar la sensibilidad de

detección de S. aureus y de los genes mecA y PVL. Este procedimiento se realizó con

posterioridad al enriquecimiento primario y al secundario que preceden al cultivo en placa.

Los resultados se compararon con el método de cultivo que incorpora el enriquecimiento

selectivo en dos pasos para aislar S. aureus. Se analizó un total de 234 muestras a través de

estos métodos (77 muestras nasales de animales, 112 muestras de carne cruda y 45 muestras

de productos cárnicos).

La prevalencia total de S. aureus determinada luego del análisis de las muestras por el

método de cultivo con doble enriquecimiento fue de 34,7% en animales, siendo más alta en

cerdos (50,0%) y corderos (40,6%) (P<0,05). En carne cruda la prevalencia fue de 47,6%,

siendo más alta en carne de pollo (67,6%) y de cerdo (49,3%) (P<0,05). En productos cárnicos

la prevalencia fue de 13,0% (Figura 1). Cinco muestras de carne de cerdo (7,0%) fueron

positivas para el gen mecA, de las cuales tres correspondieron al serotipo ST398 y dos al

serotipo ST5. Todas estas cepas exhibieron resistencia a la penicilina y cuatro fueron MR. En

ninguna de las muestras se detectaron a través de PCRm los genes PVL. Los serotipos más

Page 14: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

3

comunes en corderos fueron ST398 y ST133, en cerdos y carne de cerdo ST398 y ST9 y en

carne de pollo ST5. Se determinó una similitud genética entre las cepas de S. aureus ST9

aisladas de cerdos y carne de cerdo. La mayoría de las cepas de S. aureus susceptibles a

agentes antimicrobianos fueron ST5 aisladas de carne de pollo. Los aislados MR fueron

encontrados en cerdos, carne de cerdo y corderos.

0

10

20

30

40

50

60

70

80

Pre

vale

nci

a (%

)

Corderos

Cerdos

Vacunos

Cerdo

Pollo

Vacuno

Jamón de cerdo

Jamón de pavo

Jamón de pollo

Figura 1. Prevalencia de Staphylococcus aureus en animales, carne cruda y productos cárnicos.

La proporción de personas portadoras sanas de S. aureus en las fosas nasales fue de

7,6%. Ninguna de estas cepas fue positiva para los genes mecA y PVL. Un total de 105 cepas

de SARM (97,2%) obtenidas de pacientes hospitalizados presentaron el gen mecA y 11

(10,2%) los genes PVL.

La aplicación del método de PCR en tiempo real en muestras con enriquecimiento

primario y secundario permitió detectar S. aureus en 111/234 y 120/234 muestras,

respectivamente. Estos niveles de detección fueron mayores que los obtenidos con el método

de cultivo, el cual permitió detectar 95/234. Para la detección de S. aureus a través de PCR en

tiempo real, la concordancia total con el método de cultivo fue de 83,9-97,8% (kappa=0,68-

0,88 [considerable a casi perfecta]) y 68,9-88,3% (kappa=0,29-0,77 [pobre a considerable])

para el enriquecimiento primario y secundario, respectivamente. Para la detección del gen

Animales Carne Prod. Cárnicos

Page 15: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

4

mecA, la concordancia total fue de 91,1-98,7% y 86,7-98,7% (kappa=0-0,49 [no concordancia

más allá del azar a moderada]) para el enriquecimiento primario y secundario, respectivamente.

El método de PCR en tiempo real detectó el gene mecA en algunas muestras que fueron

negativas para S. aureus, pero positivas para Staphylococcus spp.

La presencia de SARM, S. aureus MR, y el serotipo ST398 en la cadena productiva de

la carne indica que existe un riesgo de transmisión a las personas. La similitud genética

encontrada entre las cepas de origen porcino (animales y carne) sugiere una posible

contaminación de la carne durante la faena. Cepas de S. aureus que presentan los genes mecA

y PVL se encuentraron en pacientes con infecciones invasivas. La proporción de portadores

sanos de S. aureus es baja, sin presentar los genes mecA y PVL, lo cual representa un riesgo

menor de transmisión a la comunidad. El método de PCR en tiempo real puede recomendarse

como una técnica rápida para la detección de S. aureus y el gen mecA, con la posterior

confirmación de SARM a través del método estándar de cultivo.

Los resultados de este trabajo sugieren que debe implementarse una vigilancia efectiva

en la cadena productiva de la carne con el fin de monitorear SARM y S. aureus MR y

establecer acciones para disminuir la propagación de cepas resistentes a antibióticos.

Palabras claves: Staphylococcus aureus resistente a meticilina (SARM), multirresistente (MR),

mecA, Leucocidina de Panton- Valentine (PVL), carne cruda, animales, productos cárnicos,

aislados clínicos, personas sanas.

Page 16: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

5

GENERAL ABSTRACT

The emergence and the spread of antimicrobial-resistant (AR) pathogens has increased

the public health concern worldwide. The emergence of AR pathogens in food-producing

animals has been asociated with the use of antibiotics in animal production in prophylaxis,

therapy, and growth promotion. The exposure to sub-therapy doses of antimicrobial agents has

created a reservoir of AR pathogens in animals with the risk of transmission to humans

through the meat production chain. One of the pathogens that rapidly develop multidrug

resistance (MDR) is Staphylococcus aureus. Particularly, methicillin-resistant S. aureus

(MRSA) strains has become an important cause of health care-associated MRSA (HA-

MRSA), community-associated MRSA (CA-MRSA), and livestock-associated MRSA (LA-

MRSA) infections. The ability of S. aureus to colonize the nares and the skin of humans and

animals, and the detection of MRSA and MDR strains in meat-producing animals and retail

meat, have increased the probability of contamination of food in different steps of the food

production chain. Methicillin resistance is attributed to the penicillin-binding protein 2a

(PBP2a) encoded in the mecA gene, which is carried on the staphylococcal cassette

chromosome mec (SCCmec). This protein gives MRSA strains a reduced affinity for β-lactam

antibiotics. CA-MRSA strains are more likely to encode the Panton–Valentine leukocidin

(PVL) exotoxin, which is a virulence factor related to skin infections and tissue necrosis.

Therefore, since the impact of those S. aureus strains in human health it is important to

evaluate whether food could be a source of contamination that facilitate the spread of

infections.

The aim of this study was to stablish the prevalence and molecular types of S. aureus

and MRSA from meat-producing animals, retail raw meat, deli meat, and humans, determining

the phylogenetic relationship between the strains.

A two-step selective enrichment followed by a culture method were used to isolate S.

aureus from 167 nasal swabs from animals, 145 samples of retail raw meat, and 46 samples of

deli meat. Positive isolates were subjected to multiplex PCR (mPCR) in order to identify the

genes 16S rRNA (identification of S. aureus), mecA (detection of MRSA) and PVL-encoding

genes (virulence factor associated to CA-MRSA). Pulsed-field gel electrophoresis (PFGE) and

multilocus sequence typing (MLST) were used for molecular typing of S. aureus strains.

Page 17: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

6

Antimicrobial susceptibility testing was carried out using the broth microdilution method. In

addition, S. aureus from nasal swabs obtained from 550 healthy subjects was isolated and

identified by culture method and biochemical testing. A total of 108 MRSA isolates recovered

from hospital patients were also examined by mPCR to confirm S. aureus and to detect S.

aureus harboring the mecA and PVL genes. A multiplex real-time PCR assay was developed

in order to decrease the time of detection in animal and meat samples and increase the

sensibility of detection of S. aureus and the mecA and PVL genes. This procedure was carried

out after the primary and the secondary enrichments that preceding the culture method. The

results were compared with those obtained by the culture method which includes the two-step

selective enrichment in order to isolate S. aureus. A total of 234 samples were examined by

both methods (77 animal nasal swabs, 112 retail raw meat, and 45 deli meat).

The overall prevalence of S. aureus determined by the culture method with two-step

selective enrichment was 34.7% in animals, with the highest rate found in pigs (50.0%) and

sheep (40.6%) (P<0.05). In raw meat the prevalence was 47.6%, with the highest rate in

chicken (67.6%) and pork (49.3%) (P<0.05). In deli meat the prevalence was 13.0% (Figure

2). Five pork samples (7.0%) were positive for mecA gene, of which three were serotype (ST)

ST398 and two were ST5. All these strains exhibited penicillin resistance and four were MDR

strains. The PVL genes were not detected in any sample by mPCR. The most common

serotypes in sheep were ST398 and ST133, in pigs and pork meat both ST398 and ST9, and in

chicken ST5. A genetic similarity between S. aureus strains ST9 isolated from pigs and pork

meat was obtained. Most susceptible S. aureus strains to antimicrobial agents were ST5

isolated from chicken. The MDR isolates were found in pigs, pork meat, and sheep.

The prevalence of nasal carriage of S. aureus in healthy people was 7.6%. None of

these strains were mecA- nor PVL-positive. A total of 105 MRSA strains (97.2%) obtained

from hospital patients harbored the mecA gene and 11 (10.2%) PVL genes.

Page 18: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

7

0

10

20

30

40

50

60

70

80P

reva

lenc

e (%

)

Sheep

Pig

Cow

Pork

Chicken

Beef

Pork deli meat

Turkey deli meat

Chicken deli meat

Figure 2. Prevalence of Staphylococcus aureus in animals, raw meat, and deli meat.

The application of real-time PCR assay on samples following primary and secondary

enrichments detected S. aureus in 111/234 and 120/234 samples, respectively. These detection

levels were higher than recovery obtained by the culture method, which was 95/234. Total

agreement with the culture method for detection of S. aureus using real-time PCR was 83.9-

97.8% (kappa=0.68-0.88 [from substantial to almost perfect agreement]), and 68.9-88.3%

(kappa=0.29-0.77 [from fair to substantial agreement]) for primary and secondary enrichments,

respectively. For detection of the mecA gen, total agreement was 91.1-98.7% and 86.7-98.7%

(kappa=0-0.49 [from no agreement beyond that expected by chance to moderate agreement])

for primary and secondary enrichment samples, respectively. The real-time PCR assay

detected mecA gene in some samples that were negative for S. aureus, but positive for

Staphylococcus spp.

The presence of MRSA, MDR S. aureus, and the serotype ST398 in the meat

production chain indicates that there is a risk of transmission to humans. The genetic similarity

between strains of porcine origin (animals and meat) suggests the possible contamination of

meat during slaughtering. S. aureus harboring mecA and PVL genes is present in patients

affected by invasive infections. The rate of nasal carriage of S. aureus in healthy humans

Animals Raw meat Deli meat

Page 19: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

8

seems to be low, without the presence of mecA and PVL genes, which represents a low risk of

transmission among the community. The real-time PCR assay may be recommended as a rapid

method for the detection of S. aureus and the mecA gen, with further confirmation of MRSA

using the standard culture method.

The results of this study suggest that an effective surveillance should be implemented

in the meat production chain in order to monitor MRSA and MDR S. aureus, and to take

actions to decrease the spread of AR strains.

Keywords: Methicillin resistant Staphylococcus aureus (MRSA), multidrug resistant (MDR),

mecA, Panton-Valentine Leukocidin (PVL), retail raw meat, animals, deli meat, clinical

isolates, healthy humans.

Page 20: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

9

I. INTRODUCCIÓN GENERAL

La emergencia y propagación de patógenos resistentes a múltiples agentes

antimicrobianos ha aumentado la preocupación en materia de salud a nivel mundial. La

emergencia de cepas bacterianas resistentes a antibióticos en animales se relaciona con la

utilización de antibióticos en la etapa productiva (de Neeling et al., 2007). Numerosos agentes

antimicrobianos se suministran en la dieta de los animales con fines preventivos y de

promoción del crecimiento, lo cual expone a un gran número de animales a concentraciones

sub-terapeúticas de antibióticos en forma frecuente (DuPont y Steele, 1987; Franco et al.,

1990), aumentando la probabilidad de generar bacterias resistentes a antibióticos. Esto puede

tener como consecuencia que los genes de resistencia sean traspasados a bacterias presentes en

humanos, lo que representa un riesgo latente para la pérdida de eficacia de los antibióticos

utilizados en salud humana (Smith et al., 2002).

Existen evidencias sobre la contaminación de la carne con bacterias resistentes a

múltiples agentes antimicrobianos, como Salmonella, Campylobacter, Enterococcus y

Escherichia coli (FDA, 2010). En animales y en carne se encontraron cepas de Staphylococcus

aureus resistente a meticilina (SARM) y S. aureus multirresistente (MR) (Waters et al., 2011;

de Neeling et al., 2007). Sin embargo, no se tiene suficiente información sobre la prevalencia

de SARM y S. aureus MR en alimentos de origen animal.

En humanos, S. aureus puede ocasionar una amplia gama de enfermedades como

intoxicación alimentaria, neumonía, infecciones de heridas e infecciones nosocomiales

(hospitalarias) (Tiemersma et al., 2004; Kennedy et al., 2008). Esta bacteria es un patógeno

oportunista que se propaga a través del contacto directo de animales o personas con heridas

infectadas o con otros procesos infecciosos. La transmisión también puede ocurrir desde

personas o animales colonizados por esta bacteria que son portadores asintomáticos (CFSPH,

2011).

Staphylococcus aureus y SARM pueden colonizar las fosas nasales y la piel de los

animales (de Neeling et al., 2007; Moon et al., 2007; Lewis et al., 2008; van Belkum et al.,

2008; Guardabassi et al., 2009; Persoons et al., 2009), lo cual aumenta el riesgo de

contaminación de las canales durante la faena de animales de abasto (de Boer et al., 2009).

Page 21: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

10

En Estados Unidos se estima que la prevalencia de colonización nasal con S. aureus en

humanos es de aproximadamente del 29% y con SARM de. 1,5% (Gorwitz et al., 2008). Por lo

tanto, las personas también constituyen una fuente de contaminación durante la manipulación

de los alimentos. De esta forma, los alimentos contaminados por esta vía se transforman en

vehículos para diseminar este patógeno, siendo los de mayor riesgo aquellos sometidos a una

cocción inadecuada (CFSPH, 2011) y aquellos que no requieren cocción para su consumo.

En investigaciones anteriores se determinó la prevalencia y se tipificaron molecularmente

diferentes cepas de S. aureus y SARM en muestras de animales y carne (Waters et al., 2011;

de Neeling et al., 2007) y, en otras investigaciones en muestras de humanos (Tiemersma et al.,

2004; Kennedy et al., 2008), siendo difícil establecer la relación o similitud genética entre

ellas. Este estudio pretende establecer la prevalencia de S. aureus, cepas sensibles y resistentes

a la meticilina, en animales, carne, productos cárnicos y humanos y determinar la relación

filogenética de las cepas aisladas.

1. Características de Staphylococcus aureus

Inicialmente, el género Staphylococcus fue clasificado dentro de la familia

Micrococaceae. Sin embargo, estudios recientes de homología genética demostraron que los

géneros Staphylococcus y Micrococcus tienen poca relación. Por esta razón, Staphylococcus

se incluyó en la familia Staphylococcaceae, dentro del orden Bacillales (Euzéby, 1997). El

nombre del género -Staphylococcus- proviene del griego staphylé que significa racimo de uvas,

ya que presentan forma esférica (cocos), con un diámetro de 0,5 a 1,5 µm y se agrupan de

forma irregular. Éstas son bacterias gram positivas, inmóviles, no forman esporas y,

generalmente, no poseen cápsula y son anaerobias facultativas. Se diferencian de los géneros

Streptococcus y Enterococcus por producir la enzima catalasa, la cual hidroliza el peróxido de

hidrógeno (H2O2) en oxígeno (O2) y agua (H2O). Presentan metabolismo oxidativo y

fermentativo de la glucosa, a diferencia del género Micrococcus, el cual no la fermenta (de

Cueto y Pascual, 2009).

En un medio de cultivo no selectivo S. aureus presenta colonias lisas, solelevadas,

brillantes, de consistencia cremosa, de color amarillo o dorado, debido a la producción de un

pigmento carotenoide. Esta especie es resistente al calor y a la desecación y tiene la capacidad

Page 22: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

11

de crecer en medios de alta salinidad (7,5% de NaCl). En medios de cultivo que contienen

sangre, la mayoría de las cepas produce lisis de los glóbulos rojos por acción de la β-

hemolisina (β-hemólisis), lo cual se manifiesta con un halo claro alrededor de las colonias.

Una de las características que diferencia a S. aureus de otras especies, salvo excepciones, es la

producción de la enzima coagulasa, que transforma el fibrinógeno en fibrina coagulando el

plasma sanguíneo (Lowy, 1998; de Cueto y Pascual, 2009). Adicionalmente, S. aureus

produce una ADNasa termoestable que rompe los enlaces fosfodiéster del ADN. Esta

propiedad sirve como método de identificación, dado que al someter a S. aureus a altas

temperaturas y luego incubar con ADN, se observará la degración de ADN (de Cueto y

Pascual, 2009).

Staphylococcus aureus presenta diferentes factores de virulencia. Posee componentes

microbianos de superficie que reconocen moléculas adhesivas de la matriz (MSCRAMM, del

inglés microbial surface components recognizing adhesive matrix molecules), las cuales

median la adherencia a los tejidos, tales como el factor de agregación (clumping factor),

proteínas de unión al fibrinógeno, fibronectina y sialoproteína ósea (Lowy, 1998; de Cueto y

Pascual, 2009). Además, esta bacteria produce un polisacárido de adherencia intracelular que

permite su persistencia a través de la formación de una biocapa bacteriana que le confiere

protección (de Cueto y Pascual, 2009). Para evadir los mecanismos de defensa del huésped, S.

aureus presenta la proteína A, proteína de adherencia extracelular y citotoxinas (Leucocidina

de Panton-Valentine [PVL], α-toxina). Adicionalmente, sintetiza lipasas, hialuronidasas y

proteasas, las que destruyen los tejidos, facilitando la propagación de la infección. Otros

factores de virulencia son los asociados a las intoxicaciones alimentarias y shock tóxicos:

enterotoxinas, toxina del síndrome del shock tóxico 1, toxinas exfoliativas A y B y α-toxina

(Lowy, 1998; de Cueto y Pascual, 2009). Todos estos factores de virulencia presentes en S.

aureus promueven la colonización e invasión, ocasionando un daño severo al hospedero.

2. Mecanismos de resistencia a meticilina

Existen muchos agentes con actividad antiestafilocócica, sin embargo, S. aureus ha

desarrollado mecanismos para neutralizarlos, encontrándose cepas resistentes a múltiples

agentes antimicrobianos (McDougal et al., 2003; Aydin et al., 2011; Waters et al., 2011).

Page 23: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

12

En Europa, a principios de la década de los 60s, poco después de la introducción de la

meticilina (penicilina semisintética resistente a penicilinasa) surgió S. aureus resistente a

meticilina (SARM), asociado a infecciones originadas en instalaciones hospitalarias. A fines

de la década de los 90s, emergieron en todo el mundo cepas de SARM asociados a infecciones

originadas en la comunidad (Lowy, 1998, 2003; Deurenberg y Stobberingh, 2008). En

consecuencia, la propagación global de SARM ha generado preocupación mundial (Voss y

Doebbling, 1995), debido a la aparición creciente de infecciones nosocomiales (Tiemersma et

al., 2004), comunitarias (Kennedy et al., 2008) y en animales (Golding et al., 2010).

La meticilina es un antibiótico β-lactámico, al igual que la penicilina G, oxacilina,

ampicilina, amoxicilina y cefalosporinas, entre otros. Estos antibióticos inhiben la síntesis de

la pared celular de bacterias gram positiva, mediante la inhibición de la última etapa de la

síntesis del peptidoglicano, correspondiente a la unión del ácido N-acetilmurámico a la pared

celular, lo que se conoce también como transpeptidación. La transpeptidación está catalizada

por transpeptidasas y carboxipeptidasas, llamadas también proteínas de unión a penicilina

(PBPs) por su capacidad para fijar penicilina en su sitio activo. El anillo β-lactámico se une de

forma covalente a una serina presente en el sitio activo de las PBPs, inactivando la

transpeptidación. Así, la pared celular queda debilitada y puede romperse por la presión

osmótica intracelular. Existen PBPs que inhiben enzimas autolíticas de la pared bacteriana

(autolisinas), por lo cual al unirse la penicilina al sitio de fijación de las PBPs, no se inhiben

las autolisinas produciendo la lisis celular (Marín y Gudiol, 2003; Romero, 2007).

Uno de los mecanismos de resistencia a antibióticos β-lactámicos corresponde a la acción

de la enzima β-lactamasa, la cual confiere resistencia a la penicilina, debido a que hidroliza el

anillo β-lactámico, inactivando al antibiótico. Esta enzima está codificada en el gen blaZ, que

se encuentra en un transposón ubicado en un plásmido junto con otros genes asociados a

resistencia antimicrobiana (Lowy, 2003).

La resistencia a la meticilina presente en SARM confiere resistencia a todas las

penicilinas resistentes a penicilinasa y cefalosporinas (Lowy, 1998). Esto se atribuye a la

proteína de unión a la penicilina 2a (PBP2a, penicillin-binding protein 2a), que posee baja

afinidad por los antibióticos β-lactámicos (Hartman y Tomasz, 1981; Lim y Strynadka, 2002).

La proteína PBP2a se diferencia de otras PBPs en que su sitio activo no permite la fijación de

Page 24: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

13

antibióticos β-lactámicos, posibilitando el desarrollo de la reacción de transpeptidación. De

esta manera, al formarse la pared celular, se favorece la supervivencia de los estafilococos

expuestos a altas concentraciones de estos agentes antimicrobianos (Lim y Strynadka, 2002).

La proteína PBP2a está codificada por el gen mecA, el cual se encuentra en un elemento

genético móvil denominado cassette cromosómico estafilocócico mec (SCCmec) (Hartman y

Tomasz, 1981). La expresión del gen mecA es regulada por dos proteínas: MecI, represor

codificado por el gen mecI; y MecR1, proteína transductora de señal codificada por el gen

mecR1. En ausencia de antibióticos β-lactámicos, la proteína MecI se une al operador,

reprimiendo la transcripción del gen mecA. La fijación de antibióticos β-lactámicos a la

proteína MecR1, provoca la liberación de un fragmento con actividad proteasa de esta proteína,

el cual divide al represor MecI en fragmentos inactivos, permitiendo la transcripción del gen

mecA y la posterior síntesis de PBP2a (Lowy, 2003).

3. Tipificación molecular de Staphylococcus aureus y SARM

La tipificación de las cepas de S. aureus no está completamente estandarizada y a través

de los años se han utilizado una gran variedad de métodos (Tenover et al., 1994). Dentro de las

técnicas moleculares que se utilizan actualmente para tipificar las cepas de SARM está: la

electroforesis en gel de campo pulsado (PFGE), basado en la macro-restricción del ADN

genómico; la tipificación de secuencias multilocus (MLST), basada en el perfil alélico de siete

genes conservados; y la tipificación de spa, basado la secuenciación de la región X del gen

que codifica la proteína A presente en S. aureus (McDougal et al., 2003). Por esta razón, una

misma cepa puede recibir diferentes nombres (CFSPH, 2011). Los Centros para el Control y la

Prevención de Enfermedades (CDC, del inglés Centers for Disease Control and Prevention)

establecieron un sistema de nomenclatura para S. aureus y SARM comunes en Estados Unidos,

basado en los patrones de macro-restricción obtenidos a través de PFGE, identificando ocho

tipos, desde USA100 hasta USA800 (McDougal et al., 2003). La nomenclatura utilizada para

MLST corresponde a serotipos (ST) seguido de un número (ej. ST398), mientras que para

tipificación de spa se utiliza "t" seguido de un número (ej. t011) (Cuny et al., 2010).

Generalmente, PFGE y MLST clasifican las cepas en clusters similares (Catry et al., 2010), los

cuales pueden contener diferentes tipos spa. Una de las desventajas de la tipificación de spa es

que líneas clonales no relacionadas pueden tener tipos spa similares (Van den Broek IV et al.,

Page 25: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

14

2009; Golding et al., 2008). Esto se debe a que la tipificación de spa se centra en una pequeña

fracción del genoma y, una recombinación, podría resultar en discrepancias con los clusters

obtenidos a través de MLST y PFGE (Golding et al., 2008). Se ha demostrado que el método

PFGE tiene mayor poder de discriminación que MLST y la tipificación de spa. Sin embargo,

estas técnicas pueden utilizarse para determinar cambios mayores que pueden ocurrir en las

líneas clonales a través del tiempo (McDougal et al., 2003). Para lograr una mayor precisión

en la tipificación de las cepas se recomienda la combinación de dos métodos (Tenover et al.,

1994).

Con la utilización de PFGE se determinó que las cepas de SARM causantes de

infecciones adquiridas en la comunidad (USA300 y USA400) son diferentes a las cepas

nosocomiales (USA100 y USA200) (McDougal et al., 2003). Vandenesch et al. (2003)

determinaron que las cepas de SARM comunitario provenientes de tres continentes comparten

dos genes, el cassette cromosómico SCCmec tipo IV y el locus PVL, que contiene los genes

productores de la toxina PVL. Los genes PVL están localizados en un bacteriófago que infecta

a S. aureus, mientras que la distribución de otros genes de toxinas es específica de las cepas de

cada continente. La mayoría de las cepas de SARM comunitario presentan el locus PVL (Baba

et al., 2002; Dufour et al., 2002), factor de virulencia asociado a infecciones de piel, neumonía

y necrosis de tejidos (Ebert et al., 2009).

A través del método MLST se ha podido determinar la presencia de algunos tipos de

secuencias asociadas a SARM hospitalario, como ST5, ST8, ST22, ST36, ST45, entre otros

(Deurenberg et al., 2007); mientras que ST30 y ST80 han sido asociados a SARM comunitario

(Stenhem et al., 2010) y ST398 a SARM en animales, específicamente en cerdos (Lewis et al.,

2008; van Belkum et al., 2008; Krziwanek et al., 2009). El serotipo ST398, inicialmente

asociado a cerdos, ha sido encontrado en personas, la mayoría productores de cerdos (van

Belkum et al., 2008; Krziwanek et al., 2009; Pan et al., 2009; Golding et al., 2010). Además,

recientemente se asociaron infecciones a SARM ST398 en humanos en contacto con vacas

lecheras con mastitis sub-clínica (Soavi et al., 2010). No obstante, en Suecia, se reportaron dos

casos de ST398 t038 en pacientes que no tuvieron contacto con animales (Welinder-Olsson et

al., 2008). Esto sugiere la propagación de estas cepas en el ambiente, facilitando la

colonización de personas que no están involucradas con la producción animal, generando una

creciente preocupación en salud pública (Gibbs et al., 2006). Staphylococcus aureus resistente

Page 26: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

15

a meticilina ST398 no es tipificable mediante PFGE, debido a que su ADN no puede ser

digerido por la enzima de restricción SmaI, ya que posee una enzima que metila la secuencia

de reconocimiento de SmaI (Bens et al., 2006). Análisis comparativos de la huella genética de

cepas de SARM ST398 demostraron que existe diversidad molecular y geográfica (Golding et

al., 2010). Además, existe evidencia que demuestra la aparición de cepas de SARM diferentes

a ST398, como ST9 t899, asociado también a la producción de cerdos (Guardabassi et al.,

2009). Por lo tanto, la emergencia de nuevas cepas de SARM en cerdos resalta la importancia

de establecer estrategias de vigilancia permanente, determinando el riesgo de transmisión a las

personas relacionadas con producción porcina.

4. Prevalencia de Staphylococcus aureus y SARM

El método para aislar S. aureus y SARM no está estandarizado. Por lo tanto, la utilización

de diferentes métodos puede afectar la sensibilidad de la detección y, por consiguiente, los

resultados de prevalencia. Algunos análisis han incluido solamente cultivo en placa utilizando

agar manitol sal (MSA) con 2 µg/mL de oxacilina (Weese et al., 2006) o agar Baird Parker

(BP) (Aydin et al., 2011). Otros estudios han incorporado etapas de enriquecimiento previo al

cultivo en placa. Wertheim et al. (2001) desarrollaron un caldo selectivo con rojo fenol,

manitol, aztreonam y ceftizoxima (PHMB+), lo cual aumentó al doble la sensibilidad de

detección de SARM. Broens et al. (2011) utilizaron un protocolo de dos etapas de

enriquecimiento, una con caldo Mueller-Hinton con 6,5% de NaCl (MHB+6,5%NaCl) y la

otra con PHMB+, seguido de cultivo en agar cromogénico selectivo para SARM. Otros autores

han utilizado enriquecimiento en caldo con 7,5% de NaCl, 1% de manitol y 2,5% de extracto

de levadura seguido de un medio cromogénico (Zhang et al., 2011); caldo tripticasa soya

suplementado con 10% de NaCl y 1% de piruvato de sodio seguido de cultivo en agar BP (Pu

et al., 2009; Pu et al., 2011); PHMB+ seguido de cultivo en agar con sangre ovina y dos agares

selectivos (Tenhagen et al., 2009). Estos distintos métodos sugieren que para aumentar la

sensibilidad de detección de S. aureus y SARM se debería incluir una etapa de

enriquecimiento seguida de un cultivo selectivo.

La mayoría de los animales pueden ser colonizados con S. aureus, encontrándose en las

fosas nasales y la piel (de Neeling et al., 2007; Moon et al., 2007; Lewis et al., 2008; van

Belkum et al., 2008; Guardabassi et al., 2009; Persoons et al., 2009). Por esta razón, durante la

Page 27: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

16

faena existe el riesgo de contaminación de las canales y la carne con S. aureus y SARM (de

Boer et al., 2009). Recientemente, se aislaron cepas de SARM en cerdos, vacunos y pollos (de

Neeling et al., 2007; Moon et al., 2007; Lewis et al., 2008; van Belkum et al., 2008;

Guardabassi et al., 2009; Persoons et al., 2009). En Holanda de Neeling et al. (2007)

encontraron una alta prevalencia de SARM ST398 (39%) en cerdos y una alta tasa de

resistencia a diferentes antibióticos (tetraciclina, eritromicina, clindamicina, kanamicina,

gentamicina, tobramicina) sugiriendo, además, la existencia de contaminación entre los

animales en los corrales de las plantas faenadoras. En un estudio realizado en Hong Kong se

determinó una prevalencia de SARM en cerdos menor (16%) a la reportada en el estudio

anterior (Guardabassi et al., 2009), lo que podría deberse al tamaño menor de la muestra

analizada y al método utilizado en la detección. Dado que los cerdos constituyen una posible

fuente de infección de SARM se requiere estudiar la epidemiología de esta zoonosis

emergente, determinando la frecuencia de transmisión de SARM desde animales a humanos, y

la transmisión persona-persona (Lewis et al., 2008).

En los últimos años se han aislado cepas de SARM en carne de cerdo, pollo, vacuno,

pavo y cordero. Hanson et al. (2011) analizaron diferentes tipos de carne de supermercados del

Estado de Iowa, Estados Unidos, encontrando sólo 2 muestras de carne de cerdo contaminadas

con cepas de SARM, con una prevalencia total de alrededor de 1%. En Estados Unidos, un

estudio realizado en el Estado de Louisiana reveló contaminación con S. aureus en 45,6% de

las muestras de carne de cerdo y en 20% de las muestras de carne de vacuno, de los cuales el

5,6% y el 3,3% correspondió a cepas de SARM en carne de cerdo y vacuno, respectivamente

(Pu et al., 2009). de Boer et al. (2009) encontraron una mayor porporción de carne

comercializada en supermercados de Holanda contaminada con SARM, principalmente ST398,

de alrededor de un 35% en carne de pavo, 16% en carne de pollo, 11% en carne de cerdo, 10%

en carne de vacuno y 6% en carne de cordero. Estos últimos valores de prevalencia de SARM

en carne sugieren que el método utilizado en aquél estudio (dos etapas de enriquecimiento

selectivo + cultivo selectivo) permitió una mayor sensibilidad de detección de SARM.

Finalmente, la detección de SARM en carne ha aumentado la preocupación en materia de

inocuidad alimentaria con respecto a la cadena de producción de carne y ha generado la

urgencia de contar con sistemas de vigilancia y coordinación entre diferentes laboratorios de

análisis.

Page 28: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

17

En Estados Unidos, una de cada seis personas contrae una enfermedad transmitida por

alimentos cada año, con un total de 48 millones de personas afectadas. De los agentes

causantes, S. aureus es uno de los cinco principales, con un total de 240 mil casos,

correspondientes a una enfermedad gastrointestinal causada por el consumo de toxinas

producidas por S. aureus (CDC, 2012). Por otro lado, las cepas de SARM están asociadas

principalmente a infecciones de la piel en la comunidad, y los casos más graves se asocian a

pacientes hospitalizados, afectados por infecciones sanguíneas, quirúrgicas, o neumonía (CDC,

2011). Aproximadamente el 29% de la población en Estados Unidos es portadora de S. aureus

y el 1,5% de SARM en las fosas nasales (Gorwitz et al., 2008). Del total de 478.000 casos de

infecciones por S. aureus que resultaron en hospitalizaciones en el año 2005,

aproximadamente el 50% se asoció a SARM, y del total de 11.406 muertes asociadas a S.

aureus, 6.639 correspondieron a infecciones por SARM (Klein et al., 2007).

En el Estado de Dakota del Norte se cuenta con información epidemiológica acerca de las

infecciones causadas por SARM en humanos. Sin embargo, no existe información acerca de la

prevalencia de cepas de SARM en animales o carne. En el año 2011, se registraron 13 casos

de infecciones asociadas a SARM por cada 100.000 habitantes. Estas infecciones aumentaron

desde el año 2001 hasta el año 2006, manteniéndose actualmente sin variación (North Dakota

Department of Healt, Disease Control, 2011).

Las infecciones causadas por microorganismos resistentes a antibióticos tienen un costo

económico considerablemente alto. En promedio, el costo de hospitalización por infecciones

de SARM es de aproximadamente US$ 14.000, comparado con US$ 7.600 de hospitalización

por infecciones no-SARM. Por lo tanto, el costo total de las hospitalizaciones por infecciones

de SARM en Estados Unidos asciende a más de 3 billones de dólares al año. (Elixhauser y

Steiner, 2007). Lo anterior no incluye las pérdidas que se generan por ausentismo laboral,

incapacidad y mortalidad.

La prevención y control de infecciones de SARM en Estados Unidos está dirigida por el

CDC, que proporciona información específica para cada grupo de la población y estrategias

para el tratamiento de infecciones de SARM en la comunidad. La disminución de infecciones

de SARM en hospitales y en la comunidad es de alta prioridad para CDC. Es así como se

establecieron proyectos de vigilancia a corto y largo plazo con la colaboración de los

Page 29: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

18

departamentos de salud, hospitales, centros médicos, entre otros (CDC, 2011). Sin embargo, se

necesitan más estudios para poder caracterizar genéticamente las cepas de SARM y determinar

las rutas de transmisión en animales y humanos, lo que facilitará el desarrollo de acciones

preventivas para disminuir su propagación.

5. Hipótesis y objetivos

Hipótesis

Staphylococcus aureus, cepas sensibles y resistentes a la meticilina, están presentes en

animales, carne, y humanos, existiendo relación filogenética entre las cepas.

Objetivo general

Establecer la prevalencia y los tipos moleculares de S. aureus y SARM en animales de abasto,

carne cruda, productos cárnicos y humanos, determinando la relación filogenética entre las

cepas.

Objetivos específicos

- Determinar la presencia de cepas de S. aureus en animales, carne, productos cárnicos y

humanos.

- Determinar la prevalencia de S. aureus y SARM en animales, carne, productos cárnicos y

humanos.

- Determinar características moleculares de las cepas de S. aureus y SARM a través de las

técnicas de PCR múltiple, electroforesis en gel de campo pulsado y análisis de secuencias

multilocus.

- Determinar el perfil de resistencia antimicrobiana de las cepas de S. aureus y SARM.

- Comparar la técnica de PCR en tiempo real con el método de cultivo y PCR convencional,

utilizando dos etapas de enriquecimiento selectivo, para la detección de S. aureus y SARM

en muestras de animales, carne y productos cárnicos.

Page 30: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

19

6. Referencias

Aydin, A., K. Muratoglu, M. Sudagidan, K. Bostan, B. Okuklu, S. Harsa. 2011. Prevalence

and antibiotic resistance of foodborne Staphylococcus aureus isolates in Turkey.

Foodborne Pathog. Dis. 8, 63-69.

Baba, T., F. Takeuchi, M. Kuroda, H. Yuzawa, K. Aoki, A. Oguchi, Y. Nagai, N. Iwama, K.

Asano, T. Naimi, H. Kuroda, L. Cui, K. Yamamoto, K. Hiramatsu. 2002. Genome and

virulence determinants of high virulence community-acquired MRSA. Lancet. 359, 1819-

1827.

Bens, C.C.P.M., A. Voss, C.H.W. Klaassen. 2006. Presence of a novel DNA methylation

enzyme in methicillin-resistant Staphylococcus aureus Isolates associated with pig farming

leads to uninterpretable results in standard pulsed-field gel electrophoresis analysis. J. Clin.

Microbiol. 44, 1875-1876.

Broens, E.M., E.A. Graat, B. Engel, R.A. van Oosterom, A.W. van de Giessen, P.J. van der

Wolf. 2011. Comparison of sampling methods used for MRSA-classification of herds with

breeding pigs. Vet. Microbiol. 147, 440-444.

Catry, B., E. Van Duijkeren, M.C. Pomba, C. Greko, M.A. Moreno, S. Pyörälä, M.

Ruzauskas, P. Sanders, E.J. Threlfall, F. Ungemach, K. Törneke, C. Munoz-Madero, J.

Torren-Edo, Scientific Advisory Group on Antimicrobials (SAGAM). 2010. Reflection

paper on MRSA in food-producing and companion animals: epidemiology and control

options for human and animal health. Epidemiol. Infect. 138, 626-44.

Centers for Disease Control and Prevention (CDC). 2011. Methicillin-resistant Staphylococcus

aureus (MRSA) infections [en línea]. Disponible en http://www.cdc.gov/mrsa/index.html.

Consulta: 27/03/12.

Centers for Disease Control and Prevention (CDC). 2012. CDC estimates of foodborne illness

in the United States [en línea]. Disponible en http://www.cdc.gov/foodborneburden/2011-

foodborne-estimates.html. Consulta: 27/03/12.

Page 31: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

20

Center for Food Security and Public Health (CFSPH). 2011. Methicillin-resistant

Staphylococcus aureus MRSA. Iowa State University, Ames, IA.

Cuny, C., A. Friedrich, S. Kozytska, F. Layer, U. Nübel, K. Ohlsen, B. Strommenger, B.

Walther, L. Wieler, W. Witte. 2010. Emergence of methicillin-resistant Staphylococcus

aureus (MRSA) indifferent animal species. Int. J. Med. Microbiol. 300, 109-117.

de Boer, E., J.T.M. Zwartkruis-Nahuis, B. Wit, X.W. Huijsdens, A.J. de Neeling, T. Bosch,

R.A.A. van Oosterom, A. Vila, A.E. Heuvelink. 2009. Prevalence of methicillin-resistant

Staphylococcus aureus in meat. Int. J. Food Microbiol. 134, 52-56.

de Cueto, M., M. Pascual. 2009. Capítulo 1: Microbiología y patogenia de las infecciones

producidas por Staphylococcus aureus. En Pahissa, A. 2009. Infecciones producidas por

Staphylococcus aureus. ICG Marge, S.L., Barcelona, España.

de Neeling, A.J., M.J.M. van den Broek, E.C. Spalburg, M.G. van Santen-Verheuvel, W.D.C.

Dam-Deisz, H.C. Boshuizen, A.W. van de Giessen, E. van Duijkeren, X.W. Huijsdens.

2007. High prevalence of methicillin resistant Staphylococcus aureus in pigs. Vet.

Microbiol. 122, 366-372.

Deurenberg, R.H., E.E. Stobberingh. 2008. The evolution of Staphylococcus aureus. Infect.

Genet. Evol. 8, 747-763.

Deurenberg, R.H., C. Vink, S. Kalenic, A.W. Friedrich, C.A. Bruggeman, E.E. Stobberingh.

2007. The molecular evolution of methicillin-resistant Staphylococcus aureus. Clin.

Microbiol. Infect. 13, 222–235.

Dufour, P., Y. Gillet, M. Bes, G. Lina, F. Vandenesch, D. Floret, J. Etienne, H. Richet. 2002.

Community-acquired methicillin-resistant Staphylococcus aureus infections in France:

emergence of a single clone that produces Panton-Valentine leukocidin. Clin. Infect. Dis.

35, 819-824.

DuPont, H.L., J.H. Steele. 1987. Use of antimicrobial agents in animal feeds: implications for

human health. Rev. Infect. Dis. 9, 447-460.

Page 32: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

21

Ebert, M.D., S. Sheth, E.K. Fishman. 2009. Necrotizing pneumonia caused by community-

acquired methicillin-resistant Staphylococcus aureus: an increasing cause of "mayhem in

the lung". Emerg. Radiol. 16, 159-162.

Elixhauser, A., C. Steiner. 2007. Infections with Methicillin-Resistant Staphylococcus aureus

(MRSA) in U.S. Hospitals, 1993–2005. HCUP Statistical Brief #35. July 2007. Agency for

Healthcare Research and Quality, Rockville, MD [en línea]. Disponible en

http://www.hcup-us.ahrq.gov/reports/statbriefs/sb35.pdf. Consulta: 28/03/12.

Euzéby, J.P. 1997. List of prokaryotic names with standing in nomenclature (LPNS). Int. J.

Syst. Bacteriol. 47, 590-592 [en línea]. Disponible en

http://www.bacterio.cict.fr/classification.html. Consulta: 02/01/12.

Food and Drug Administration (FDA). 2010. NARMS retail meat annual report 2010 [en

línea]. Disponible en

http://www.fda.gov/downloads/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/

NationalAntimicrobialResistanceMonitoringSystem/UCM293581.pdf. Consulta: 30/05/12.

Franco, D.A., J. Webb, C.E Taylor. 1990. Antibiotic and sulfonamide residues in meat.

Implications for human health. J. Food Protect. 53, 178-185.

Gibbs, S.G., C.F. Green, P.M. Tarwater, L.C. Mota, K.D. Mena, P.V. Scarpino. 2006.

Isolation of antibiotic-resistant bacteria from the air plume downwind of a swine confined

or concentrated animal feeding pperation. Environ. Health Persp. 114, 1032-1037.

Golding, G.R., J.L. Campbell, D.J. Spreitzer, J. Veyhl, K. Surynicz, A. Simor, M.R. Mulvey,

Canadian Nosocomial Infection Surveillance Program. 2008. A preliminary guideline for

the assignment of methicillin-resistant Staphylococcus aureus to a Canadian pulsed-field

gel electrophoresis epidemic type using spa typing. Can. J. Infect. Dis. Med. Microbiol.

19, 273-281.

Page 33: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

22

Golding, G.R., L. Bryden, P.N. Levett, R.R. McDonald, A. Wong, J. Wylie, M.R. Graham, S.

Tyler, G. Van Domselaar, A.E. Simor, D. Gravel, M.R. Mulvey. 2010. Livestock-

associated methicillin-resistant Staphylococcus aureus sequence type 398 in humans,

Canada. Emerg. Infect. Dis. 16, 587-594.

Gorwitz, R.J., D. Kruszon-Moran, S.K. McAllister, G. McQuillan, L.K. McDougal, G.E.

Fosheim, B.J. Jensen, G. Killgore, F.C. Tenover, M.J. Kuehnert. 2008. Changes in the

prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001-

2004. J. Infect. Dis. 197, 1226-1234.

Guardabassi, L., M. O'Donoghue, A. Moodley, J. Ho, M. Boost. 2009. Novel lineage of

methicillin-resistant Staphylococcus aureus, Hong Kong. Emerg. Infect. Dis. 15, 1998-

2000.

Hanson, B.M., A.E. Dressler, A.L. Harper, R.P. Scheibel, S.E. Wardyn, L.K. Roberts, J.S.

Kroeger, T.C. Smith. 2011. Prevalence of Staphylococcus aureus and methicillin-resistant

Staphylococcus aureus (MRSA) on retail meat in Iowa. J. Infect. Public. Health. 4, 169-

174.

Hartman B., A. Tomasz. 1981. Altered penicillin-binding proteins in methicillin-resistant

strains of Staphylococcus aureus. Antimicrob. Agents. Chemother. 19, 726-735.

Kennedy, A.D., M. Otto, K.R. Braughton, A.R. Whitney, L. Chen, B. Mathema,J.R.

Mediavilla, K.A. Byrne, L.D. Parkins, F.C. Tenover, B.N. Kreiswirth, J.M. Musser, F.R.

DeLeo. 2008. Epidemic community-associated methicillin-resistant Staphylococcus

aureus: recent clonal expansion and diversification. Proc. Natl. Acad. Sci. USA. 105,

1327-1332.

Klein, E., D.L. Smith, R. Laxminarayan. 2007. Hospitalizations and deaths caused by

methicillin-resistant Staphylococcus aureus, United States, 1999-2005. Emerg. Infect. Dis.

13, 1840-1846.

Page 34: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

23

Krziwanek, K., S. Metz-Gercek, H. Mittermayer. 2009. Methicillin-Resistant Staphylococcus

aureus ST398 from human patients, upper Austria. Emerg. Infect. Dis. 15, 766-769.

Lewis, H.C., K. Mølbak, C. Reese, F.M. Aarestrup, M. Selchau, M. Sørum, R.L. Skov. 2008.

Pigs as source of methicillin-resistant Staphylococcus aureus CC398 infections in humans,

Denmark. Emerg. Infect. Dis. 14:1383-1389.

Lim D., N.C. Strynadka. 2002. Structural basis for the beta lactam resistance of PBP2a from

methicillin-resistant Staphylococcus aureus. Nat. Struct. Biol. 9, 870-876.

Lowy, F.D. 1998. Staphylococcus aureus infections. N. Engl. J. Med. 339, 520-532.

Lowy, F.D. 2003. Antimicrobial resistance: the example of Staphylococcus aureus. J. Clin.

Invest. 111, 1265-1273.

Marín, M., F. Gudiol. 2003. Antibióticos betalactámicos. Enferm. Infecc. Microbiol. Clin. 21,

42-45.

McDougal, L.K., C.D. Steward, G.E. Killgore, J.M. Chaitram, S.K. McAllister, F.C. Tenover.

2003. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus

isolates from the United States: establishing a national database. J. Clin. Microbiol. 41,

5113-5120.

Moon, J.S., A.-R. Lee, H.-M. Kang, E.-S. Lee, M.-N. Kim, Y. H. Paik, Y. H. Park, Y.-S. Joo,

H.C. Koo. 2007. Phenotypic and genetic antibiogram of methicillin-resistant staphylococci

isolated from bovine mastitis in Korea. J. Dairy Sci. 90, 1176-1185.

North Dakota Department of Health, Disease Control. 2011. Methicillin-resistant

Staphylococcus aureus (MRSA) [en línea]. Disponible en

http://www.ndhealth.gov/disease/info/mrsa.aspx. Consulta: 13/11/12.

Pan, A., A. Battisti, A. Zoncada, F. Bernieri, M. Boldini, A. Franco, M. Giorgi, M. Lurescia, S.

Lorenzotti, M. Martinotti, M. Monaco, A. Pantosti. 2009. Community-acquired

methicillin-resistant Staphylococcus aureus ST398 infection, Italy. Emerg. Infect. Dis. 15,

845-847.

Page 35: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

24

Persoons, D., S. Van Hoorebeke, K. Hermans, P. Butaye, A. de Kruif, F. Haesebrouck, J.

Dewulf. 2009. Methicillin-resistant Staphylococcus aureus in poultry. Emerg. Infect. Dis.

15, 452-453.

Pu, S., F. Han, B. Ge. 2009. Isolation and characterization of methicillin-resistant

Staphylococcus aureus strains from Louisiana retail meats. Appl. Environ. Microbiol.

75:265-267.

Pu, S., F. Wang, B. Ge. 2011. Characterization of toxin genes and antimicrobial susceptibility

of Staphylococcus aureus isolates from Louisiana retail meats. Foodborne Pathog. Dis. 8,

299-306.

Romero, R. 2007. Microbiología y parasitología humana. Bases etiológicas de las

enfermedades infecciosas y parasitarias. Tercera edición, Editorial Médica Panamericana,

S.A., México, D.F.

Smith, D.L., A.D. Harris, J.A. Johnson, E.K. Silbergeld, J.G. Morris. 2002. Animal antibiotic

use has an early but important impact on the emergence of antibiotic resistance in human

commensal bacteria. Proc. Natl. Acad. Sci. U. S. A. 99, 6434-6439.

Soavi, L., R. Stellini, L. Signorini, B. Antonini, P. Pedroni, L. Zanetti, B. Milanesi, A. Pantosti,

A. Matteelli, A. Pan, G. Carosi. 2010. Methicillin-resistant Staphylococcus aureus ST398,

Italy. Emerg. Infect. Dis. 16, 346-348.

Stenhem, M., Å. Örtqvist, H. Ringberg, L. Larsson, B. Olsson-Liljequist, S. Hæggman, M.

Kalin, K. Ekdahl. 2010. Imported methicillin-resistant Staphylococcus aureus, Sweden.

Emerg. Infect. Dis. 16, 189-196.

Tenhagen, B.A., A. Fetsch, B. Stührenberg, G. Schleuter, B. Guerra, J.A. Hammerl, S.

Hertwig, J. Kowall, U. Kämpe, A. Schroeter, J. Bräunig, A. Käsbohrer, B. Appel. 2009.

Prevalence of MRSA types in slaughter pigs in different German abattoirs. Vet Rec 165,

589-593.

Page 36: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

25

Tenover, F.C., R. Arbeit, G. Archer, J. Biddle, S. Byrne, R. Goering, G. Hancock, A. Hebert,

B. Hill, R. Hollis, W.R. Jarvis, B. Kreiswirth, W. Eisner, J. Maslow, L. McDougal, J. M.

Miller, M. Mulligan, M. Pfaller. 1994. Comparison of traditional and molecular methods

of typing isolates of Staphylococcus aureus. J. Clin. Microbiol. 32, 407-415.

Tiemersma, E.W., S.L.A.M. Bronzwaer, O. Lyytikäinen, J.E. Degener, P. Schrijnemakers, N.

Bruinsma, J. Monen, W. Witte, H. Grundmann, European Antimicrobial Resistance

Surveillance System Participants. 2004. Methicillin-resistant Staphylococcus aureus in

Europe, 1999-2002. Emerg. Infect. Dis. 10, 1627-1634.

van Belkum, A., D.C. Melles, J.K. Peeters, W.B. van Leeuwen, E. van Duijkeren, X.W.

Huijsdens, E. Spalburg, A.J. de Neeling, H.A. Verbrugh, on behalf of the Dutch Working

Party on Surveillance and Research of MRSA (SOM). 2008. Methicillin-resistant and -

susceptible Staphylococcus aureus sequence type 398 in pigs and humans. Emerg. Infect.

Dis. 14, 479-483.

Van den Broek IV, F., B.A. Van Cleef, A. Haenen, E.M. Broens, P.J. Van der Wolf, M.J. Van

den Broek, X.W. Huijsdens, J.A. Kluytmans, A.W. Van de Giessen, E.W. Tiemersma.

2009. Methicillin-resistant Staphylococcus aureus in people living and working in pig

farms. Epidemiol. Infect. 137, 700-708.

Vandenesch, F., T. Naimi, M.C. Enright, G. Lina, G.R. Nimmo, H. Heffernan, N. Liassine, M.

Bes, T. Greenland, M.-E. Reverdy, J. Etienne. 2003. Community-acquired methicillin-

resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide

emergence. Emerg. Infect. Dis. 9, 978-984.

Voss, A., B.N. Doebbeling. 1995. The worldwide prevalence of methicillin-resistant

Staphylococcus aureus. Int. J. Antimicrob. Agent. 5, 101-106.

Waters, A.E., T. Contente-Cuomo, J. Buchhagen, C.M. Liu, L. Watson, K. Pearce, J.T. Foster,

J. Bowers, E.M. Driebe, D.M. Engelthaler, P.S. Keim, L.B. Price. 2011. Multidrug-

Resistant Staphylococcus aureus in US Meat and Poultry. Clin. Infect. Dis. 8, 747-763.

Page 37: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

26

Weese, J.S., H. Dick, B.M. Willey, A. McGeer, B.N. Kreiswirth, B. Innis, D.E. Low, D.E.

2006. Suspected transmission of methicillin-resistant Staphylococcus aureus between

domestic pets and humans in veterinary clinics and in the household. Vet Microbiol 115,

148-155.

Welinder-Olsson, C., K. Florén-Johansson, L. Larsson, S. Oberg, L. Karlsson, C. Ahrén. 2008.

Infection with Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus

aureus t034. Emerg. Infect. Dis. 14, 1271-1272.

Wertheim, H., H.A. Verbrugh, C. van Pelt, P. de Man, A. van Belkum, M.C. Vos. 2001.

Improved detection of methicillin-resistant Staphylococcus aureus using phenyl mannitol

broth containing aztreonam and ceftizoxime. J. Clin. Microbiol. 39, 2660-2662.

Zhang, W., Z. Hao, Y. Wang, X. Cao, C.M. Logue, B. Wang, J. Yang, J. Shen, C. Wu. 2011.

Molecular characterization of methicillin-resistant Staphylococcus aureus strains from pet

animals and veterinary staff in China. Vet. J. 190, e125-e129.

Page 38: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

27

II. DESARROLLO

1. Molecular typing of Staphylococcus aureus and methicillin-resistant S.

aureus (MRSA) isolated from animals and retail meat in North Dakota,

United States

Esra Buyukcangaz1,*, Valeria Velasco2,3,*, Julie S. Sherwood2, Ryan M. Stepan2, Ryan J.

Koslofsky2 and Catherine M. Logue2,4

Publicado en Foodborne Pathogens and Diseases, 2013, Volumen 10, Número 7, 608-617.

Abstract

The objective of this study was to determine the prevalence and molecular typing of

methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus

(MRSA) in food-producing animals and retail meat in Fargo, North Dakota. A two-step

enrichment followed by culture methods were used to isolate S. aureus from 167 nasal swabs

from animals, 145 samples of retail raw meat, and 46 samples of deli meat. Positive isolates

were subjected to multiplex polymerase chain reaction in order to identify the genes 16S

rRNA, mecA, and Panton-Valentine Leukocidin. Pulsed-field gel electrophoresis and

multilocus sequence typing were used for molecular typing of S. aureus strains. Antimicrobial

susceptibility testing was carried out using the broth microdilution method. The overall

prevalence of S. aureus was 37.2% (n=133), with 34.7% (n=58) of the animals positive for the

organism, and the highest prevalence observed in pigs (50.0%) and sheep (40.6%) (p<0.05);

47.6% (n=69) of raw meat samples were positive, with the highest prevalence in chicken

(67.6%) and pork (49.3%) (p<0.05); and 13.0% (n=6) of deli meat was positive. Five pork

samples (7.0%) were positive for MRSA, of which three were ST398 and two were ST5. All

exhibited penicillin resistance and four were multidrug resistant (MDR). The Panton-

Valentine Leukocidin gene was not detected in any sample by multiplex polymerase chain

1Department of Microbiology, College of Veterinary Medicine, Uludag University, Bursa, Turkey. 2Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, North Dakota. 3Department of Animal Sciences, University of Concepción, Chillán, Chile. 4Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State

University, Ames, Iowa. *These two authors contributed equally to this work.

Page 39: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

28

reaction. The most common clones in sheep were ST398 and ST133, in pigs and pork meat

both ST398 and ST9, and in chicken ST5. Most susceptible S. aureus strains were ST5

isolated from chicken. The MDR isolates were found in pigs, pork, and sheep. The presence of

MRSA, MDR, and the subtype ST398 in the meat production chain and the genetic similarity

between strains of porcine origin (meat and animals) suggest the possible contamination of

meat during slaughtering and its potential transmission to humans.

Address correspondence to: Catherine M. Logue, PhD Department of Veterinary Microbiology and Preventive Medicine 1802 University Boulevard, VMRI #2 College of Veterinary Medicine Iowa State University Ames, IA 50011

E-mail: [email protected]

1.1 Introduction

Outbreaks caused by antimicrobial-resistant (AR) bacteria is an established problem

worldwide (DeWaal et al., 2011). One of these AR pathogens is methicillin-resistant

Staphylococcus aureus (MRSA), which causes health care-associated MRSA (Tiemersma et

al., 2004), community-associated (CA-MRSA) (Kennedy et al., 2008), and livestock-

associated MRSA infections (Golding et al., 2010).

Most animals can become colonized with S. aureus (de Neeling et al., 2007; Moon et al.,

2007; Lewis et al., 2008; van Belkum et al., 2008; Guardabassi et al., 2009; Persoons et al.,

2009), and contamination of carcasses may occur during slaughtering (de Boer et al., 2009).

Recently, MRSA strains have been isolated from several food-producing animals (de Neeling

et al., 2007; Moon et al., 2007; Lewis et al., 2008; van Belkum et al., 2008; Guardabassi et al.,

2009; Persoons et al., 2009); and from retail meat worldwide (de Boer et al., 2009; Pu et al.,

2009; Lim et al., 2010; Weese et al., 2010; Bhargava et al., 2011; Hanson et al., 2011),

representing a potential risk for its transmission to humans.

Methicillin resistance is attributed to the altered penicillin binding protein (PBP2a), encoded

in the mecA gene, which has a reduced affinity for β-lactam antibiotics (Hartman and Tomasz,

Page 40: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

29

1981; Van De Griend et al., 2009). CA-MRSA strains are more likely to encode a virulence

factor called Panton-Valentine leukocidin (PVL) toxin (Baba et al., 2002; Dufour et al., 2002),

associated with skin infections and tissue necrosis (Ebert et al., 2009). Therefore, the PVL

toxin has been identified as a genetic marker for CA-MRSA strains (Vandenesch et al., 2003).

Different molecular techniques have been used for typing MRSA strains, such as pulsed-field

gel electrophoresis (PFGE) based on macrorestriction patterns of genomic DNA; multilocus

sequence typing (MLST) that determines the allelic profile of seven housekeeping genes; and

spa typing based on the sequencing of the polymorphic X region of the protein A gene. It has

been demonstrated that the discriminatory power of PFGE is greater than MLST and spa

typing (McDougal et al., 2003; Malachowa et al., 2005). Tenover et al. suggest that a

combination of two methods may provide more precision in epidemiological studies (Tenover

et al., 1994).

It has been demonstrated that MRSA strains causing CA-MRSA infections (USA300 and

USA400) are different from those causing health care-associated MRSA infections (USA100

and USA200) (McDougal et al., 2003). The sequence type ST398 has been associated with

livestock-associated MRSA (Lewis et al., 2008; van Belkum et al., 2008; Welinder-Olsson et

al., 2008; Krziwanek et al., 2009), however, the presence of ST398 and the emergence of

infections in humans with livestock exposure, mostly pig farmers, has increased the public

health concern (van Belkum et al., 2008; Krziwanek et al., 2009; Pan et al., 2009; Golding et

al., 2010).

The aim of this study was to determine the prevalence, molecular typing, and genetic

similarity of S. aureus and MRSA isolated from animals and retail meat in Fargo, ND.

1.2 Materials and Methods

1.2.1 Samples

A total of 167 nasal swabs (sheep, n = 64; pigs, n = 60; cows, n = 43) were collected from

food-producing animals immediately after stunning at the Meat Lab (Department of Animal

Sciences). Of these samples a total of 57 (sheep, n = 14; pigs, n = 18; cows, n = 25) were

Page 41: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

30

obtained from sick animals at the ND Veterinary Diagnostic Lab (North Dakota State

University, Fargo, ND).

Moreover, 145 raw meat (pork, n = 71; chicken, n = 37; beef, n = 37) and 46 deli meat (ham, n

= 21; turkey, n = 16; chicken, n = 9) samples were randomly purchased from four supermarket

chains in Fargo, ND.

Samples were collected between May 2010 and April 2011, immediately stored at 4°C, and

processed within 6 h of collection.

1.2.2 Isolation of S. aureus and MRSA

The isolation was carried out by enrichment (de Boer et al., 2009) followed by plating steps on

selective agar. Briefly, for the primary enrichment, 25 g of meat and 225 mL of Mueller-

Hinton broth (Becton, Dickinson and Company [BD], Sparks, MD) with 6.5% sodium

chloride (VWR International, West Chester, PA) (MHB+6.5% NaCl) were placed in a sterile

stomacher bag and homogenized using a stomacher400 circulator (Seaward, England) at 230

rpm for 90 s. The suspension was incubated for 18-20 h at 37°C. One milliliter of primary

enrichment was inoculated into 9 mL of phenol red mannitol broth (BD) containing

ceftizoxime (5 µg/mL, US Pharmacopeia, Rockville, MD) and aztreonam (75 µg/mL, Sigma

Chemical Co., St. Louis, MO) (PHMB+) (Wertheim et al., 2001), followed by incubation for

18-20 h at 37°C.

Nasal swabs were placed directly in 9 mL MHB+6.5% NaCl and incubated for 18-20 h at

37°C. Then, the procedure described above was carried out.

A loopful of secondary enrichment was struck directly to Baird-Parker medium with egg yolk

tellurite supplement (BP) (according to manufacturer’s recommendations) (BD) and incubated

for 48 h at 37°C. Two presumptive S. aureus colonies on BP (black colonies surrounded by 2-

to 5-mm clear zones) were transferred to Trypticase soy agar with 5% sheep blood (TSAII 5%

SB) (BD) and incubated for 18-20 h at 37°C. Presumptive S. aureus on TSAII 5% SB

(presence of β-hemolysis) was confirmed using Sensititre Gram Positive ID (GPID) plates

(Sensititre, TREK Diagnostic Systems Ltd., Cleveland, OH). Confirmed colonies were stored

frozen at -80°C in brain-heart infusion broth (BD) containing 20% glycerol until use.

Page 42: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

31

1.2.3 Multiplex polymerase chain reaction (PCR)

All S. aureus strains were recovered from frozen stock to TSA plates and incubated at 37°C

for 18-24 h. DNA extraction was carried out by suspending one colony in 50 µL of

DNase/RNase-free distilled water, heating the suspension (99°C, 10 min) and then

centrifugation (30,000×g, 1 min) to remove cellular debris. The remaining DNA was

transferred to a new tube and stored frozen at - 20°C.

Multiplex PCR assay for detection of 16S rRNA, mecA and PVL genes included 2 µL of the

DNA template (described above) added to a 50 µL final reaction mixture: 1X Go Taq

Reaction Buffer (Promega, Madison, WI), 0.025 U/µL of Go Taq DNA polymerase

(Promega), 200 µM dNTP (Promega), and 1 µM of primers (16S rRNA, mecA, LukS/F-PV,

Table 1) (Integrated DNA Technologies, Inc., Coralville, IA) (McClure et al., 2006).

Multiplex PCR settings were carried out according to Makgotlho et al. (2009), using a

thermocycler (Eppendorf, Hamburg, Germany).

Ten microliters of the PCR amplicons were loaded into a 1.5% (wt/vol) agarose gel (Agarose

ITM, Amresco, Solon, OH) in 1X TAE buffer using EzVision One loading dye (Amresco),

and run at 100V in 1X TAE buffer for 1 h. A molecular weight marker 100-bp ladder

(Promega) and a positive control (ATCC 35591) were included on each gel. Bands were

visualized using an Alpha Innotech UV imager (FluorChemTM).

1.2.4 PFGE

The PulseNet protocol with slight modifications was used (McDougal et al., 2003). Briefly,

frozen isolates were struck in TSA plates and incubated at 37°C for 18-24 h. A single colony

was inoculated into a second TSA plate and incubated at 37°C for 18-24 h. Colonies were

transferred to 5-mL polystyrene round-bottom tubes containing 2 mL of cell suspension buffer

(100 mM Tris HCl [pH 8.0], Invitrogen; and 100mM EDTA [pH 8.0],Gibco), adjusting the

concentrations to an absorbance of 0.9-1.1 in a spectrophotometer (Smart SpecTM plus, Bio-

Rad Laboratories, USA) at 610 nm. After that, the preparation, lysis, and washes of plugs, and

Page 43: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

32

then the SmaI enzyme restriction digestion were performed according to the PulseNet

protocol. Salmonella Branderup H9812 was used as a DNA marker (Ribot et al., 2006).

The electrophoresis was carried out in a Chef Mapper (Bio-Rad Laboratories) PFGE rig, with

an initial switch time of 5 s, a final switch time of 40 s, and a total running time of 17 h 45

min.

After staining the gels with ethidium bromide (1.5 µg/mL), they were visualized using a UVP

imager (UVP, Upland, CA). Macrorestriction patterns were compared using the BioNumerics

Fingerprinting software (Ver 6.5 Applied Math, Austin, TX). The similarity index was

calculated using the Dice coefficient, a band position tolerance of 1%, and an optimization of

0.5%. The unweighted-pair group method with arithmetic averages was used to construct a

dendrogram, and clusters were selected using a cutoff at 80%.

1.2.5 Multilocus sequence typing (MLST)

Briefly, S. aureus isolates were struck to TSA plates and incubated at 37°C for 18-24 h.

Colonies were picked to 40 µL of single cell lysing buffer (50 µg/mL of Proteinase K,

Amresco; in TE buffer [pH= 8]), and then lysed by heating to 80°C for 10 min followed by

55°C for 10 min in a thermocycler. The final suspension was diluted 1:2 in sterile water,

centrifuged to remove cellular debris, and transferred to a sterile tube (Marmur, 1961).

The housekeeping genes: arcC, aroE, glpF, gmk, pta, tpi, and yqiL, were amplified (Table 1)

(Enright et al., 2000). All PCR reactions were carried out in 50-µL volumes: 1 µL of DNA

template, Taq DNA polymerase (Promega) (1.25 U), 1X PCR buffer (Promega), primers (0.1

µM) (Integrated DNA Technologies, Inc.), and dNTPs (200 µM) (Promega). PCR settings

were adjusted according to Enright et al. (2000) using a thermocycler (Eppendorf). Ten

microliters of the PCR products were loaded into 1% agarose gels in 1X TAE with EzVision

One loading dye, and run at 100V in 1X TAE for 1 h. Images were captured using an Alpha

Innotech imager.

After PCR, each amplicon was purified of amplification primer using the QIAquick PCR

Purification Kit (Qiagen, Valencia, CA) as per manufacturer’s instructions. Purified DNA was

sequenced at Iowa State University’s DNA Facility (Ames, IA) using an Applied Biosystems

Page 44: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

33

3730xl DNA Analyzer (Applied Biosystems, Foster City, CA). Sequence data were imported

into DNAStar (Lasergene, Madison, WI), trimmed, and aligned to the control sequences (from

the MLST site) and interrogated against the MLST database (http://saureus.mlst.net/).

Sequence types were added to the strain information for analysis in BioNumerics.

1.2.6 Antimicrobial susceptibility testing

Minimum inhibitory concentrations (MICs) and the AR profiles of S. aureus isolates were

determined using the broth microdilution method (CMV3AGPF, Sensititre, Trek

Diagnostics), according to the manufacturer’s and the Clinical Laboratory Standards Institute

guidelines (CLSI, 2009).

A total of 16 antimicrobials belonging to 13 classes were tested. Resistance to at least three

classes of antibiotics was considered as multidrug resistance (MDR) (Aydin et al., 2011).

1.2.7 Statistical analysis

Fisher’s exact test was used to assess significance in prevalence of S. aureus and MRSA

between animal and meat types. A significance level of p<0.05 and two-sided p-values were

assessed using SAS software 9.2 (SAS Institute Inc., Cary, NC).

1.3 Results

Table 2 shows the prevalence of S. aureus in animals (34.7%, n=58), with a higher rate in

swine and sheep (p<0.05); in raw meat (47.6%, n=69), with a higher rate in chicken and pork

(p<0.05); and in deli meats (13.0%, n=6). MRSA was detected solely in meat (five pork

samples), representing a low prevalence (p<5%). The PVL gene was not detected in any

sample.

Most of the S. aureus isolates from animals were resistant to penicillin, tetracycline, and

lincomycin; and from raw meat to those antibiotics and erythromycin. All MRSA strains were

resistant to penicillin, and most of them showed resistance to erythromycin, tetracycline, and

lincomycin (Table 3).

Page 45: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

34

A total of 47.7% (n=41) of the penicillin-resistant S. aureus strains exhibited MICs between

0.5 and 1 µg/mL. However, MRSA strains had higher MICs for penicillin (1- >16 µg/mL)

(Table 4).

The rate of MDR strains was 41.4% (n=55); in animals was 51.7% (n=30), and in meat was

36.2% (n=25). Among MRSA strains, only one was not MDR, and the rest showed MDR to

four classes of antimicrobials (Table 5).

Figure 1 shows a dendrogram displaying the macrorestriction patterns of S. aureus strains and

the sequence type (ST). The largest cluster (cluster 4) contained S. aureus of porcine origin

(animals and meat), all of which were ST9. S. aureus isolates included in the second largest

cluster (cluster 3) were obtained from poultry meat, and all but one was ST5. Two MRSA

isolates were clustered in cluster 5, all from pork and ST5. The rest of the MRSA isolates were

ST398 (not included in the dendrogram). A total of 34 S. aureus isolates (25.6%) were not

included in the dendrogram because they could not be restricted with SmaI or XmaI during

PFGE analysis and were ST398, isolated from animals (sheep and pigs) and from pork meat

(data not shown).

1.4 Discussion

Both methods used for the confirmation of S. aureus - Sensititre identification plates and

detection of the 16S rRNA gene by multiplex PCR- agreed with the results (Table 2). These

results confirmed that the isolation method of two enrichment steps preceding plating is an

appropriate method for recovering both S. aureus and MRSA from meat and animals. de Boer

et al. (2009) used the same two-step enrichment, reporting a higher detection rate of MRSA.

It is well known that animals are natural reservoirs of S. aureus; in this study, positive nasal

swabs were obtained from sheep, pigs, and cows. Other studies have detected a higher

prevalence of S. aureus in sheep (57%) and cattle (14%) (Mørk et al., 2012); however, the

prevalence in pigs has been reported to vary widely (6-57%) (Khalid et al., 2009; Lowe et al.,

2011). The recovery of S. aureus in meat in our study was higher than previous studies (39.2%

and 14.4%) (Pu et al., 2009; Aydin et al., 2011). The prevalence of S. aureus in ham was 19%,

which was considerably lower than the prevalence reported by Atanassova et al. (2001). There

Page 46: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

35

is limited information about the prevalence of S. aureus and MRSA in processed retail meat

products, and this study provides some information as to the potential exposure of consumers

through consumption of deli meats that typically do not need heating prior to consumption.

In this study, MRSA was not detected in animals; however, a prevalence of MRSA in swine

ranging from 10% to 71% has been detected previously (Köck et al., 2009; Smith et al., 2009;

Tenhagen et al., 2009). The low rate of MRSA in pork raw meat (3.4%) determined in this

study agreed with the low prevalence reported by other authors (de Boer et al., 2009; Pu et al.,

2009).

Most of the S. aureus strains isolated from animals exhibited resistance to the same

antimicrobials reported by other authors (Nemati et al., 2008; Huber et al., 2010) (Table 3).

The AR bacteria in animals have increased over time due to the frequent use of antimicrobial

agents at the farm level (de Neeling et al., 2007; Nemati et al., 2008). Therefore, controlling

the use of antibiotics in farming could limit the risk of transmission of AR pathogens among

animals and potentially to humans (Huber et al., 2010).

Other authors have also determined a higher occurrence of resistance to penicillin,

tetracycline, and erythromycin in S. aureus strains isolated from retail meats and different

food samples (Aydin et al., 2011; Pu et al., 2011). Penicillin resistance has been reported to

spread rapidly among S. aureus strains being facilitated by plasmids and is the most frequently

reported resistance detected in foodborne S. aureus (Aydin et al., 2011).

AR S. aureus exhibited a MIC for erythromycin and lincomycin (>8 µg/mL) lower than the

MIC determined by Nemati et al. (2008). The MIC of tetracycline (>32 µg/mL) and penicillin

(0.5-1 µg/mL) concurred with the results reported by Nemati et al. (2008). Previously, other

authors have reported MDR in S. aureus from food samples at a lower rate compared with this

study (Aydin et al., 2011; Nam et al., 2011) (Table 4).

All S. aureus isolates examined in this study were susceptible to daptomycin, linezolid,

nitrofurantoin and vancomycin, concurring with the results reported by Pu et al. (2011).

The clustering of isolates obtained by PFGE agreed well with the MLST types (i.e., the

identical restriction patterns or patterns that differed at two to six bands had an identical ST)

Page 47: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

36

(Fig. 1). Restriction patterns with the same numbers of bands represent the same strain;

patterns that differ up to three fragments represent strains that are closely related; and isolates

that differs at four to six bands may have the same genetic lineage (Tenover et al., 1995).

The major clones identified corresponded to ST9 and ST5. The emergence of ST9 in pigs was

first reported in 2008 by Guardabassi et al. (2009) in Hong Kong, disseminating later as

demonstrated in this study. The genetic relatedness between S. aureus strains ST9 from pigs

and pork meat may suggest the possible contamination of meat during slaughtering.

Previously, ST5 was associated with poultry (Hasman et al., 2010) and poultry meat (Waters

et al., 2011). In this study, the majority of strains isolated from chicken were ST5, which can

also suggest the contamination of meat during slaughtering. A high prevalence of ST398 was

found, which may indicate the potential risk for humans to acquire this emerging sequence

type that has potential for causing infection.

MRSA isolates had the same MLST allelic profile and indistinguishable PFGE patterns than

two methicillin-susceptible S. aureus (MSSA) strains, all obtained from pork. The close

genetic similarity of the MRSA and MSSA isolates may be due to the acquisition of the mecA

gene by horizontal transfer of SCCmec from MRSA strains to MSSA lineages (Enright et al.,

2000; Wielders et al., 2001; de Neeling et al., 2007; Guardabassi et al., 2009).

Most of the S. aureus isolates susceptible to all antimicrobial agents were obtained from

chicken, of which 76% were ST5. MDR isolates from pork were mainly ST398 (60%) (not

included in the dendrogram), and ST9 (30%). All MDR strains from sheep were ST398 (not

included in the dendrogram). The MDR can be due to the presence of other antibiotic

resistance genes, such as dfrK (resistance to trimethoprim) (Kadlec and Schwarz, 2009) and

cfr (MDR gene) (Kehrenberg et al., 2009).

1.5 Conclusion

The presence of MDR S. aureus, and subtype ST398 in animals and meat, and MRSA in retail

meat, and the genetic relationship between strains isolated from animals and meat, suggests

the likely contamination of meat during slaughtering.

Page 48: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

37

Although the MRSA prevalence in raw meat is low, the prevalence of MDR S. aureus and

ST398 is higher; therefore, the risk of transmission through the meat production chain cannot

be ignored.

Acknowledgments

This study was supported by the Dean’s Office, College of Agriculture, Food Systems and

Natural Resources College, North Dakota State University (Valeria Velasco), the Dean’s

Office, College of Veterinary Medicine, Iowa State University, Ames, Iowa; and the

Commission of Scientific Research Projects, Uludag University (Project YDP (V)-2009/4).

Disclosure Statement

No competing financial interests exist.

1.6 References

Atanassova V, Meindl A, Ring C. Prevalence of Staphylococcus aureus and staphylococcal

enterotoxins in raw pork and uncooked smoked ham: A comparison of classical culturing

detection and RFLP-PCR. Int J Food Microbiol 2001;68:105-113.

Aydin A, Muratoglu K, Sudagidan M, Bostan K, Okuklu B, Harsa S. Prevalence and antibiotic

resistance of foodborne Staphylococcus aureus isolates in Turkey. Foodborne Pathog Dis

2011;8:63-69.

Baba T, Takeuchi F, Kuroda M, Yuzawa H, Aoki K, Oguchi A, Nagai Y, Iwama N, Asano K,

Naimi T, Kuroda H, Cui L, Yamamoto K, Hiramatsu K. Genome and virulence

determinants of high virulence community-acquired MRSA. Lancet 2002;359:1819-1827.

Bhargava K, Wang X, Donabedian S, Zervos M, de Rocha L, Zhang Y. Methicillin-resistant

Staphylococcus aureus in retail meat, Detroit, Michigan, USA. Emerg Infect Dis

2011;17:1135-1137.

Page 49: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

38

[CLSI] Clinical and Laboratory Standards Institute. Performance Standards for Microbiology

Susceptibility Testing: Nineteenth Informational Supplement. Wayne, PA: Clinical and

Laboratory Standards Institute, 2009, pp. M100-S19.

de Boer E, Zwartkruis-Nahuis JT, Wit B, Huijsdens XW, de Neeling AJ, Bosch T, van

Oosterom RA, Vila A, Heuvelink AE. Prevalence of methicillin-resistant Staphylococcus

aureus in meat. Int J Food Microbiol 2009;134:52-56.

de Neeling AJ, van den Broek MJ, Spalburg EC, van Santen-Verheuvel MG, Dam-Deisz WD,

Boshuizen HC, van de Giessen AW, van Duijkeren E, Huijsdens XW. High prevalence of

methicillin resistant Staphylococcus aureus in pigs. Vet Microbiol 2007;122:366-372.

DeWaal CS, Roberts C, Catella C. Antibiotic resistance in foodborne pathogens: Evidence of

the need for a risk management strategy. Washington, DC: Center for Science in the Public

Interest, 2011.

Dufour P, Gillet Y, Bes M, Lina G, Vandenesch F, Floret D, Etienne J, Richet H. Community-

acquired methicillin-resistant Staphylococcus aureus infections in France: Emergence of a

single clone that produces Panton-Valentine leukocidin. Clin Infect Dis 2002;35:819-824.

Ebert MD, Sheth S, Fishman EK. Necrotizing pneumonia caused by community-acquired

methicillin-resistant Staphylococcus aureus: An increasing cause of ‘‘mayhem in the

lung’’. Emerg Radiol 2009;16:159-162.

Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for

characterization of methicillin-resistant and methicillin-susceptible clones of

Staphylococcus aureus. J Clin Microbiol 2000;38:1008-1015.

Golding GR, Bryden L, Levett PN, McDonald RR, Wong A, Wylie J, Graham MR, Tyler S,

Van Domselaar G, Simor AE, Gravel D, Mulvey MR. Livestock-associated methicillin-

resistant Staphylococcus aureus sequence type 398 in humans, Canada. Emerg Infect Dis

2010;16:587-594.

Page 50: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

39

Guardabassi L, O’Donoghue M, Moodley A, Ho J, Boost M. Novel lineage of methicillin-

resistant Staphylococcus aureus, Hong Kong. Emerg Infect Dis 2009;15:1998-2000.

Hanson BM, Dressler AE, Harper AL, Scheibel RP, Wardyn SE, Roberts LK, Kroeger JS,

Smith TC. Prevalence of Staphylococcus aureus and methicillin-resistant Staphylococcus

aureus (MRSA) on retail meat in Iowa. J Infect Public Health 2011;4:169-174.

Hartman B, Tomasz A. Altered penicillin-binding proteins in methicillin-resistant strains of

Staphylococcus aureus. Antimicrob Agents Chemother 1981;19:726-735.

Hasman H, Moodley A, Guardabassi L, Stegger M, Skov RL, Aarestrup FM. Spa type

distribution in Staphylococcus aureus originating from pigs, cattle and poultry. Vet

Microbiol 2010;141:326-331.

Huber H, Koller S, Giezendanner N, Stephan R, Zweifel C. Prevalence and characteristics of

methicillin-resistant Staphylococcus aureus in humans in contact with farm animals, in

livestock, and in food of animal origin, Switzerland, 2009. Euro Surveill 2010;15.

Jarløv JO, Busch-Sørensen C, Espersen F, Mortensen I, Hougaard DM, Rosdahl VT.

Evaluation of different methods for the detection of methicillin resistance in coagulase-

negative staphylococci. J Antimicrob Chemother 1997;40:241-249.

Kadlec K, Schwarz S. Identification of a novel trimethoprim resistance gene, dfrK, in a

methicillin-resistant Staphylococcus aureus ST398 strain and its physical linkage to the

tetracycline resistance gene tet(L). Antimicrob Agents Chemother 2009;53:776-778.

Kehrenberg C, Cuny C, Strommenger B, Schwarz S, Witte W. Methicillin-resistant and -

susceptible Staphylococcus aureus strains of clonal lineages ST398 and ST9 from swine

carry the multidrug resistance gene cfr. Antimicrob Agents Chemother 2009;53:779-781.

Kennedy AD, Otto M, Braughton KR, Whitney AR, Chen L, Mathema B, Mediavilla, JR,

Byrne KA, Parkins LD, Tenover FC, Kreiswirth BN, Musser JM, DeLeo FR. Epidemic

community-associated methicillin-resistant Staphylococcus aureus: Recent clonal

expansion and diversification. Proc Natl Acad Sci U S A 2008;105:1327-1332.

Page 51: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

40

Khalid KA, Zakaria Z, Toung OP, McOrist S. Low levels of methicillin-resistant

Staphylococcus aureus in pigs in Malaysia. Vet Rec 2009;164:626-627.

Krziwanek K, Metz-Gercek S, Mittermayer H. Methicillin-resistant Staphylococcus aureus

ST398 from human patients, upper Austria. Emerg Infect Dis 2009;15:766-769.

Köck R, Harlizius J, Bressan N, Laerberg R, Wieler LH, Witte W, Deurenberg RH, Voss A,

Becker K, Friedrich AW. Prevalence and molecular characteristics of methicillin-resistant

Staphylococcus aureus (MRSA) among pigs on German farms and import of livestock-

related MRSA into hospitals. Eur J Clin Microbiol Infect Dis 2009;28:1375-1382.

Lewis HC, Mølbak K, Reese C, Aarestrup FM, Selchau M, Sørum M, Skov, RL. Pigs as

source of methicillin-resistant Staphylococcus aureus CC398 infections in humans,

Denmark. Emerg Infect Dis 2008;14:1383-389.

Lim SK, Nam HM, Park HJ, Lee HS, Choi MJ, Jung SC, Lee JY, Kim YC, Song SW, Wee

SH. Prevalence and characterization of methicillin-resistant Staphylococcus aureus in raw

meat in Korea. J Microbiol Biotechnol 2010;20:775-778.

Lowe BA, Marsh TL, Isaacs-Cosgrove N, Kirkwood RN, Kiupel M, Mulks MH. Microbial

communities in the tonsils of healthy pigs. Vet Microbiol 2011;147:346-357.

Makgotlho PE, Kock MM, Hoosen A, Lekalakala R, Omar S, Dove M, Ehlers MM. Molecular

identification and genotyping of MRSA isolates. FEMS Immunol Med Microbiol 2009;57:

104-115.

Malachowa N, Sabat A, Gniadkowski M, Krzyszton-Russjan J, Empel J, Miedzobrodzki J,

Kosowska-Shick K, Appelbaum PC, Hryniewicz W. Comparison of multiple-locus

variable number tandem-repeat analysis with pulsed-field gel electrophoresis, spa typing,

and multilocus sequence typing for clonal characterization of Staphylococcus aureus

isolates. J Clin Microbiol 2005;43:3095-3100.

Marmur J. A procedure for the isolation of desoxyribonucleic acid from micro-organisms. J

Mol Biol 1961;3:208–218.

Page 52: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

41

McClure JA, Conly JM, Lau V, Elsayed S, Louie T, Hutchins W, Zhang K. Novel multiplex

PCR assay for detection of the staphylococcal virulence marker Panton-Valentine

leukocidin genes and simultaneous discrimination of methicillin-susceptible from -

resistant staphylococci. J Clin Microbiol 2006;44:1141-1144.

McDougal LK, Steward CD, Killgore GE, Chaitram JM, McAllister SK, Tenover FC. Pulsed-

field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from

the United States: Establishing a national database. J Clin Microbiol 2003;41:5113-5120.

Moon JS, Lee AR, Kang HM, Lee ES, Kim MN, Paik YH, Park YH, Joo YS, Koo HC.

Phenotypic and genetic antibiogram of methicillin-resistant staphylococci isolated from

bovine mastitis in Korea. J Dairy Sci 2007;90:1176-1185.

Mørk T, Kvitle B, Jørgensen HJ. Reservoirs of Staphylococcus aureus in meat sheep and dairy

cattle. Vet Microbiol 2012;155:81-87.

Nam HM, Lee AL, Jung SC, Kim MN, Jang GC, Wee SH, Lim SK. Antimicrobial

susceptibility of Staphylococcus aureus and characterization of methicillin-resistant

Staphylococcus aureus isolated from bovine mastitis in Korea. Foodborne Pathog Dis

2011;8:231-238.

Nemati M, Hermans K, Lipinska U, Denis O, Deplano A, Struelens M, Devriese LA, Pasmans

F, Haesebrouck F. Antimicrobial resistance of old and recent Staphylococcus aureus

isolates from poultry: First detection of livestock-associated methicillin-resistant strain

ST398. Antimicrob Agents Chemother 2008;52:3817-3819.

Pan A, Battisti A, Zoncada A, Bernieri F, Boldini M, Franco A, Giorgi M, Iurescia M,

Lorenzotti S, Martinotti M, Monaci M, Pantosti A. Community-acquired methicillin-

resistant Staphylococcus aureus ST398 infection, Italy. Emerg Infect Dis 2009;15:845-

847.

Persoons D, Van Hoorebeke S, Hermans K, Butaye P, de Kruif A, Haesebrouck F, Dewulf J.

Methicillin-resistant Staphylococcus aureus in poultry. Emerg Infect Dis 2009;15:452-453.

Page 53: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

42

Pu S, Han F, Ge B. Isolation and characterization of methicillin-resistant Staphylococcus

aureus strains from Louisiana retail meats. Appl Environ Microbiol 2009;75:265-267.

Pu S, Wang F, Ge B. Characterization of toxin genes and antimicrobial susceptibility of

Staphylococcus aureus isolates from Louisiana retail meats. Foodborne Pathog Dis

2011;8:299-306.

Ribot EM, Fair MA, Gautom R, Cameron DN, Hunter SB, Swaminathan B, Barrett TJ.

Standardization of pulsed-field gel electrophoresis protocols for the subtyping of

Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog Dis

2006;3:59-67.

Smith TC, Male MJ, Harper AL, Kroeger JS, Tinkler GP, Moritz ED, Capuano AW, Herwaldt

LA, Diekema DJ. Methicillin-resistant Staphylococcus aureus (MRSA) strain ST398 is

present in midwestern U.S. swine and swine workers. PLoS One 2009;4:e4258.

Tenhagen BA, Fetsch A, Stührenberg B, Schleuter G, Guerra B, Hammerl JA, Hertwig S,

Kowall J, Kämpe U, Schroeter A, Bräunig J, Kä sbohrer A, Appel B. Prevalence of MRSA

types in slaughter pigs in different German abattoirs. Vet Rec 2009;165:589-593.

Tenover FC, Arbeit R, Archer G, Biddle J, Byrne S, Goering R, Hancock G, Hebert GA, Hill

B, Hollis R, Jarvis WR, Kreiswirth B, Eisner W, Maslow J, McDougal LK, Miller JM,

Mulligan M, Pfaller MA. Comparison of traditional and molecular methods of typing

isolates of Staphylococcus aureus. J Clin Microbiol 1994;32:407-415.

Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan

B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel

electrophoresis: Criteria for bacterial strain typing. J Clin Microbiol 1995;33:2233-2239.

Tiemersma EW, Bronzwaer SL, Lyytika¨ inen O, Degener JE, Schrijnemakers P, Bruinsma N,

Monen J, Witte W, Grundman H, Participants, E.A.R.S.S. Methicillin-resistant

Staphylococcus aureus in Europe, 1999-2002. Emerg Infect Dis 2004;10:1627-1634.

Page 54: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

43

van Belkum A, Melles DC, Peeters JK, van Leeuwen WB, van Duijkeren E, Huijsdens XW,

Spalburg E, de Neeling AJ, Verbrugh HA; Dutch Working Party on Surveillance and

Research of MRSA-SOM. Methicillin-resistant and -susceptible Staphylococcus aureus

sequence type 398 in pigs and humans. Emerg Infect Dis 2008;14:479-483.

Van De Griend P, Herwaldt LA, Alvis B, DeMartino M, Heilmann K, Doern G, Winokur P,

Vonstein DD, Diekema D. Community-associated methicillin-resistant Staphylococcus

aureus, Iowa, USA. Emerg Infect Dis 2009;15:1582-1589.

Vandenesch F, Naimi T, Enright MC, Lina G, Nimmo GR, Heffernan H, Liassine N, Bes M,

Greenland T, Reverdy ME, Etienne J. Community-acquired methicillin-resistant

Staphylococcus aureus carrying Panton-Valentine leukocidin genes: Worldwide

emergence. Emerg Infect Dis 2003;9:978-984.

Waters AE, Contente-Cuomo T, Buchhagen J, Liu CM, Watson L, Pearce K, Foster JT,

Bowers J, Driebe EM, Engelthaler DM, Keim PS, Price LB. Multidrug-resistant

Staphylococcus aureus in US meat and poultry. Clin Infect Dis 2011;52:1227-1230.

Weese JS, Avery BP, Reid-Smith RJ. Detection and quantification of methicillin-resistant

Staphylococcus aureus (MRSA) clones in retail meat products. Lett Appl Microbiol

2010;51:338-342.

Welinder-Olsson C, Florén-Johansson K, Larsson L, Oberg S, Karlsson L, Ahrén C. Infection

with Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus

t034. Emerg Infect Dis 2008;14:1271-1272.

Wertheim H, Verbrugh HA, van Pelt C, de Man P, van Belkum A, Vos MC. Improved

detection of methicillin-resistant Staphylococcus aureus using phenyl mannitol broth

containing aztreonam and ceftizoxime. J Clin Microbiol 2001;39:2660-2662.

Wielders CL, Vriens MR, Brisse S, de Graaf-Miltenburg LA, Troelstra A, Fleer A, Schmitz

FJ, Verhoef J, Fluit AC. In-vivo transfer of mecA DNA to Staphylococcus aureus. Lancet

2001;357:1674-1675.

Page 55: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

44

Table 1 (Desarrollo 1). Nucleotide sequence of the primers used in multiplex polymerase

chain reaction for detection of 16S rRNA, mecA, and Panton-Valentine leukocidin genes

(McClure et al., 2006); and multilocus sequence typing analysis for detection of arcC, aroE,

glpF, gmk, pta, tpi, and yqiL genes (Enright et al., 2000).

Primer Oligonucleotide sequence Amplicon

Size (bp)

Staph 756 F 5’-AAC TCT GTT ATT AGG GAA GAA CA-3’

Staph 750 R 5’-CCA CCT TCC TCC GGT TTG TCA CC-3’ 756

mecA 1 F 5’-GTA GAA ATG ACT GAA CGT CCG ATA A-3’

mecA-2 R 5’-CCA ATT CCA CAT TGT TTC GGT CTA A-3’ 310

luk-PV-1 F 5’-ATC ATT AGG TAA AAT GTC TGG ACA TGA TCC A-3’

luk-PV-2 R 5’-GCA TCA AGT GTA TTG GAT AGC AAA AGC-3’ 433

arcC F 5'-TTG ATT CAC CAG CGC GTA TTG TC-3'

arcC R 5'-AGG TAT CTG CTT CAA TCA GCG-3' 456

aroE F 5'-ATC GGA AAT CCT ATT TCA CAT TC-3'

aroE R 5'-GGT GTT GTA TTA ATA ACG ATA TC-3' 456

glpF F 5'-CTA GGA ACT GCA ATC TTA ATC C-3'

glpF R 5'-TGG TAA AAT CGC ATG TCC AAT TC-3' 465

gmK F 5'-ATC GTT TTA TCG GGA CCA TC-3'

gmK R 5'-TCA TTA ACT ACA ACG TAA TCG TA-3' 429

pta F 5'-GTT AAA ATC GTA TTA CCT GAA GG-3'

pta R 5'-GAC CCT TTT GTT GAA AAG CTT AA-3' 474

tpi F 5'-TCG TTC ATT CTG AAC GTC GTG AA3'

tpi R 5'-TTT GCA CCT TCT AAC AAT TGT AC-3' 402

yqiL F 5'-CAG CAT ACA GGA CAC CTA TTG GC-3'

yqiL R 5'-CGT TGA GGA ATC GAT ACT GGA AC-3' 516

Page 56: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

45

Table 2 (Desarrollo 1). Identification of 16S rRNA, mecA and Panton-Valentine leukocidin

(PVL) genes in Staphylococcus aureus and methicillin-resistant Staphylococcus aureus

isolates from animals and retail meat.

No. of isolates with the specific gene (%) Source

No. of

samples

No. of samples positive

for S. aureus (%) 16S rRNA mecA PVL

Animal

Sheep

Pig

Cow

Total

Raw meat

Pork

Chicken

Beef

Total

Deli meat

Ham

Turkey

Chicken

Total

64

60

43

167

71

37

37

145

21

16

9

46

26 (40.6)

30 (50.0)

2 (4.7)

58 (34.7)

35 (49.3)

25 (67.6)

10 (27.0)

69 (47.6)

4 (19.0)

0 (0.0)

2 (22.2)

6 (13.0)

26 (40.6)

30 (50.0)

2 (4.7)

58 (34.7)

35 (49.3)

25 (67.6)

10 (27.0)

69 (47.6)

4 (19.0)

0 (0.0)

2 (22.2)

6 (13.0)

0 (0.0)

5 (7.0)

5 (3.4)

0 (0.0)

0 (0.0)

0 (0.0)

0 (0.0)

Page 57: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

46

Table 3 (Desarrollo 1). Antimicrobial resistance of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) isolates from

animals and retail meat.

Antimicrobial No. (%) of resistant all S. aureus isolates No. (%) of resistant

MRSA isolates

Subclass Agent Animal (n=58)

(Sheep; Pig; Cow) Raw meat (n=69)

(Pork; Chicken; Beef) Deli meat (n=6)

(Ham;Turkey;Chicken) Pork meat

(n=5) Macrolides Tetracyclines Fluoroquinolones Phenicols Penicillins Aminoglycosides Streptogramin Lincosamides

Erythromycin Tetracycline Ciprofloxacin Chloramphenicol Penicillin Gentamicin Kanamycin Streptomycin Quinupristin/dalfopristin Lincomycin

3 (5.2) (0; 3; 0)

47 (81.0) (24; 23; 0)

3 (5.2) (0; 3; 0)

49 (84.5) (19; 30; 0)

1 (1.7) (1; 0; 0)

6 (10.3) (1; 5; 0)

38 (65.5) (13; 24; 1)

28 (40.6) (25; 3; 0)

29 (42.0) (27; 2; 0)

2 (2.9) (2; 0; 0)

2 (2.9) (2; 0; 0)

35 (50.7) (27; 4; 4)

1 (1.4) (1; 0; 0)

2 (2.9) (2; 0; 0)

2 (2.9) (2; 0; 0)

29 (42.0) (26; 3; 0)

1 (16.7) (0; 0; 1)

2 (33.3) (2; 0; 0)

1 (16.7) (1; 0; 0)

4 (80.0)

4 (80.0)

5 (100.0)

1 (20.0)

4 (80.0)

The following antimicrobials were tested using the National Antimicrobial Resistance Monitoring System (NARMS) panel: tigecycline (range 0.015-0.5 µg/ml); tetracycline (1-32); chloramphenicol (2-32); daptomycin (0.25-16); streptomycin (512-2048); tylosin tartrate (0.25-32); quinupristin/dalfopristin (0.5-32); linezoid (0.5-8); nitrofutantoin (2-64); penicillin (0.25-16); kanamycın (128-1024); erythromycin (0.25-8); ciprofloxacin (0.12-4); vancomycin (0.25-32); lincomycin (1-8); gentamicin (128-1024). All isolates were susceptible to vancomycin, tigecycline, daptomycin, tylosin tartrate, nitrofurantoin and linezolid.

M 1 2 3 4 5 6 7 8 9 10 M

Page 58: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

47

Table 4 (Desarrollo 1). Minimum inhibitory concentrations (MICs) of resistant Staphylococcus aureus and methicillin-resistant S.

aureus isolates from animals and retail meat.

No. (%) of resistant S. aureus isolates with MIC (µg/mL) of Antimicrobial Agent (breakpoints) Total

0.5 - 1 2 4 >4 8 >8 16 >16 32 >32 256 >256 Erythromycin (≥8 µg/mL)a 32 32

(100.0)

Tetracycline (≥16 µg/mL)a 76 11 (14.5)

15 (19.7)

50 (65.8)

Ciprofloxacin (≥4 µg/mL)a 2 2 (100.0)

Chloramphenicol (≥32 µg/mL)a 5 3 (60.0)

2 (40.0)

Penicillin (≥0.25 µg/mL)a 86 41 (47.7)

9 (10.5)

14 (16.3)

10 (11.6)

7 ( 8.1)

5 (5.8)

Gentamicin (≥16 µg/mL)a 2 2 (100.0)

Kanamycin (≥64 µg/mL)a 2 2 (100.0)

Streptomycin (≥8 µg/mL)b 6 6 (100.0)

Quinupristin/dalfopristin (≥8 µg/mL)a 2 1 (50.0)

1 (50.0)

Lincomycin (≥4 µg/mL)c 68 4 ( 5.6)

3 ( 4.4)

61 (89.7)

aLevels of MIC values against tested antibiotics (CLSI, 2009). bLevels of MIC values against tested antibiotics (Jarløv et al., 1997). cLevels of MIC values against tested antibiotics (Nemati et al., 2008).

Page 59: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

48

Table 5 (Desarrollo 1). Antimicrobial resistance profiles of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA)

isolates from animals and retail meat.

No. (%) of all S. aureus isolates with the specific profile

No. (%) of MRSA isolates with the specific profile Antimicrobial resistance profile

No. of antimicrobial subclasses resistant to

Animal (n=58)

Raw meat (n=69)

Deli meat (n=6)

Raw meat (n=5)

ERY-PEN-TET-LINC-CHL-GEN-CIP-QUI/DAL 8 1 ( 1.4) ERY-PEN-TET-LINC-CHL-CIP-QUI/DAL 7 1 ( 1.4) ERY-PEN-TET-LINC-CHL-STR 6 2 ( 3.4) ERY-PEN-TET-LINC-KAN 5 1 ( 1.4) PEN-TET-LINC-CHL-STR 5 1 ( 1.7) PEN-TET-LINC-GEN 4 1 ( 1.7) PEN-TET-LINC-KAN 4 1 ( 1.4) 1 (20.0) PEN-TET-LINC-STR 4 2 ( 3.4) ERY-PEN-TET-LINC 4 1 ( 1.7) 13 (18.8) 3 (60.0) PEN-TET-LINC 3 22 (37.9) 1 ( 1.4) PEN-LINC-STR 3 1 ( 1.7) ERY-PEN-LINC 3 2 ( 2.9) ERY-TET-LINC 3 5 ( 7.2) PEN-LINC 2 4 ( 6.9) 1 ( 1.4) 1 (16.7) PEN-TET 2 12 (20.7) 2 ( 2.9) TET-LINC 2 3 ( 5.2) ERY-LINC 2 3 ( 4.3) ERY-PEN 2 2 ( 2.9) 1 (20.0) LINC 1 1 ( 1.7) PEN 1 3 ( 5.2) 10 (14.5) 1 (16.7) TET 1 3 ( 5.2) 4 ( 5.8) ERY 1 1 (16.7) Susceptible to all tested 0 2 ( 3.4) 22 (31.9) 3 (50.0)

CIP, ciprofloxacin; CHL, chloramphenicol; ERY, erythromycin; GEN, gentamicin; KAN, kanamycin; LINC, lincomycin; QUI/DAL, quinupristin/dalfopristin; PEN, penicillin; STR, streptomycin, TET, tetracycline.

M 1 2 3 4 5 6 7 8 9 10 M

Page 60: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

49

Figure 1 (Desarrollo 1). Dendrogram showing the genetic relatedness of 100 Staphylococcus

aureus isolates as determined by the analysis of pulsed-field gel electrophoresis (PFGE)

profiles by the unweighted-pair group method with arithmetic averages with the sequence type

(ST). The scale indicates levels of similarity within this set of isolates. Red line indicates the

cutoff at 80%. Numbers represent the samples codes, followed on the right by the STs and the

type of the sample. Clusters are separated by horizontal lines and labeled with correlative

numbers. Asterisks indicate methicillin-resistant Staphylococcus aureus isolates determined

by multiplex polymerase chain reaction targeting the mecA gene.

Page 61: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

50

PFGE SmaI

100

9590858075706560555045

PFGE SmaI

118

120

92

52

53

27

87

91

72

73

113

98

99

88

111

93

108

110

11

89

10

112

70

119

121

123

102

103

85

84

82

83

97

114

115

116

117

95

100

101

105

106

107

96

104

86

94

129

130

131

133

134

125

126

127

128

22

135

136

137

138

139

140

141

142

143

144

124

1

14

57

63

61

3

5

4

66

67

65

60

18

145

78

79

80

81

77

62

64

76

122

49

109

15

7

132

23

32

36

37

39

30

NT

398

50

398

508

72

1

1

1

6

6

6

188

1159

1159

1159

2187

2187

352

5

5

146

5

5

5

5

5

5

5

5

NT

5

5

5

5

5

5

5

5

5

5

5

5

5

5

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

8

9

9

9

9

9

9

9

9

9

5

5

5

5

5

15

15

15

15

15

15

133

133

133

2111

133

133

2111

Deli Meat Chicken

Deli Meat Ham

Bovine Meat

Porcine Meat

Porcine Meat

Ovine

Poultry Meat

Bovine Meat

Porcine Meat

Porcine Meat

Bovine Meat

Poultry Meat

Poultry Meat

Poultry Meat

Bovine Meat

Bovine Meat

Bovine Meat

Bovine Meat

Bovine

Bovine Meat

Bovine

Bovine Meat

Porcine Meat

Deli Meat Ham

Deli Meat Chicken

Deli Meat Ham

Poultry Meat

Poultry Meat

Poultry Meat

Poultry Meat

Poultry Meat

Poultry Meat

Poultry Meat

Poultry Meat

Poultry Meat

Poultry Meat

Poultry Meat

Poultry Meat

Poultry Meat

Poultry Meat

Poultry meat

Poultry Meat

Poultry Meat

Poultry Meat

Poultry Meat

Poultry Meat

Poultry Meat

Porcine

Porcine

Porcine

Porcine

Porcine

Porcine

Porcine

Porcine

Porcine

Porcine

Porcine

Porcine

Porcine

Porcine

Porcine

Porcine

Porcine

Porcine

Porcine

Porcine

Porcine

Porcine

Porcine

Porcine Meat

Porcine Meat

Porcine Meat

Porcine

Porcine

Porcine

Porcine Meat

Porcine Meat

Porcine Meat

Porcine Meat

Porcine

Porcine

Porcine Meat

Porcine Meat

Porcine Meat

Porcine Meat

Porcine Meat

Porcine Meat

Porcine Meat

Porcine Meat

Deli Meat Ham

Porcine

Bovine Meat

Ovine

Ovine

Ovine

Ovine

Ovine

Ovine

Ovine

1

2

3

4

5

6

7

* *

Isolate # S Meat/Anima

Page 62: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

51

2. Multiplex real-time PCR for detection of Staphylococcus aureus, mecA

and Panton-Valentine Leukocidin (PVL) genes from selective

enrichments from animals and retail meat

Valeria Velasco1,2, Julie S. Sherwood1, Pedro Rojas3, Catherine M. Logue4*

1Department of Veterinary and Microbiological Sciences, North Dakota State University,

Fargo, North Dakota, United States of America, 2Department of Animal Sciences, University of Concepción, Chillán, Chile, 3Laboratory of Animal Physiology and Endocrinology, Veterinary Sciences, University of

Concepción, Chillán, Chile, 4Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary

Medicine, Iowa State University, Ames, Iowa, United States of America

Enviado a PLOS ONE, en proceso de revisión.

Abstract

The aim of this study was to compare a real-time PCR assay, with a conventional culture/PCR

method, to detect S. aureus, mecA and Panton-Valentine Leukocidin (PVL) genes in animals

and retail meat, using a two-step selective enrichment protocol. A total of 234 samples were

examined (77 animal nasal swabs, 112 retail raw meat, and 45 deli meat). The multiplex real-

time PCR targeted the genes: nuc (identification of S. aureus), mecA (associated with

methicillin resistance) and PVL (virulence factor), and the primary and secondary enrichment

samples were assessed. The conventional culture/PCR method included the two-step selective

enrichment, selective plating, biochemical testing, and multiplex PCR for confirmation. The

conventional culture/PCR method recovered 95/234 positive S. aureus samples. Application of

real-time PCR on samples following primary and secondary enrichment detected S. aureus in

111/234 and 120/234 samples respectively. For detection of S. aureus, the kappa statistic was

0.68-0.88 (from substantial to almost perfect agreement) and 0.29-0.77 (from fair to

substantial agreement) for primary and secondary enrichments, respectively, using real-time

PCR. For detection of mecA gene, the kappa statistic was 0-0.49 (from no agreement beyond

Page 63: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

52

that expected by chance to moderate agreement) for primary and secondary enrichment

samples. Two pork samples were mecA gene positive by all methods. The real-time PCR assay

detected the mecA gene in some samples that were negative for S. aureus, but positive for

Staphylococcus spp. The PVL gene was not detected in any sample by the conventional

culture/PCR method or the real-time PCR assay. Among S. aureus isolated by conventional

culture/PCR method, the sequence type ST398, and multi-drug resistant strains were found in

animals and raw meat samples. The real-time PCR assay may be recommended as a rapid

method for the detection of S. aureus and the mecA gene, with further confirmation of

methicillin-resistant S. aureus (MRSA) using the standard culture method.

*Corresponding Author

E-mail: [email protected]

1802 University Blvd, VMRI #2

Iowa State University, Ames, IA 50011, USA

Ph 515 294 3785; fax 515 294 1401

2.1 Introduction

Staphylococcus aureus is considered as an important cause of a wide variety of diseases in

humans such as: food poisoning, pneumonia, wound and nosocomial infections [1,2]. There

are many anti-staphylococcal agents; however, the bacterium has developed mechanisms to

neutralize them such as the methicillin resistance mechanism [3]. Methicillin-resistant S.

aureus (MRSA) is an increasing cause of health care-associated (HA-MRSA) [1], community-

associated (CA-MRSA) [2], and livestock-associated (LA-MRSA) infections worldwide [4].

The altered penicillin-binding protein (PBP2a) is associated with methicillin resistance. This

protein has a reduced affinity for β-lactam antibiotics [5,6], and is encoded by the mecA gene,

which is carried on the staphylococcal cassette chromosome mec (SCCmec) [5]. CA-MRSA

strains are more likely to encode the Panton–Valentine leukocidin (PVL) toxin, which is a

pore-forming toxin considered as a virulence factor [7,8]. The PVL toxin has been related to

life-threatening CA-MRSA infections and deaths, primarily severe skin infections and tissue

necrosis [9].

Page 64: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

53

In the United States, approximately 29% (78.9 million people) and 1.5% (4.1 million) of the

population were estimated to be nasal carriers of S. aureus and MRSA, respectively [10]. An

estimated 478,000 hospitalizations corresponded to S. aureus infections, of which 278,000

hospitalizations were attributed to MRSA infections in 2005 [11]. In addition, the carriage of

MRSA in meat-producing animals [12-14] and the contamination of retail meat with MRSA

[15-17] have increased the concern that food may serve as a vehicle to transmit MRSA to the

human population [17].

Different culture methods have been used to detect MRSA. Generally, conventional

microbiological procedures are laborious, since they require the isolation of S. aureus before

assessing methicillin resistance. However, culture methods are still considered as standard

methods for traditional confirmation of S. aureus. Wertheim et al. (2001) [18] developed a

selective media containing phenol red and antibiotics (aztreonam and ceftizoxime), increasing

the sensitivity of the detection of MRSA after 48 h of incubation, but at the expense of longer

time needed for confirmation. The isolation and identification of MRSA, including selective

enrichment and plating on selective agars, followed by confirmation using biochemical testing

and/or PCR assays, requires 3-7 days approximately [15,16,19]. Therefore, development of a

rapid method for detection of MRSA has become an important need in the microbiological

analysis of samples especially those where there is a potential risk of exposure for humans.

Real-time PCR technology has been used as an alternative to culture methods for the rapid

detection of S. aureus and MRSA. Detection using real-time PCR may decrease the time of

analysis to 18 h after consecutive broth enrichment in clinical samples [20]; or <2 h in positive

blood cultures [21,22]. However, most studies have used real-time PCR to detect MRSA in

clinical samples and isolates and a few studies have evaluated the application of this method

for the detection of MRSA in animals [23,24] and meat [15,25,26].

Since S. aureus and MRSA have been found in food-producing animals and retail meat,

increasing the concern about the exposure for humans through the food chain, and there is a

need to decrease the time of analysis, we analyzed samples obtained from animals and retail

meats using primary and secondary selective enrichments in order to detect nuc (identification

of S. aureus), mecA (associated with methicillin resistance) and PVL (virulence factor) genes

Page 65: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

54

using a multiplex real-time PCR assay. The results obtained with the real-time PCR assay

were compared with the results from a culture method, considered as the standard method,

which also included the two-step selective enrichment, followed by selective plating,

biochemical testing and conventional multiplex PCR. Positive samples obtained with the

culture method were characterized by multilocus sequence typing (MLST) and the

antimicrobial resistance profiles were obtained.

2.2 Materials and Methods

2.2.1 Samples

A total of 77 nasal swabs (Becton, Dickinson and Company, Sparks, MD, USA) were

collected from animals (sheep, n=35; pigs, n=28; cows, n=14) sampled immediately after

stunning at the Meat Lab (Department of Animal Sciences); and at the ND Veterinary

Diagnostic Lab at North Dakota State University, Fargo, ND. Animal samples were collected

during the period May 2010-April 2011. The protocol of sampling was approved by the North

Dakota State University Institutional Biosafety Committee (B10014).

In addition, 112 retail raw meat (pork, n=39; chicken, n=37; beef, n=36) and 45 deli meat

(ham, n=20; turkey, n=16; chicken, n=9) samples were randomly purchased from four

different supermarket chains in Fargo, ND. Sampling visits were made between June 2010 and

January 2011. All samples were immediately stored at 4°C and processed within six hours of

collection.

2.2.2 Culture method

Staphylococcus aureus were isolated by the two-step selective enrichment procedure

according to the method described by de Boer et al. (2009) [15] followed by plating steps on

selective agar. Briefly, for the primary enrichment, a 25 g sample of retail meat and 225 mL of

MHB+6.5%NaCl (Mueller-Hinton broth [Difco, Becton, Dickinson, Sparks, MD, USA] with

added 6.5% sodium chloride [VWR International, West Chester, PA, USA]) were placed in a

sterile stomacher bag and homogenized using a stomacher®400 circulator (Seaward, England)

at 230 rpm for 90 seconds. The suspension was incubated for 18-20 h at 37ºC. Following

Page 66: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

55

primary enrichment, a secondary enrichment was used by inoculating 1 mL of the primary

enrichment broth into 9 mL of PHMB+ (D-mannitol in phenol red mannitol broth base [Difco,

Becton, Dickinson, Sparks, MD, USA] containing ceftizoxime [5 µg mL-1, US Pharmacopeia,

Rockville, MD, USA] and aztreonam [75 µg mL-1, Sigma Chemical CO., Louis, MO, USA]

according to Wertheim et al. [2001] [18]), followed by incubation for 18-20 h at 37ºC. Nasal

swabs from animals were placed directly in 9 mL MHB+6.5%NaCl and incubated for 18-20 h

at 37ºC. Then, the secondary enrichment was used following the procedure described above.

Following incubation of the secondary enrichment broth, all samples were struck directly to

BP medium (Baird-Parker medium [Difco, Becton, Dickinson, Sparks, MD, USA])

supplemented with egg yolk tellurite according to manufacturer’s recommendations and

incubated for 48 h at 37°C. Presumptive S. aureus colonies (black colonies surrounded by 2 to

5 mm clear zones) were transferred to TSA II 5%SB plates (Trypticase soy agar with 5%

sheep blood [Difco, Becton, Dickinson, Sparks, MD, USA]) and incubated for 18-20 h at 37ºC.

Suspect S. aureus colonies (presence of β-haemolysis) were confirmed using Sensititre Gram

Positive ID (GPID) plates (Sensititre®, TREK Diagnostic Systems Ltd., Cleveland, OH, USA)

according to the manufacturer’s instructions.

2.2.3 Conventional multiplex PCR method

Confirmed S. aureus strains were recovered from frozen stock to TSA plates (Trypticase soy

agar [Difco, Becton, Dickinson, Sparks, MD, USA]) and incubated at 37°C for 18-24 h. DNA

extraction was carried out by suspending one colony in 50 µL of DNase/RNase-free distilled

water (Gibco Invitrogen, Grand Island, NY, USA), heating (99°C, 10 min) and centrifugation

(30,000×g, 1 min) to remove cellular debris. The remaining DNA was transferred to a new

tube and stored at -20°C.

A multiplex PCR assay for the detection of 16S rRNA (identification of S. aureus), mecA

(associated with methicillin resistance) and PVL-encoding genes (virulence factor) (Table 1)

included 2 µL of the DNA template (described above) added to a 50 µL final reaction mixture

containing: 1X Go Taq® Reaction Buffer (pH 8.5), 0.025 U µL-1 of Go Taq® DNA

Page 67: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

56

polymerase, 200 µM dNTP (Promega, Madison, WI, USA) and 1 µM of primers (16S rRNA,

mecA, LukS/F-PV) (Integrated DNA Technologies, Inc., Coralville, IA, USA).

Multiplex PCR reactions were carried out in a thermocycler (Eppendorf, Hamburg, Germany),

and the PCR conditions were adjusted according to the protocol described by Makgotlho et al.

(2009) [27] as follows: initial denaturation at 94°C for 10 min, followed by 10 cycles of

denaturation at 94°C for 45 s, annealing at 55°C for 45 s and extension at 72°C for 75 s

followed by another 25 cycles of 94°C for 45 s, 50°C for 45 s and a final extension step at

72°C for 10 min. An external positive control (DNA extracted from MRSA ATCC 35591,

positive for mecA and PVL genes) and an external negative control (DNase/RNase-free

distilled water) were included with each run.

PCR amplicons (10 µL) were loaded into a 1.5% (wt/vol) agarose gel (Agarose ITM) using

EzVision One loading dye (Amresco, Solon, OH, USA) and electrophoresis was carried out in

1X TAE buffer at 100 v for 1 h. A molecular weight marker 100-bp ladder (Promega, Madison,

WI, USA) were included on each gel. Bands were visualized using an Alpha Innotech UV

imager (FluorChemTM).

2.2.4 Multiplex real-time PCR assay

DNA was extracted from the primary and secondary enrichment broths of the animal and meat

samples using the boiling method described previously by de Medici et al. (2003) [28]. Five

microliters of DNA template extracted was used in the real-time iQTM Multiplex Powermix

(Bio-Rad Laboratories, Hercules, CA, USA), in a final volume of 20 µL per reaction.

The real-time PCR assay targeted the following genes: nuc (identification of S. aureus), mecA

(associated with methicillin resistance) and PVL-encoding genes (virulence factor) (Table 1).

The final concentrations in the reaction mixture were: 300 nM of primers (forward and

reverse), 200 nM of fluorogenic probes (Applied Biosystems, Foster City, CA, USA), and 1X

iQTM Multiplex Powermix (Bio-Rad Laboratories, Hercules, CA, USA), according to the

manufacturer's recommendations.

Page 68: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

57

The thermal cycling conditions were adjusted to an initial denaturation of 3 min at 95 °C,

followed by 40 PCR cycles of 95 °C for 15 s and 55 °C for 1 min, using an iCycler IQTM real

time PCR system (Bio-Rad Laboratories, Hercules, CA, USA). An external positive control

(DNA extracted from MRSA ATCC 35591, positive for mecA and PVL genes) and an external

negative control (DNase/RNase-free distilled water) were included with each plate. Data

analysis was carried out using the iCycler software version 3.0 (Bio-Rad Laboratories,

Hercules, CA, USA).

2.2.5 Characterization of S. aureus strains isolated by culture method

Multilocus Sequence typing (MLST)

Briefly, S. aureus isolates were struck to TSA plates and incubated at 37°C for 18–24 h.

Colonies were picked to 40 µL of single cell lysing buffer (50 µg/mL of Proteinase K,

Amresco; in TE buffer [pH=8]), and then lysed by heating to 80°C for 10 min followed by

55°C for 10 min in a thermocycler. The final suspension was diluted 1:2 in sterile water,

centrifuged to remove cellular debris, and transferred to a sterile tube (Marmur, 1961) [29].

The housekeeping genes: arcC, aroE, glpF, gmk, pta, tpi, and yqiL, were amplified [30]. All

PCR reactions were carried out in 50-µL volumes: 1 µL of DNA template, Taq DNA

polymerase (Promega) (1.25 U), 1X PCR buffer (Promega), primers (0.1 µM) (Integrated

DNA Technologies, Inc.), and dNTPs (200 µM) (Promega). PCR settings were adjusted

according to Enright et al. (2000) [30] using a thermocycler (Eppendorf). Ten microliters of

the PCR products were loaded into 1% agarose gels in 1X TAE with EzVision One loading

dye, and run at 100V in 1X TAE for 1 h. Images were captured using an Alpha Innotech

imager. After PCR, each amplicon was purified of amplification primer using the

QIAquickPCR Purification Kit (Qiagen, Valencia, CA) as per manufacturer’s instructions.

Purified DNA was sequenced at Iowa State University’s DNA Facility (Ames, IA) using an

Applied Biosystems 3730xl DNA Analyzer (Applied Biosystems, Foster City, CA). Sequence

data were imported into DNAStar (Lasergene, Madison, WI), trimmed, and aligned to the

control sequences (from the MLST site) and interrogated against the MLST database

(http://saureus.mlst.net/). Sequence types were added to the strain information for analysis in

BioNumerics.

Page 69: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

58

Resistance profiles

The antimicrobial resistance profiles (AR) of S. aureus isolates (n=95) were determined using

the broth microdilution method (CMV3AGPF, Sensititre, Trek Diagnostics), according to the

manufacturer’s and the National Antimicrobial Resistance Monitoring System (NARMS)

guidelines for animal isolates [31]. Antimicrobials in the panel and their resistance breakpoints

were as follows: erythromycin (≥8 µg/mL), tetracycline (≥16 µg/mL), ciprofloxacin (≥4

µg/mL), chloramphenicol (≥32 µg/mL), penicillin (≥16 µg/mL), daptomycin (no interpretative

criteria), vancomycin (≥32 µg/mL), nitrofurantoin (≥128 µg/mL), gentamicin (>500 µg/mL),

quinupristin/dalfopristin (≥4 µg/mL), linezolid (≥8 µg/mL), kanamycin (≥1024 µg/mL),

tylosin (≥32 µg/mL), tigecycline (no interpretative criteria), streptomycin (>1000 µg/mL), and

lincomycin (≥8 µg/mL). Resistance to at least three classes of antibiotics was considered as

multidrug resistance (MDR) [32].

2.2.6 Statistical analysis

The 95% confidence intervals for prevalence were obtained, using the plus four estimate when

positive or negative samples were less than 15. The Chi-square test was used to assess the

significance in proportion of positive samples between sample types, only if no more than

20% of the expected counts were less than 5 and all individual expected counts were 1 or

greater [33]. On the contrary, Fisher’s exact test was used with two-sided p-values. SAS

software version 9.2 (SAS Institute Inc., Cary, NC) was used to assess significance with a

P<0.05.

As there is no true gold standard method for S. aureus and MRSA detection, the kappa

statistic was calculated to compare agreement between real-time PCR assay (using primary

and secondary enrichment) and conventional culture/PCR method.

2.3 Results

The culture method included a biochemical identification to confirm S. aureus, which agreed

with the results of the conventional multiplex PCR that detected the gene 16S rRNA. This

method detected 95 positive S. aureus samples from a total of 234 samples collected (Table 2).

Page 70: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

59

The multiplex real-time PCR assay using primary and a secondary enrichment samples,

recovered S. aureus (detection of nuc gene) from 111 and 120 samples of 234 samples

respectively.

By the conventional culture/PCR method alone, the rate of positive S. aureus samples was

found to be 41.6% (CI95%: 30.6-52.6%) in animals and 51.8% (CI95%: 42.5-61.0%) in raw

meat samples respectively; a significantly lower rate of 11.1% (CI95%: 4.5-24.1%) was

observed in deli meat (P≤0.05). Using the primary enrichment samples and real-time PCR, a

significantly higher recovery of S. aureus (P≤0.05) was found in animals (55.8%, CI95%:

44.8-66.9%) and raw meat (57.1%, CI95%: 47.9-66.3%) than in deli meat samples (8.9%,

CI95%: 3.1-21.4%). However, no significant difference (P>0.05) was found between the rate

of positive S. aureus samples in animals (53.2%, CI95%: 42.1-64.4%), raw meat (53.6%,

CI95%: 44.3-62.8%) and deli meat (42.2%, CI95%: 27.8-56.7%), when the secondary

enrichment samples were tested by real-time PCR. A significantly higher recovery of S.

aureus (P≤0.05) was obtained from deli meat when the secondary enrichment samples were

assessed by real-time PCR.

The mecA gene was detected in two pork samples (5.4%, CI95%: 0.7-18.8%) by the

conventional multiplex PCR preceded by the culture method, and by assessing the primary and

secondary enrichment samples by real-time PCR. The real-time PCR analysis detected the

mecA gene using both enrichments in samples that were negative by conventional multiplex

PCR in four pork meat and four deli meat samples. Using the primary enrichment, the real-

time PCR detected the mecA gene in one sample isolated from a sheep, and two from pork

meat, which were negative using the secondary enrichment. Using the secondary enrichment,

the real-time PCR detected the mecA gene from one sample isolated from a pig, two from pork

meat, and two from deli meat, which were negative using the primary enrichment.

The PVL gene was not detected in any sample by the conventional culture/PCR method or the

real-time PCR assay.

Table 3 shows the results of real-time PCR using primary and secondary enrichments on the

detection of S. aureus compared with a conventional culture/PCR method. Total agreement

Page 71: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

60

and the kappa statistic for real-time PCR using the primary enrichment samples were 85.7%

(k=0.72, CI95%: 0.62-0.82), 83.9% (k=0.68, CI95%: 0.59-0.76), and 97.8% (k=0.88, CI95%:

0.78-0.97) for animals, raw meat, and deli meat respectively. For real-time PCR using the

secondary enrichment samples, the total agreement and the kappa statistic were 88.3% (k=0.77,

CI95%: 0.67-0.86), 87.5% (k=0.75, CI95%: 0.67-0.83), and 68.9% (k=0.29, CI95%: 0.16-

0.43) for animals, raw meat, and deli meat respectively. Positive agreement (sensitivity) was

100% for animal samples using both enrichments. For animals and raw meat, a higher

negative agreement (specificity) was obtained for real-time PCR using the secondary

enrichment.

Six samples isolated from animals and six from raw meat were deemed S. aureus negative by

the conventional culture/PCR method, but positive by real-time PCR using the primary and

secondary enrichments. Three S. aureus samples isolated from raw meat were positive by the

conventional culture/PCR method, but negative by the real-time PCR assay.

The real-time PCR method using the primary enrichment failed to detect the presence of S.

aureus in four samples: three isolated from raw meat (two from beef, one from poultry) and

one from deli meat (ham) that were positive by the culture method and by the real-time PCR

assay using the secondary enrichment samples. Using the secondary enrichment samples, the

real-time PCR assay failed to detect three samples isolated from raw meat (pork) that were S.

aureus positive by the culture method and using the primary enrichment in real-time PCR.

The results of real-time PCR using primary and secondary enrichment on the detection of the

mecA gene compared with a conventional culture/PCR method are shown in Table 4. Total

agreement for real-time PCR using the primary and secondary enrichment samples ranged

from 91.1% to 98.7% and from 86.7 to 98.7%, respectively. The kappa statistic was zero when

the mecA gene was not detected by the conventional culture/PCR method and 0.49 (CI95%:

0.39-0.58) for raw meat. Positive agreement (sensitivity) of 100% was obtained for raw meat

samples for both methods.

The real-time PCR assay detected the mecA gene in samples that were negative for S. aureus

by the conventional culture/PCR method (one from a pig, one from a sheep, four from pork,

four from deli ham, and one from deli turkey). All of these samples were identified as

Page 72: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

61

harboring S. epidermidis, S. saprophyticus or S. haemolyticus using biochemical analysis on

isolates recovered. However, three of these samples (one from a pig, two from pork meat)

tested positive for the nuc gene when primary and secondary enrichments were assessed by

real-time PCR.

Table 5 shows the antimicrobial resistance profiles and the sequence types of the ninety-five S.

aureus strains isolated from animals and retail meat by the conventional culture/PCR method.

A total of thirteen antimicrobial resistance profiles were identified among S. aureus isolates.

Most of the S. aureus isolates were resistant to tetracycline and lincomycin, and were of ST9.

A total of twenty-two S. aureus isolates exhibited multi-drug resistance. Susceptibility to all

antimicrobials tested were found in thirty-five S. aureus isolates, which were mostly recovered

from chicken meat and identified as ST5.

2.4 Discussion

In this study, a high recovery of S. aureus was found in animals and meat samples by the

culture/PCR method and the real-time PCR assay (Table 2). The inclusion of selective

enrichment steps has been found to increase the rate of detection of S. aureus [15]. Waters et

al. (2011) [26] also found a high prevalence of S. aureus in raw meat (47%) using a single step

selective enrichment protocol, followed by plating on Baird Parker agar, and confirmation by

real-time PCR targeting the femA gene.

The kappa statistic for detection of S. aureus using the primary enrichment in real-time PCR

was 0.68-0.88 (Table 3), which indicates a good agreement (substantial to almost perfect

agreement) with the conventional culture/PCR method. Using the secondary enrichment and

real-time PCR, the kappa statistic for detection of S. aureus was 0.29-0.77, resulting in a fair

agreement when deli meat was tested. This is due to the significantly higher recovery of S.

aureus from the secondary enrichment samples by real-time PCR (Table 2), and the lower

negative agreement (specificity) obtained with this method (Table 3). This observation

suggests that small numbers (or levels) of S. aureus could be missed when the primary

enrichment alone is used in real-time PCR, and that the recovery of potentially injured or non-

viable strains appears to be enhanced when a secondary enrichment is applied. The enhanced

detection also suggests that the use of a standard culture method or primary enrichment alone

Page 73: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

62

could lead to higher false negative results. Therefore, including a secondary selective

enrichment step appears to improve the odds of detection of positive S. aureus samples.

Multiplex real-time PCR could detect more S. aureus positive samples than the conventional

culture/PCR method alone. Possible reasons for these discrepant results include: amplification

of DNA by the real-time PCR from very low levels of S. aureus that were not detectable by

the bacteriological methods due to competition or non-viable S. aureus in the samples, or

false-positive real-time PCR results as a result of cross-reaction rather than false-negative

culture results [23]. However, the possibility that these results are considered as false positives

in this study is probably very low, because the gene nuc, which was targeted by the real-time

PCR assay, has been used for specific detection and identification of S. aureus previously

[21,22,34,35]. Unfortunately, it was not possible to confirm these results by performing the

cultural method as detection was carried out from DNA extracts only, and the cells had

already been inactivated. The inability of real-time PCR to detect three S. aureus samples

isolated from raw meat that were positive by the culture method is somewhat unsatisfactory,

and could be considered as false-negative results.

For detection of mecA gene, the kappa statistic for both enrichments in real-time PCR was 0-

0.49 (Table 4). The k=0 indicates no agreement beyond that expected by chance, because the

real-time PCR assay detected the mecA gene probably from bacteria other than S. aureus and

the culture/PCR method detected the mecA gene from DNA extracted from confirmed S.

aureus strains. However, a few mecA positive samples were obtained from animals and meat

in this study (Table 2). Weese et al. (2010) [25] detected a low prevalence of MRSA in

samples isolated from retail meat (9.6% in pork, 5.6% in beef and 1.2% in chicken), using a

single-step selective enrichment protocol, followed of plating and biochemical testing.

The detection of the mecA gene by the real-time PCR assay in samples that were negative for

S. aureus by the conventional culture/PCR method may be due to the fact that either

coagulase-negative staphylococci and non S. aureus species can also carry the mecA gene

[21,36-38]. In this study, such samples were identified as Staphylococcus spp. positive by

biochemical testing. In addition, the mecA gene has been found in non-staphylococcal genera,

such as: Proteus vulgaris, Morganella morganii, Enterococcus faecalis [39] suggesting that its

Page 74: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

63

use in a rapid screening technique would need further validation to avoid false-positive MRSA

data being generated. In this study, the DNA extraction was carried out from selective

enrichments, which could contain DNA from coagulase-positive or coagulase-negative

staphylococci or non-staphylococcal species that may carry the mecA gene, therefore a

positive result for the nuc and mecA genes does not indicate the presence of S. aureus carrying

the mecA gene.

None of the samples obtained from animals and retail meat were positive for the PVL genes

using both methods the conventional multiplex PCR and the real-time PCR. A similar

observation was reported by Weese et al. (2010) [25], who also failed to detect PVL positive

samples in raw meat in Canada using the real-time PCR technique. The PVL genes encode the

Panton-Valentine leukocidin toxin, which is a virulence factor that have been found in severe

cases of CA-MRSA [7,8,9].

Decreasing the time of detection of S. aureus and MRSA has become an important goal in

microbiological analysis of clinical samples. However, since S. aureus ST398, multi-drug

resistant S. aureus (Table 5), and MRSA are present in animals and meat [12-17], decreasing

the time of analysis may allow for prompt action to take place thus reducing the spread of

those strains in the food chain. The real-time PCR assay can potentially decrease the total time

for detection of S. aureus and the presence of the mecA gene in animal and meat samples.

Using the two-step selective enrichment the total time was <2 days by the real-time PCR

method, compared with a total time of 6-7 days using the culture method that includes

selective enrichments, plating steps, biochemical testing and a conventional multiplex PCR for

confirmation. However, the presence of MRSA should be confirmed by a culture method if

isolates are required for follow on studies. Some real-time PCR assays have been developed

for the rapid detection of MRSA from clinical samples [37,40-42]. Danial et al. (2011) [42]

reported that the real-time PCR assay detected 0.7% more MRSA-positive samples than the

routine standard Brilliance Chromogenic MRSA agar culture method in a total time of 8 h.

Huletsky et al. (2004) [40] detected MRSA directly from clinical specimens containing a

mixture of staphylococci in less than 1 h, with a false-positive detection rate of 4.6% for

MRSA that was actually MSSA. Paule et al. (2005) [41] developed a multiplex real-time PCR

Page 75: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

64

that detected the genes femA and mecA directly from blood culture bottles in 2-3 h, obtaining

an indeterminate rate of 0.9% when coagulase-negative staphylococci strains were included.

In conclusion, the application of real-time PCR using selective enrichments appears to

improve the detection of S. aureus and the mecA gene in samples extracted from animals, raw

meat and deli meat. The real-time PCR assay may be recommended as a rapid method to

detect S. aureus and the mecA gene in samples obtained from the meat production chain;

however, if further confirmation of MRSA should be required (isolate recovery) then the

application of the standard culture method in parallel may be warranted.

Acknowledgements

The authors thank the staff of the Meat Lab (Department of Animal Sciences) and the ND

Veterinary Diagnostic Lab at North Dakota State University for assistance with the sample

collection. This study was funded through the Dean's Office, College of Agriculture, North

Dakota State University and The Dean's Office, College of Veterinary Medicine, Iowa State

University. The funders had no role in study design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Conflict of interest

No conflict of interest declared.

2.5 References

1. Tiemersma EW, Bronzwaer SL, Lyytikäinen O, Degener JE, Schrijnemakers P, et al. (2004) Methicillin-resistant Staphylococcus aureus in Europe, 1999-2002. Emerg Infect Dis 10: 1627-1634.

2. Kennedy AD, Otto M, Braughton KR, Whitney AR, Chen L, et al. (2008) Epidemic community-associated methicillin-resistant Staphylococcus aureus: recent clonal expansion and diversification. Proc Natl Acad Sci U S A 105: 1327-1332.

3. Lowy FD (2003) Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest 111: 1265-1273.

4. Golding GR, Bryden L, Levett PN, McDonald RR, Wong A, et al. (2010) Livestock-associated methicillin-resistant Staphylococcus aureus sequence type 398 in humans, Canada. Emerg Infect Dis 16: 587-594.

5. Hartman B, Tomasz A (1981) Altered penicillin-binding proteins in methicillin-resistant strains of Staphylococcus aureus. Antimicrob Agents Chemother 19: 726-735.

Page 76: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

65

6. Van De Griend P, Herwaldt LA, Alvis B, DeMartino M, Heilmann K, et al. (2009) Community-associated methicillin-resistant Staphylococcus aureus, Iowa, USA. Emerg Infect Dis 15: 1582-1589.

7. Baba T, Takeuchi F, Kuroda M, Yuzawa H, Aoki K, et al. (2002) Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359: 1819-1827.

8. Dufour P, Gillet Y, Bes M, Lina G, Vandenesch F, et al. (2002) Community-acquired methicillin-resistant Staphylococcus aureus infections in France: emergence of a single clone that produces Panton-Valentine leukocidin. Clin Infect Dis 35: 819-824.

9. Ebert MD, Sheth S, Fishman EK (2009) Necrotizing pneumonia caused by community-acquired methicillin-resistant Staphylococcus aureus: an increasing cause of "mayhem in the lung". Emerg Radiol 16: 159-162.

10. Gorwitz RJ, Kruszon-Moran D, McAllister SK, McQuillan G, McDougal LK, et al. (2008) Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001–2004. J Infect Dis 197: 1226-1234.

11. Klein E, Smith DL, Laxminarayan R (2007) Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999–2005. Emerg Infect Dis 13: 1840-1846.

12. van Belkum A, Melles DC, Peeters JK, van Leeuwen WB, van Duijkeren E, et al. (2008) Methicillin-resistant and -susceptible Staphylococcus aureus sequence type 398 in pigs and humans. Emerg Infect Dis 14: 479-483.

13. Guardabassi L, O'Donoghue M, Moodley A, Ho J, Boost M (2009) Novel lineage of methicillin-resistant Staphylococcus aureus, Hong Kong. Emerg Infect Dis 15: 1998-2000.

14. Persoons D, Van Hoorebeke S, Hermans K, Butaye P, de Kruif A, et al. (2009) Methicillin-resistant Staphylococcus aureus in poultry. Emerg Infect Dis 15: 452-453.

15. de Boer E, Zwartkruis-Nahuis JT, Wit B, Huijsdens XW, de Neeling AJ, et al. (2009) Prevalence of methicillin-resistant Staphylococcus aureus in meat. Int J Food Microbiol 134: 52-56.

16. Buyukcangaz E, Velasco V, Sherwood JS, Stepan RM, Koslofsky RJ, et al. (2013) Molecular typing of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) isolated from retail meat and animals in North Dakota, USA. Foodborne Pathog Dis 10: 608-617.

17. O'Brien AM, Hanson BM, Farina SA, Wu JY, Simmering JE, et al. (2012) MRSA in conventional and alternative retail pork products. PLoS One 7(1): e30092.

18. Wertheim H, Verbrugh HA, van Pelt C, de Man P, van Belkum A, et al. (2001) Improved detection of methicillin-resistant Staphylococcus aureus using phenyl mannitol broth containing aztreonam and ceftizoxime. J Clin Microbiol 39: 2660-2662.

19. Zhang W, Hao Z, Wang Y, Cao X, Logue CM, et al. (2011) Molecular characterization of methicillin-resistant Staphylococcus aureus strains from pet animals and veterinary staff in China. Vet J 190: e125-e129.

20. Söderquist B, Neander M, Dienus O, Zimmermann J, Berglund C, et al. (2012) Real-time multiplex PCR for direct detection of methicillin-resistant Staphylococcus aureus (MRSA) in clinical samples enriched by broth culture. Acta Pathol Microbiol Scand 120: 427-432.

21. Thomas LC, Gidding HF, Ginn AN, Olma T, Iredell J (2007) Development of a real-time Staphylococcus aureus and MRSA (SAM-) PCR for routine blood culture. J Microbiol Methods 68: 296–302.

Page 77: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

66

22. Kilic A, Muldrew KL, Tang Y-W. A, Basustaoglu C (2010) Triplex real-time polymerase chain reaction assay for simultaneous detection of Staphylococcus aureus and coagulase-negative staphylococci and determination of methicillin resistance directly from positive blood culture bottles. Diagn Microbiol Infect Dis 66: 349–355.

23. Anderson MEC, Weese JS (2007) Evaluation of a real-time polymerase chain reaction assay for rapid identification of methicillin-resistant Staphylococcus aureus directly from nasal swabs in horses. Vet Microbiol 122: 185–189.

24. Morcillo A, Castro B, Rodríguez-Álvarez C, González JC, Sierra A, et al. (2012) Prevalence and Characteristics of methicillin-resistant Staphylococcus aureus in pigs and pig workers in Tenerife, Spain. Foodborne Pathog Dis 9: 207-210.

25. Weese JS, Avery BP, Reid-Smith RJ (2010) Detection and quantification of methicillin-resistant Staphylococcus aureus (MRSA) clones in retail meat products. Lett Applied Microbiol 51: 338–342.

26. Waters AE, Contente-Cuomo T, Buchhagen J, Liu CM, Watson L, et al. (2011) Multidrug-Resistant Staphylococcus aureus in US Meat and Poultry. Clin Infect Dis 52: 1227-1230.

27. Makgotlho PE, Kock MM, Hoosen A, Lekalakala R, Omar S, et al. (2009) Molecular identification and genotyping of MRSA isolates. FEMS Immunol Med Microbiol 57: 104-115.

28. De Medici D, Croci L, Delibato E, Di Pasquale S, Filetici E, et al. (2003) Evaluation of DNA extraction methods for use in combination with SYBR Green I real-time PCR to detect Salmonella enterica serotype Enteritidis in poultry. Appl Environ Microbiol 69: 3456–3461.

29. Marmur J (1961) A procedure for the isolation of desoxyribonucleic acid from micro-organisms. J Mol Biol 3: 208–218.

30. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG (2000) Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38: 1008–1015.

31. NARMS (2012) National antimicrobial resistance monitoring system animal isolates. Available: http://www.ars.usda.gov/Main/docs.htm?docid=6750&page=3. Accessed 5 February 2014.

32. Aydin A, Muratoglu K, Sudagidan M, Bostan K, Okuklu B, et al. (2011) Prevalence and antibiotic resistance of foodborne Staphylococcus aureus isolates in Turkey. Foodborne Pathog Dis 8: 63–69.

33. Moore DS (2007) The basic practice of statistics. 4th Edition. W.H. Freeman and Company, New York, USA. 560 p.

34. Costa AM, Kay I, Palladino S (2005) Rapid detection of mecA and nuc genes in staphylococci by real-time multiplex polymerase chain reaction. Diagn Microbiol Infect Dis 51: 13–17.

35. McDonald RR, Antonishyn NA, Hansen T, Snook LA, Nagle E, et al. (2005) Development of a triplex real-time PCR assay for detection of Panton-Valentine leukocidin toxin genes in clinical isolates of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 43: 6147–6149.

36. Ryffel C, Tesch W, Bireh-Machin I, Reynolds PE, Barberis-Maino L, et al. (1990) Sequence comparison of mecA genes isolated from methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. Gene 94: 137-138.

Page 78: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

67

37. Hagen RM, Seegmüller I, Navai J, Kappstein I, Lehnc N, et al. (2005) Development of a real-time PCR assay for rapid identification of methicillin-resistant Staphylococcus aureus from clinical samples. Int J Med Microbiol 295: 77–86.

38. Higashide M, Kuroda M, Ohkawa S, Ohta T (2006) Evaluation of a cefoxitin disk diffusion test for the detection of mecA-positive methicillin-resistant Staphylococcus saprophyticus. Int J Antimicrob Agent 27: 500–504.

39. Kassem I.I, Esseili MA, Sigler V (2008) Occurrence of mecA in nonstaphylococcal pathogens in surface waters. J Clin Microbiol 46: 3868-3869.

40. Huletsky A, Giroux R, Rossbach V, Gagnon M, Vaillancourt M, et al. (2004) New real-time PCR assay for rapid detection of methicillin-resistant Staphylococcus aureus directly from specimens containing a mixture of staphylococci. J Clin Microbiol 42: 1875-1884.

41. Paule SM, Pasquariello AC, Thomson RB, Kaul KL, Peterson LR (2005) Real-time PCR can rapidly detect methicillin-susceptible and methicillin-resistant Staphylococcus aureus directly from positive blood culture bottles. Am J Clin Pathol 124: 404-407.

42. Danial J, Noel M, Templeton KE, Cameron F, Mathewson F, et al. (2011) Real-time evaluation of an optimized real-time PCR assay versus Brilliance chromogenic MRSA agar for the detection of meticillin-resistant Staphylococcus aureus from clinical specimens. J Med Microbiol 60: 323–328

43. McClure JA, Conly JM, Lau V, Elsayed S, Louie T, et al. (2006) Novel multiplex PCR assay for detection of the staphylococcal virulence marker Panton-Valentine leukocidin genes and simultaneous discrimination of methicillin-susceptible from -resistant staphylococci. J Clin Microbiol 44: 1141-1144.

Page 79: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

68

Table 1 (Desarrollo 2). Nucleotide sequence of the primers and probes used in conventional

multiplex PCR, multiplex real-time PCR.

Primer or probe name

Sequence (5'→3') 5' Reporter dye

3' Quencher 16S rRNA* Staph-756F AAC TCT GTT ATT AGG GAA GAA CA Staph-750R CCA CCT TCC TCC GGT TTG TCA CC

nuc†

nuc For CAA AGC ATC AAA AAG GTG TAG AGA nuc Rev TTC AAT TTT CTT TGC ATT TTC TAC CA Texas Red

nuc Probe TTT TCG TAA ATG CAC TTG CTT CAG GAC CA Iowa Black

mecA mecA-1F* GTA GAA ATG ACT GAA CGT CCG ATA A mecA-2F* CCA ATT CCA CAT TGT TTC GGT CTA A mecA For† GGC AAT ATT ACC GCA CCT CA mecA Rev† GTC TGC CAC TTT CTC CTT GT FAM†

mecA Probe† AGA TCT TAT GCA AAC TTA ATT GGC AAA TCC TAMRA†

PVL luk-PV-1F* ATC ATT AGG TAA AAT GTC TGG ACA TGA TCC A luk-PV-2R* GCA TCA AGT GTA TTG GAT AGC AAA AGC PVL For† ACA CAC TAT GGC AAT AGT TAT TT PVL Rev† AAA GCA ATG CAA TTG ATG TA Cy5†

PVL Probe† ATT TGT AAA CAG AAA TTA CAC AGT TAA ATA TGA Iowa Black

*Conventional multiplex PCR, according to McClure et al. (2006) [43]. †Multiplex real-time PCR, according to McDonald et al. (2005) [35].

Page 80: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

69

Table 2 (Desarrollo 2). Detection of S. aureus, mecA and PVL genes from animals and retail

meat using a conventional culture/PCR method and a real-time PCR assay.

Real-time PCR Culture/PCR method

(No. of positives) Primary enrichment

(No. of positives)

Secondary enrichment

(No. of positives) Sample

type

No. of

samples S.aureu

s

mec

A PVL

S.aureu

s

mec

A PVL

S.aureu

s

mec

A PVL

Animals

Cow 14 0 0 0 4 0 0 3 0 0

Pig 28 21 0 0 25 0 0 24 1 0

Sheep 35 11 0 0 14 1 0 14 0 0

Total 77 32 0 0 43 1 0 41 1 0

Meat

Beef 36 9 0 0 10 0 0 12 0 0

Pork 37 25 2 0 26 6 0 27 6 0

Poultry 39 24 0 0 28 0 0 21 0 0

Total 112 58 2 0 64 6 0 60 6 0

Deli meat

Chicken 9 2 0 0 2 0 0 4 0 0

Ham 20 3 0 0 2 3 0 11 5 0

Turkey 16 0 0 0 0 1 0 4 1 0

Total 45 5 0 0 4 4 0 19 6 0

Total 234 95 2 0 111 11 0 120 13 0

Page 81: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

70

Table 3 (Desarrollo 2). Raw agreement indices among conventional culture/PCR method and

real-time PCR assay, with two-step enrichment procedure for detection of S. aureus from

animals and retail meat.

No. (%) of samples* Comparison

within each

sample type

No. of

samples

No. positive

by

culture/PCR

method

Positive

agreement

(Sensitivity)

Negative

agreement

(Specificity)

Total

agreement

kappa

statistic

Real-time PCR

primary

enrichment

Animals 77 32 32 (100.0) 34 (75.6) 66 (85.7) 0.72

Meat 112 58 52 (89.7) 42 (77.8) 94 (83.9) 0.68

Deli meat 45 5 4 (80.0) 40 (100.0) 44 (97.8) 0.88

Real-time PCR

secondary

enrichment

Animals 77 32 32 (100.0) 36 (80.0) 68 (88.3) 0.77

Meat 112 58 52 (89.7) 46 (85.2) 98 (87.5) 0.75

Deli meat 45 5 5 (100.0) 26 (65.0) 31 (68.9) 0.29

*Percentages for positive agreement with culture/PCR method number positive as the denominator. Percentages for negative agreement with culture/PCR method number negative as the denominator. Percentage total agreement is obtained from the sum of the positive and negative agreement frequencies divided by the total sample size within each sample type.

Page 82: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

71

Table 4 (Desarrollo 2). Raw agreement indices among conventional culture/PCR method and

real-time PCR assay, with two-step enrichment procedure for detection of the mecA gene from

animals and retail meat.

No. (%) of

samples*

Comparison

within each

sample type

No. of

samples

No. positive

by

culture/PCR

method

Positive

agreement

(Sensitivity)

Negative

agreement

(Specificity)

Total

agreement

kappa

statistic

Real-time PCR

primary

enrichment

Animals 77 0 - 76 (98.7) 76 (98.7) 0.00

Meat 112 2 2 (100.0) 106 (96.4) 108 (96.4) 0.49

Deli meat 45 0 - 41 (91.1) 41 (91.1) 0.00

Real-time PCR

secondary

enrichment

Animals 77 0 - 76 (98.7) 76 (98.7) 0.00

Meat 112 2 2 (100.0) 106 (96.4) 108 (96.4) 0.49

Deli meat 45 0 - 39 (86.7) 39 (86.7) 0.00

*Percentages for positive agreement with culture/PCR method number positive as the denominator. Percentages for negative agreement with culture/PCR method number negative as the denominator. Percentage total agreement is obtained from the sum of the positive and negative agreement frequencies divided by the total sample size within each sample type.

Page 83: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

72

Table 5 (Desarrollo 2). Antimicrobial resistance profiles and sequence types of S. aureus

isolated by conventional culture/PCR method from animals and retail meat.

Antimicrobial resistance profile* No. of antimicrobial subclasses

No. of S. aureus isolates with the specific profile

Sequence types (n) †

PEN-TET-ERY-TYL-LINC-STR-CHL 6 2 Pig-ST9 (2) PEN-TET-LINC-STR-CHL 5 1 Pig-ST9 (1) TET-ERY-TYL-LINC 3 7 Pork-ST398 (5) Pork-ST5**

Pork-ST9 (1) PEN-LINC-STR 4 1 Pig-ST9 (1) PEN-ERY-LINC 3 7 Pork-ST9 (4) Pork-ST15 (2)

Pork-ST8 (1) TET-LINC-STR 3 1 Pig-ST9 ( 1) ERY-TYL-LINC 2 3 Chicken-ST5 (3) PEN 1 3 Pork-ST5 (1) Pork -ST5 (1)*

Pork-ST9 (1) TET 1 13 Sheep-ST398 (3) Sheep-ST133 (2)

Sheep-ST2111 (1) Pig-ST9 (1) Pork-ST1 (2) Pork-ST5 (2) Pork-ST398 (1) Pork-ST15 (1)

ERY 1 1 Deli chickenChicken-ST39 (1) LINC 1 5 Pig-ST9 (3) Sheep-ST133 (1)

Deli ham-ST15 Susceptible to all tested 0 3525 Chicken-ST5 (1513) Chicken-ST6

(32) Chicken-ST508 (1) Chicken-NT‡ (1) Pork-ST5 (2) Beef-ST1159 (3) Beef-ST2187 (1) Beef-ST188 (1) Beef-ST15 (1) Beef-ST72 (1) Beef-ST5 (1) Beef-ST1 (1)Deli ham-ST146 (1) Deli ham-ST5 (1) Deli chicken-ST5 (1) Pig-ST9 (1)

Total 95

*Antimicrobial abbreviations are as following: CHL, chloramphenicol; ERY, erythromycin; LINC, lincomycin; PEN, penicillin; STR, streptomycin, TET, tetracycline, TYL, tylosin. †ST, sequence type. ‡NT, non-typeable. *mecA gene positive.

Page 84: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

73

3. Staphylococcus aureus harboring mecA gene and genes encoding

Panton-Valentine Leukocidin (PVL) exotoxin from humans

Valeria Velasco1,2, Esra Buyukcangaz3, Julie S. Sherwood1, Ryan M. Stepan1, Ryan J.

Koslofsky1 and Catherine M. Logue4

1 Department of Veterinary and Microbiological Sciences, North Dakota State University,

Fargo, ND, 58105, USA

2 Department of Animal Sciences, University of Concepción, Chillán, Chile

3 Laboratory of Animal Physiology and Endocrinology, Veterinary Sciences, University of

Concepción, Chillán, Chile

4 Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary

Medicine, Iowa State University, Ames, IA, 50011, USA

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) harbors the mecA gene, which encodes

the low-affinity penicillin-binding protein 2a (PBP2a), and most community-associated

MRSA (CA-MRSA) strains harbor genes encoding the Panton–Valentine leukocidin (PVL)

exotoxin. The aim of this study was to determine the occurrence of S. aureus harboring mecA

and PVL genes in hospital patients and healthy people, in North Dakota, United States. A total

of 108 MRSA isolates recovered from hospital patients were examined. Nasal swabs were

taken from 550 healthy subjects, and S. aureus was isolated and identified by culture method

and biochemical testing. Multiplex PCR (mPCR) was used to confirm S. aureus and to detect

the mecA and PVL genes. A total of 105 (97.2%) clinical isolates harbored the mecA gene and

11 (10.2%) PVL genes. The prevalence of nasal carriage of S. aureus in healthy people was

7.6%. None of the S. aureus strains obtained from healthy people were mecA- nor PVL-

positive. Therefore, Staphylococcus aureus harboring mecA and PVL genes is present in

patients affected by invasive infections, and the nasal carriage of S. aureus in healthy humans

seems to be low, without the presence of mecA and PVL genes, representing a low risk of

transmission among the community.

Page 85: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

74

Keywords: Methicillin-resistant Staphylococcus aureus (MRSA), mecA, PVL, prevalence,

clinical isolates, healthy humans.

Address for Correspondence

Dr. Catherine M. Logue, Department of Veterinary Microbiology and Preventive Medicine,

1802 University Blvd, VMRI #2, College of Veterinary Medicine, Iowa State University,

Ames, IA 50011, USA. Ph 515 294 3785; Fax 515 297 1401. E-mail: [email protected]

3.1 Introduction

During the last decades, many bacterial species have developed resistance to antimicrobial

agents that have been commonly used to treat them (Swartz, 1997). Staphylococcus aureus is

one of the pathogens that are known to rapidly develop a resistance to antimicrobial agents

since new antibiotics are introduced (Lowy, 2003).

A few years after the introduction of penicillin for clinical use, the first penicillin-resistant S.

aureus was found. Methicillin-resistant S. aureus (MRSA) strains were identified in clinical

specimens in 1961, within one to two years of the introduction of methicillin (Jevons, 1961; de

Lencastre et al., 2007).

Methicillin-resistant S. aureus has been implicated in both community-associated (CA-

MRSA) and healthcare-associated (HA-MRSA) infections worldwide. Nasal carriage of S.

aureus and MRSA in humans in the United States was approximately 29% (78.9 million

people) and 1.5% (4.1 million people) respectively, in 2003-2004 (Gorwitz et al., 2008). In

2005, there were an estimated 478,000 hospitalizations that corresponded to S. aureus

infections, of which approximately 278,000 hospitalizations were attributed to MRSA

infections (Klein et al., 2007). In addition, an invasive MRSA infection was developed by

about 94,000 people, of which approximately 19,000 died. Of these infections, about 86%

were HA-MRSA and 14% were CA-MRSA (Klevens et al., 2007). However, HA-MRSA

clones have been progressively replaced by CA-MRSA strains due to the expanding

community reservoir and the increasing influx into the hospital of individuals who harbor CA-

MRSA (Benoit et al., 2008; D'Agata et al., 2009; Nimmo et al., 2013).

Page 86: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

75

Resistance to methicillin in S. aureus is primarily mediated by the mecA gene, which encodes

the low-affinity penicillin-binding protein 2a (PBP2a) (Hartman and Tomasz, 1981; Van De

Griend et al., 2009). Most CA-MRSA strains harbor genes encoding the Panton–Valentine

leukocidin (PVL) exotoxin (Baba et al., 2002; Dufour et al., 2002), which has been related to

severe skin infections and necrotizing pneumonia (Ebert et al., 2009).

The objective of this study was to determine the occurrence of S. aureus harboring mecA and

PVL genes in hospital patients and healthy people, in North Dakota, United States.

3.2 Materials and Methods

3.2.1 Samples

A total of 108 MRSA isolates recovered from hospital patients with wound or blood stream

infections (sepsis, bone, cerobrospinal fluid [CSF], synovial fluid, subdural fluid, tissue, leg

ulcer and pleural fluid) were obtained from Bismarck State Hospital, Bismarck, ND, in July

2010.

In addition, during the Fall Semester 2010 and the Spring Semester 2011 a total of 550

samples were obtained from undergraduate students enrolled in the Department of Veterinary

and Microbiological Sciences, North Dakota State University (ND, USA), who were

considered as healthy people. Nasal swabs were taken from the subjects by using a sterile

moistened swab inserted into the nostril, to a depth of approximately 1 cm, and rotated five

times. For each subject, both nostrils were sampled using the same swab. Nasal swabs were

inoculated onto mannitol salt agar (MSA) plates (Becton, Dickinson and Company [BD],

Sparks, MD) and incubated at 37°C for 48 h. All colonies surrounded by yellow zones on

MSA after incubation were selected. Colonies with pink or red zones were excluded.

Presumptive S. aureus colonies in MSA were confirmed using Sensititre Gram Positive ID

(GPID) plates (Sensititre, TREK Diagnostic Systems Ltd., Cleveland, OH), according to the

manufacturer's recommendations.

MRSA clinical isolates and confirmed S. aureus isolates from healthy people were stored at -

80°C in brain–heart infusion broth (BD) containing 20% glycerol until use.

Page 87: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

76

3.2.2 Multiplex polymerase chain reaction (mPCR)

All S. aureus strains were recovered from frozen stock to trypticase soy agar (TSA) plates

(BD) and incubated at 37°C for 18-24 h. DNA extraction was carried out by suspending one

colony in 50 µL of DNase/RNase-free distilled water (Gibco Invitrogen, Grand Island, NY,

USA), heating (99°C, 10 min) and centrifugation (30,000 × g, 1 min) to remove cellular debris.

The remaining DNA was transferred to a new tube and stored at -20°C.

Multiplex PCR assay for the detection of 16S rRNA (identification of S. aureus), mecA

(detection of MRSA) and PVL-encoding genes (Table 1) included 2 µL of the DNA template

(described above) added to a 50 µL final reaction mixture: 1X Go Taq® Reaction Buffer (pH

8.5), 0.025 U/µL of Go Taq® DNA polymerase, 200 µM dNTP (Promega, Madison, WI,

USA) and 1 µM of primers (16S rRNA, mecA, LukS/F-PV) (Integrated DNA Technologies,

Inc., Coralville, IA, USA).

Multiplex PCR reactions were carried out in a thermocycler (Eppendorf, Hamburg, Germany),

according to the protocol described by Makgotlho et al. (2009).

PCR amplicons (10 µL) were loaded into a 1.5% (wt/vol) agarose gel (Agarose ITM) using

EzVision One loading dye (Amresco, Solon, OH, USA) and electrophoresis was carried out in

1X TAE buffer at 100 V for 1 h. A molecular weight marker 100-bp ladder (Promega,

Madison, WI, USA) and a positive control (ATCC 35591) were included on each gel. Bands

were visualized using an Alpha Innotech UV imager (FluorChemTM).

3.2.3 Statistical analysis

The Chi-square test was used to assess the significance in prevalence of 16S rRNA, mecA, and

PVL-encoding genes in isolates between sample types, only if no more than 20% of the

expected counts were less than 5 and all individual expected counts were 1 or greater (Moore,

2007). On the contrary, Fisher’s exact test was used with a two-sided p-values. SAS software

version 9.2 (SAS Institute Inc., Cary, NC) was used to assess significance with a P<0.05.

Page 88: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

77

3.3 Results

All clinical isolates were confirmed as S. aureus strains by the detection of 16S rRNA gene

using the mPCR technique. Previously, these clinical isolates had been identified as MRSA

strains in the hospital using microbiological procedures. Among the 108 MRSA clinical

isolates, a total of 105 (97.2%) harbored the mecA gene and 11 (10.2%) harbored PVL genes.

The mPCR method did not detect the PVL genes in MRSA strains isolated from hospital

patients affected by wound infections (Table 2).

The prevalence of nasal carriage of S. aureus in healthy people was 7.6%. There were not

significant differences (P≥0.05) between the seasons of sampling. None of these isolates

harbored the mecA gene nor PVL genes.

3.4 Discussion

Three clinical isolates identified as MRSA in the hospital did not harbor the mecA gene. This

may due to false positive results obtained by the microbiological method in the hospital or the

presence of the novel mecA homolog gene (mecALGA251 renamed as mecC) that has been

detected in MRSA isolated from humans and livestock that had been mecA-negative in recent

studies (García-Álvarez et al., 2011; Ito et al., 2012; Laurent et al., 2012; Monecke et al.,

2013; Petersen et al., 2013). The proportion of MRSA in relation to all S. aureus strains

causing infections is still unknown, difficulting the accurate estimations of the magnitude of

MRSA infections to take the right actions in public health policies (Klevens et al., 2007;

Moxnes et al., 2013).

In this study, the virulence factor PVL, that encodes the PVL exotoxin in S. aureus related to

severe skin infections and pneumonia, was detected solely in 11.1% of MRSA isolates from

patients affected by blood stream infections. MRSA isolates from patients affected by wound

infections did not harbor the PVL genes. Although the PVL genes were considered as a stable

marker for CA-MRSA, some CA-MRSA strains have been found to be PVL-negative (Nimmo

et al., 2013).

Page 89: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

78

The isolation and identification of S. aureus strains in healthy people were carried out using a

culture procedure followed by a biochemical testing (Sensititre). The detection of S. aureus

positive colonies obtained by the biochemical testing agreed in 100% with the results obtained

by the mPCR method targetting the 16S rRNA gene. Therefore, both methods can be used for

confirmation of S. aureus strains.

In this study, the nasal carriage of S. aureus in healthy people was around 7.6%, which is

considerably lower than the prevalence found in other studies, that have reported a prevalence

of S. aureus in the community around 29-32% (Mainous et al., 2006; Gorwitz et al., 2008) and

among healthcare workers and patients between 29-79% (Kumar et al., 2011; Al-Talib et al.,

2013). S. aureus strains isolated from healthy people did not harbor the mecA and PVL genes,

representing a low risk of transmission in the community. Other studies have reported a nasal

carriage of MRSA approximately of 0.8-1.5% in the community (Mainous et al., 2006;

Gorwitz et al., 2008), 0.5-44% in patients (Tiemersma et al., 2004), 20% in healthcare workers

(Kumar et al., 2011) and 30% in people living and working in farms with MRSA-positive pigs

or dust (Van den Broek et al., 2009). Studies that reported a high prevalence of S. aureus and

MRSA in the community have considered a higher sample size of subjects, with different

demographic characteristics (age, race/ethnicity, sex, place of birth) and with samplings in

different years. In addition, the high prevalence of S. aureus and MRSA among healthcare

workers and patients is due to the exposure to hospital environment with major risks in

transmitting and spreading nosocomial infections.

3.5 Conclusion

Staphylococcus aureus harboring mecA and PVL genes is present in patients affected by

invasive infections. The nasal carriage of S. aureus in healthy humans seems to be low, and

the mecA and PVL genes could not be present. Therefore, MRSA might not represent a severe

risk for transmission among the community.

Further molecular typing techniques are needed to improve the molecular characterization of

the S. aureus isolates obtained from humans.

Page 90: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

79

Acknowledgements

This study was supported by the Dean’s Office, College of Agriculture, Food Systems and

Natural Resources College, North Dakota State University (Valeria Velasco), the Dean’s

Office, College of Veterinary Medicine, Iowa State University, Ames, Iowa; and the

Commission of Scientific Research Projects, Uludag University (Project YDP (V)-2009/4).

3.6 References

Al-Talib, H., C.Y. Yean, H. Hasan, N. Zuraina NMN, and M. Ravichandran. 2013.

Methicillin-resistant Staphylococcus aureus nasal carriage among patients and healthcare

workers in a hospital in Kelantan, Malaysia. Polish J. Microbiol., 62(1):109–112.

Baba, T., F. Takeuchi, M. Kuroda, H. Yuzawa, K. Aoki, A. Oguchi, Y. Nagai, N. Iwama, K.

Asano, T. Naimi, H. Kuroda, L. Cui, K. Yamamoto, and K. Hiramatsu. 2002. Genome and

virulence determinants of high virulence community-acquired MRSA. Lancet 359, 1819-

1827.

Benoit, S.R., C. Estivariz, C. Mogdasy, W. Pedreira, A. Galiana, A. Galiana, H. Bagnulo, R.

Gorwitz, G.E. Fosheim, L.K. McDougal, and D. Jernigan. 2008. Community strains of

methicillin-resistant Staphylococcus aureus as potential cause of healthcare-associated

infections, Uruguay, 2002–2004. Emerg. Infect. Dis. 14(8):1216-1223.

D’Agata, E.M.C., G.F. Webb, M.A. Horn, R.C. Moellering Jr., and S. Ruan. 2009. Modeling

the invasion of community-acquired methicillin-resistant Staphylococcus aureus into

hospitals. Clin. Infect. Dis. 48:274-284.

de Lencastre, H., D. Oliveira and A. Tomasz. 2007. Antibiotic resistant Staphylococcus

aureus: a paradigm of adaptive power. Curr. Opin. Microbiol. 10:428-435.

Dufour, P., Y. Gillet, M. Bes, G. Lina, F. Vandenesch, D. Floret, J. Etienne, and H. Richet.

2002. Community-acquired methicillin-resistant Staphylococcus aureus infections in

France: emergence of a single clone that produces Panton-Valentine leukocidin. Clin.

Infect. Dis. 35, 819-824.

Page 91: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

80

Ebert, M.D., S. Sheth, and E.K. Fishman. 2009. Necrotizing pneumonia caused by

community-acquired methicillin-resistant Staphylococcus aureus: an increasing cause of

"mayhem in the lung". Emerg. Radiol. 16, 159-162.

García-Álvarez, L., M.T.G. Holden, H. Lindsay, C.R. Webb, D.F.J. Brown, M.D. Curran, E.

Walpole, K. Brooks, D.J. Pickard, C. Teale, J. Parkhill, S.D. Bentley, G.F. Edwards, E. K.

Girvan, A.M. Kearns, B. Pichon, R.L.R Hill, A.R. Larsen, R.L. Skov, S.J. Peacock, D.J.

Maskell, and M.A. Holmes. 2011. Meticillin-resistant Staphylococcus aureus with a novel

mecA homologue in human and bovine populations in the UK and Denmark: a descriptive

study. The Lancet. 11(8):595-603.

Gorwitz, R.J., D. Kruszon-Moran, S.K. McAllister, G. McQuillan, L.K. McDougal, G.E.

Fosheim, B.J. Jensen, G. Killgore, F.C. Tenover, and M.J. Kuehnert. 2008. Changes in the

prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001–

2004. J. Infect. Dis. 197:1226-1234.

Hartman, B. and A. Tomasz. 1981. Altered penicillin-binding proteins in methicillin-resistant

strains of Staphylococcus aureus. Antimicrob. Agents. Chemother. 19, 726-735.

Ito T., K. Hiramatsu K., A. Tomasz, H. de Lencastre, V. Perreten, M. Holden, D. Coleman, R.

Goering, P. Giffard, R. Skov, K. Zhang, H. Westh, F. O'Brien, F. Tenover, D.C. Oliveira,

S. Boyle-Vavra, F. Laurent, A. Kearns, B. Kreiswirth, K. Ko, H. Grundmann, J. Sollid, J.

John, R. Daum, B. Soderquist, and G. Buist on behalf of the International Working Group

on the Classification of Staphylococcal Cassette Chromosome Elements (IWG-SCC). 2012.

Guidelines for reporting novel mecA gene homologues. Antimicrob. Agents. Chemother.

56 (10):4997-4999.

Jevons, M.P. 1961. Celbenin-resistant Staphylococci. Br. Med. J. 1(5219):124-125.

Klein, E., D.L. Smith, and R. Laxminarayan. 2007. Hospitalizations and deaths caused by

methicillin-resistant Staphylococcus aureus, United States, 1999–2005. Emerg. Infect. Dis.

13:1840-1846.

Page 92: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

81

Klevens, R.M., M.A. Morrison, J. Nadle, S. Petit, K. Gershman, S. Ray, L.H. Harrison, R.

Lynfield, G. Dumyati, J.M. Townes, A.S. Craig, E.R. Zell, G.E. Fosheim, L.K. McDougal,

R.B. Carey, S.K. Fridkin, and Active Bacterial Core surveillance (ABCs) MRSA

Investigators. 2007. Invasive methicillin-resistant Staphylococcus aureus infections in the

United States. J. Am. Med. Assoc. 298(15):1763-1771.

Kumar, P., I. Shukla, and S. Varshney. 2011. Nasal screening of healthcare workers for nasal

carriage of coagulase positive MRSA and prevalence of nasal colonization with

Staphylococcus aureus. Biol. Med., 3(2):182-186.

Laurent, F., H. Chardon, M. Haenni, M. Bes, M.-E. Reverdy, J.-Y. Madec, E. Lagier, F.

Vandenesch, and A. Tristan. 2012. MRSA harboring mecA variant gene mecC, France.

Emerg. Infect. Dis. 18(9):1465-1467.

Lowy, F.D. 2003. Antimicrobial resistance: the example of Staphylococcus aureus. J. Clin.

Invest. 111:1265-1273.

Mainous III, A.G., W.J. Hueston, C.J. Everett, and V.A. Diaz. 2006. Nasal carriage of

Staphylococcus aureus and methicillin-resistant S. aureus in the United States, 2001-2002.

Ann. Fam. Med. 4(2):132-137.

Makgotlho, P.E., M.M. Kock, A. Hoosen, R. Lekalakala, S. Omar, M. Dove, and M.M. Ehlers.

2009. Molecular identification and genotyping of MRSA isolates. FEMS Immunol. Med.

Microbiol. 57:104-115.

McClure J.A., J.M. Conly, V. Lau, S. Elsayed, T. Louie, W. Hutchins, and K. Zhang. 2006.

Novel multiplex PCR assay for detection of the staphylococcal virulence marker Panton-

Valentine leukocidin genes and simultaneous discrimination of methicillin-susceptible from

-resistant staphylococci. J. Clin. Microbiol. 44:1141-1144.

Monecke, S., D. Gavier-Widen, R. Mattsson, L. Rangstrup-Christensen, A. Lazaris, D.C.

Coleman, A.C. Shore, and R. Ehricht. 2013. Detection of mecC-Positive Staphylococcus

aureus (CC130-MRSA-XI) in diseased european hedgehogs (Erinaceus europaeus) in

Sweden. PLoS One. 8(6):e66166.

Page 93: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

82

Moore, D.S. 2007. The basic practice of statistics. 4th Edition. W.H. Freeman and Company,

New York, USA.

Moxnes, J.F., B.F. de Blasio, T.M. Leegaard, and A.E. Fossum Moen. 2013. Methicillin-

resistant Staphylococcus aureus (MRSA) is increasing in Norway: a time series analysis of

reported MRSA and Methicillin-sensitive S. aureus cases, 1997–2010. PLoS One,

8(8):e70499.

Nimmo, G.R., H. Bergh, J. Nakos, D. Whiley, J. Marquess, F. Huygens, and D.L. Paterson.

2013. Replacement of healthcare-associated MRSA by community-associated MRSA in

Queensland: Confirmation by genotyping. J. Infect. 67(5):439-447.

Petersen A., M. Stegger, O. Heltberg, J. Christensen, A. Zeuthen, L.K. Knudsen, T. Urth, M.

Sorum, L. Schouls, J. Larsen, R. Skov and A.R. Larsen. 2013. Epidemiology of

methicillin-resistant Staphylococcus aureus carrying the novel mecC gene in Denmark

corroborates a zoonotic reservoir with transmission to humans. Clin. Microbiol. Infect.

19(1):E16-E22.

Swartz, M.N. 1997. Use of antimicrobial agents and drug resistance. N. Engl. J. Med.

337(7):491-492.

Tiemersma, E.W., S.L.A.M. Bronzwaer, O. Lyytikäinen, J.E. Degener, P. Schrijnemakers, N.

Bruinsma, J. Monen, W. Witte, H. Grundmann, and European Antimicrobial Resistance

Surveillance System Participants. 2004. Methicillin-resistant Staphylococcus aureus in

Europe, 1999–2002. Emerg. Infect. Dis. 10(9):1627-1634.

Van De Griend, P., L.A. Herwaldt, B. Alvis, M. DeMartino, K. Heilmann, G. Doern, P.

Winokur, D.D. Vonstein, and D. Diekema. 2009. Community-associated methicillin-

resistant Staphylococcus aureus, Iowa, USA. Emerg. Infect. Dis. 15, 1582-1589.

Van Den Broek, I.V.F., B.A.G.L. Van Cleef, A. Haenen, E.M. Broens, P.J. Van Der Wolf,

M.J.M. Van Den Broek, X.W. Huijsdens, J.A.J.W. Kluytmans, A.W. Van De Giessen, and

E.W. Tiemersma. 2009. Methicillin-resistant Staphylococcus aureus in people living and

working in pig farms. Epidemiol. Infect. 137, 700–708.

Page 94: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

83

Vandenesch, F., T. Naimi, M.C. Enright, G. Lina, G.R. Nimmo, H. Heffernan, N. Liassine, M.

Bes, T. Greenland, M.E. Reverdy, and J. Etienne. 2003. Community-acquired methicillin-

resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide

emergence. Emerg. Infect. Dis. 9, 978-984.

Page 95: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

84

Table 1 (Desarrollo 3). Nucleotide sequence of the primers used in the multiplex PCR for

detection of the 16S rRNA gene, the mecAgene and the PVL genes (McClure et al., 2006).

Primer Oligonucleotide sequence Amplicon

Size (bp)

Staphy 756 F 5’-AAC TCT GTT ATT AGG GAA GAA CA-3’ Staph 750 R 5’-CCA CCT TCC TCC GGT TTG TCA CC-3’

756

mecA-1 F 5’-GTA GAA ATG ACT GAA CGT CCG ATA A-3’ mecA-2 R 5’-CCA ATT CCA CAT TGT TTC GGT CTA A-3’ 310

luk-PV-1 F 5’-ATC ATT AGG TAA AAT GTC TGG ACA TGA TCC A-3’ luk-PV-2 R 5’-GCA TCA AGT GTA TTG GAT AGC AAA AGC-3’ 433

Page 96: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

85

Table 2 (Desarrollo 3). Identification of 16S rRNA, mecA and Panton-Valentine Leukocidin

(PVL) genes in Staphylococcus aureus isolates from healthy people and methicillin-resistance

Staphylococcus aureus (MRSA) isolates from hospital patients.

No. of isolates with the specific

gene (%) Source

No. of

samples

No. of samples

positive for S.

aureus (%)

No. of

samples

positive for

MRSA (%)

16S

rRNA mecA PVL

Hospital patients

Blood 99 99 (100) 99 (100) 99 (100) 96 (97.0) 11 (11.1)

Wound 9 9 (100) 9 (100) 9 (100) 9 (100) 0 (0.0)

Total 108 108 (100) 108 (100) 108 (100) 105 (97.2) 11 (10.2)

Healthy people

Fall 2010 231 17 (7.4) 17 (7.4) 0 (0.0) 0 (0.0)

Spring 2011 219 25 (7.8) 25 (7.8) 0 (0.0) 0 (0.0)

Total 550 42 (7.6) 42 (7.6) 0 (0.0) 0 (0.0)

Page 97: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

86

III. DISCUSIÓN GENERAL

En este estudio se encontró una alta prevalencia de S. aureus en animales y carne cruda

(35% y 48%, respectivamente), observándos una mayor prevalencia en corderos y cerdos y en

las carnes de pollo y cerdo. Sin embargo, en productos cárnicos la prevalencia de S. aureus fue

menor (13%). En personas sanas, se obtuvo una baja proporción de portadores de S. aureus

(8%), cuando se compara con los resultados de otros estudios (Mainous et al., 2006; Gorwitz

et al., 2008). Adicionalmente, se detectó la presencia del gen mecA sólo en carne de cerdo, con

una baja prevalencia (3%) similar a lo reportado en otras investigaciones (de Boer et al., 2009;

Pu et al., 2009). Finalmente, se determinó en animales (cerdos y corderos) y carne de cerdo la

presencia de S. aureus MR y S. aureus ST398.

La presencia de SARM, S. aureus MR y S. aureus ST398 en animales de abasto, en

carne y productos cárnicos, sugiere que las personas podrían estar expuestas a adquirir este

tipo de agentes de infección a través de la cadena productiva de la carne, existiendo un riesgo

mayor cuando se trata de productos cárnicos que no requieren cocción previa al consumo.

En este estudio no se detectaron los genes PVL en ninguna de las cepas de S. aureus

aisladas de animales, carne y personas sanas. Sólo algunas cepas de SARM obtenidas de

pacientes enfermos hospitalizados (10%) resultaron ser positivas para estos genes de

virulencia.

Los resultados de prevalencia de S. aureus obtenidos en animales y carne mediante el

método de cultivo coincidieron con los resultados obtenidos a través de la técnica de PCR

(identificación del gen ARNr 16S). Por esta razón, resulta conveniente incluir una etapa de

enriquecimiento selectivo previo a la etapa de cultivo selectivo, seguido de la confirmación de

las cepas presuntivas de S. aureus a través de pruebas bioquímicas.

En este estudio la detección de SARM se determinó a través de la técnica de PCR

(identificación del gen mecA) y test de susceptibilidad antimicrobiana (resistencia a

antibióticos β-lactámicos). Existen otros métodos que se han utilizado para confirmar la

presencia de SARM. Estos métodos incluyen tests de susceptibilidad antimicrobiana a la

oxacilina o cefoxitina (Danial et al., 2011; Kumar et al., 2011; Kim et al., 2013; Nimmo et al.,

Page 98: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

87

2013) o detección de la proteína PBP2a a través de tests de aglutinación (Anderson and Weese,

2007; Weese et al., 2010; Danial et al., 2011).

El método utilizado para aislar S. aureus y SARM puede influir en los resultados de

prevalencia. Algunos autores han utilizado sólo una etapa de cultivo en placa (Weese et al.,

2006; Aydin et al., 2011), y otros han incluido etapas de enriquecimiento selectivo previo a la

etapa de cultivo (Wertheim et al., 2001; de Boers et al., 2009; Pu et al., 2009; Tenhagen et al.,

2009; Broens et al., 2011; Pu et al., 2011; Zhang et al., 2011). de Boer et al. (2009) utilizando

las etapas de enriquecimiento primario y secundario, como se describe en el presente trabajo,

obtuvieron una mayor detección de SARM en muestras de carne. Tanto las cepas de S. aureus

y SARM pueden ser aisladas utilizando medios selectivos que contienen NaCl. Sin embargo,

algunas cepas de SARM no crecen cuando la concentración excede de 2,5% (Jones et al.,

1997). Además, algunos medios suplementados con antibióticos podrían causar un crecimiento

exacerbado de cepas de S. aureus susceptibles a la meticilina (Böcher et al., 2008) o fallar en

el aislamiento de SARM. Por esta razón, se recomienda incluir siempre un medio de cultivo

libre de antibióticos, aunque el objetivo sea la identificación de SARM (Pu et al., 2009).

La rápida detección de S. aureus y SARM en animales y carne permitiría disminuir el

riesgo de exposición a contaminación en la cadena productiva de la carne. En este estudio para

disminuir los tiempos de detección, se desarrolló un ensayo de PCR múltiple en tiempo real

con el fin de detectar los genes nuc (identificar S. aureus), mecA (asociado a SARM) y PVL

(factor de virulencia), en muestras extraídas de animales y carne. Se encontró una

concordancia total alta entre el método de cultivo convencional y la técnica de PCR en tiempo

real, con una mayor detección al utilizar el medio de enriquecimiento secundario. Lo anterior

se debería a la recuperación de células dañadas al utilizar el enriquecimiento secundario y a

que niveles bajos de S. aureus no serían detectados al utilizar sólo el enriquecimiento primario

en PCR en tiempo real. Sin embargo, la técnica de cultivo convencional sigue siendo

considerada la metodología estándar para la identificación de S. aureus (Huletsky et al., 2004;

Paule et al., 2005; Danial et al., 2011) y PCR convencional (detección del gen mecA) para la

identificación de SARM (Maes et al., 2002; Makgotlho et al., 2009).

Page 99: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

88

Para la técnica de PCR en tiempo real, se utilizó ADN extraído de los caldos de

enriquecimiento de las muestras obtenidas de animales y carne, por lo cual la concentración y

procedencia del material genético fue variable. Se detectó la presencia del gen mecA en

muestras que resultaron ser negativas para S. aureus, pero positivas para Staphylococcus spp. a

través del método de cultivo y test bioquímicos. Estos resultados son considerados falsos

positivos, ya que se ha detectado el gen mecA tanto en S. aureus como en cepas staphylococci

coagulasa-negativa (Ryffel et al., 1990; Hagen et al., 2005; Higashide et al., 2006; Thomas et

al., 2007; Black et al., 2011). Desafortunadamente, en este estudio los resultados no pudieron

ser validados a través del método de cultivo, ya que se utilizó extractos de ADN, habiéndose

inactivado las células previamente.

El método de PCR en tiempo real utilizado en este estudio debió evaluarse en términos

de sensibilidad de detección, determinando la concentración mínima de ADN para obtener

amplificación. Además de utilizar las muestras control externo, se recomienda incorporar un

control interno de amplificación que podría indicar resultados falsos-negativos, por la

presencia de inhibidores en la reacción, mal funcionamiento del termociclador, actividad baja

de la polimerasa o incorrecta solución de PCR (Hoorfar et al., 2004).

La similitud genética encontrada entre las cepas de S. aureus aisladas de cerdos y carne

de cerdo (ST9), sugiere la posible contaminación de la carne durante la etapa de la faena. De

las cepas positivas para el gen mecA, dos resultaron ser ST5, y tres ST398, todas encontradas

en carne de cerdo. Además, se encontró una alta prevalencia de S. aureus ST398 (no-SARM),

lo cual indica un riesgo potencial para las personas de adquirir esta infección a través de la

cadena productiva de la carne.

Para la tipificación molecular de S. aureus a través de PFGE se sigue el protocolo de

PulseNet, que utiliza la enzima de restricción SmaI. Sin embargo, esta enzima no puede digerir

el ADN de las cepas ST398, debido a que presentan una enzima que metila la secuencia de

reconocimiento de SmaI (Bens et al., 2006). Por lo tanto, no es posible obtener un patrón de

restricción con PFGE para ser comparado con otras cepas. Por esta razón, en este estudio se

utilizó una segunda enzima de restricción, XmaI (un isoesquizómero de SmaI), con la cual se

obtuvo patrones de restricción con bandas muy débiles de las cepas ST398. Para poder realizar

Page 100: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

89

un análisis más preciso de la tipificación molecular de S. aureus ST398 con PFGE, se debe

buscar enzimas de restricción que actúen sobre otras secuencias de reconocimiento, diferentes

a las enzimas SmaI y XmaI, y así establecer un protocolo de PFGE para las cepas que no

presenten un patrón de restricción definido.

Para tener mayor precisión en la tipificación molecular de las cepas, se recomienda la

utilización de al menos dos técnicas moleculares (Tenover et al., 1994). En este estudio se

utilizó la técnica PFGE y MLST en la tipificación de las cepas de S. aureus. Generalmente,

PFGE y MLST clasifican las cepas en clusters similares (Catry et al., 2010). Otro método de

tipificación utilizado para S. aureus es la tipificación de spa, la cual tiene como desventaja de

que líneas clonales no relacionadas pueden tener spa tipos similares (Van den Broek IV et al.,

2009; Golding et al., 2008). Por esta razón, se podrían obtener discrepancias con respecto a los

resultados a través de MLST y PFGE (Golding et al., 2008). Sin embargo, el método de

tipificación molecular con mayor poder de discriminación es PFGE (McDougal et al., 2003).

Todas las cepas SARM detectadas en este estudio resultaron ser resistentes a la

penicilina a través del test de susceptibilidad antimicrobiana, obteniéndose una CMI mayor

que en las otras cepas de S. aureus. Además, se obtuvo una alta prevalencia de S. aureus MR

[resistente al menos a tres agentes antimicrobianos (Aydin et al., 2011)] en animales y en

carne cruda, principalmente a los antibióticos penicilina, tetraciclina, lincomicina y

eritromicina. La multirresistencia se presentó principalmente en cepas ST398 y ST9, las cuales

se asocian a animales, específicamente a cerdos (Lewis et al., 2008; van Belkum et al., 2008;

Guardabassi et al., 2009; Krziwanek et al., 2009).

Los agentes antimicrobianos son drogas efectivas contra los agentes infecciones. Sin

embargo, su uso imprudente contribuye a la resistencia bacteriana, ya sea en hospitales, en la

comunidad o en producción animal. El uso extensivo de agentes antimicrobianos ejerce una

presión selectiva sobre las cepas resistentes, eliminando los competidores susceptibles (Swartz,

1997; Marinelli y Tomasz, 2010). Los glicopéptidos, como la vancomicina, son

frecuentemente utilizados para el tratamiento de infecciones causadas por SARM, sin embargo,

en los últimos años ha aumentado la incidencia de S. aureus con resistencia y resistencia

intermedia a este antibiótico (Tiwari y Sen, 2006). En este estudio todas las cepas de S. aureus

Page 101: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

90

aisladas de animales y carne fueron susceptibles a vancomicina, así como también a

daptomicina, linezolida y nitrofurantoina, coincidiendo con los resultados obtenidos por Pu et

al. (2011) en muestras de carne. Los estudios anteriores y los resultados de este estudio

sugieren que las infecciones por S. aureus y SARM originarios de animales portadores o de

carne contaminada podrían ser tratadas con daptomicina, linezolida o nitrofurantoina por la

susceptibilidad que presentan las cepas.

En producción animal, los antibióticos se utilizan como profilácticos, en el tratamiento

de enfermedades y como promotores del crecimiento (DuPont y Steele, 1987; Franco et al.,

1990). Esto puede generar patógenos resistentes en animales, existiendo el riesgo potencial de

que los genes de resistencia sean incorporados en bacterias presentes en humanos. En este

estudio, la identificación de S. aureus MR en animales y en carne plantea el riesgo de

transmisión a las personas a través de la cadena de la carne y explicaría la disminución de la

eficacia de este tipo de medicamentos utilizados en salud humana (Smith et al., 2002).

Se recomienda que los hospitales disminuyan la utilización de un antibiótico antes de

que las cepas resistentes se propaguen. Sin embargo, puede ocurrir que el gen de resistencia

haya sido transpasado a plásmidos que portan resistencia a agentes antimicrobianos utilizados

como alternativas de la droga original (Swartz, 1997). Se debe aumentar los esfuerzos para

reducir el uso de antibióticos, asegurar el control de las infecciones y los mecanismos de

vigilancia, y seleccionar las dosis y combinaciones utilizadas, para evitar la emergencia de

resistencia (Marinelli y Tomasz, 2010).

En la actualidad se están desarrollando nuevos agentes antimicrobianos que sean

efectivos contra los patógenos resistentes. Las investigaciones que se desarrolllen en este

ámbito debieran considerar la evaluación de la susceptibilidad de S. aureus a estos nuevos

antimicrobianos y combinaciones de ellos y, además, investigar aún más acerca de los

diferentes mecanismos de resistencia que pueden presentarse en los microorganismos. De esta

forma, se podrá contar con la información necesaria para poder controlar S. aureus resistente y

disminuir la exposición de las personas en las diferentes etapas de la cadena productiva de la

carne.

Page 102: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

91

En Estados Unidos existe un sistema de vigilancia llamado National Antimicrobial

Resistance Monitoring System (NARMS), creado en 1996 en colaboración con FDA (Food

and Drug Administration), CDC, USDA (U.S. Department of Agriculture) y los

departamentos de salud estatales y locales. NARMS realiza un monitoreo de la susceptibilidad

antimicrobiana de bacterias entéricas aisladas en humanos, carne y animales de producción.

Los patógenos que se incluyen en NARMS son Salmonella spp., Escherichia coli,

Campylobacter spp., Shigella spp. y Enterococcus spp. (FDA, 2012). Sin embargo, la

evidencia que existe de la presencia de SARM y S. aureus MR en la cadena productiva de la

carne, sugiere que se debiera ampliar el monitoreo a otros patógenos resistentes, no sólo las

bacterias entéricas que se incluyen actualmente. De esta forma, al incluir S. aureus en este

sistema nacional de monitoreo se podría conocer año a año la prevalencia de las cepas

resistentes, la susceptibilidad antimicrobiana que presentan, evaluar la susceptibilidad a

nuevos agentes antimicrobianos y establecer estrategias de control y mitigación para disminuir

la exposición de las personas.

En este estudio se analizaron cepas SARM obtenidas de pacientes enfermos, de las

cuales tres fueron negativas para el gen mecA. Esto podría deberse a la obtención de resultados

falsos positivos en el hospital o a la presencia de un nuevo homólogo del gen mecA,

recientemente identificado como mecC, el cual ha sido detectado en SARM negativo para el

gen mecA, aislado de humanos y animales (García-Álvarez et al., 2011; Ito et al., 2012;

Laurent et al., 2012; Monecke et al., 2013; Petersen et al., 2013). Además, se extrajeron

muestras de personas sanas para determinar la proporción de portadores de SARM sanos,

resultando ser negativo para todos los individuos. Para obtener una mayor precisión en la

identificación y caracterización de SARM en estas muestras, se recomienda la detección de

ambos genes (mecA y mecC), además de la determinación de la susceptibilidad antimicrobiana,

y tipificación molecular a través de PFGE y MLST.

Page 103: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

92

IV. CONCLUSIONES GENERALES

De los resultados obtenidos en este estudio se puede concluir que:

Existe una alta prevalencia de S. aureus en animales productores de carne y carne

cruda y una baja proporción de personas portadoras sanas. Las cepas de S. aureus aisladas de

animales, carne y personas sanas en este estudio no son portadoras de los genes PVL. Cepas

de S. aureus extraídas de pacientes enfermos que padecen infecciones presentan los genes

mecA, asociado a la resistencia y PVL, asociado a la virulencia. A pesar de que la prevalencia

de SARM en carne cruda es baja, la alta prevalencia de S. aureus MR, y cepas ST398 en la

cadena productiva de la carne, sugiere que existe un riesgo de transmisión a las personas.

Además, la similitud genética entre las cepas de S. aureus encontradas en animales y carne,

sugiere la contaminación de la carne durante la faena.

Se recomienda incorporar la detección de SARM y S. aureus MR y la determinación

de la susceptibilidad antimicrobiana de las cepas en los sistemas de vigilancia que existen a

nivel federal, como es NARMS (National Antimicrobial Resistence Monitoring System),

considerando el monitoreo de la cadena de la carne, de pacientes en los hospitales y de

personas sanas en la comunidad.

La utilización de medios de enriquecimiento selectivos previo a la etapa de cultivo

permite aislar S. aureus y SARM, obteniéndose 100% de concordancia con la técnica de PCR

convencional. La utilización de un medio de enriquecimiento secundario junto con PCR en

tiempo real mejora la detección de S. aureus en muestras de animales y carne. La técnica de

PCR en tiempo real permite una detección rápida de S. aureus y el gen mecA, siendo

recomendable confirmar la presencia de SARM a través de la metodología estándar.

Para establecer medidas de control de la propagación de las cepas resistentes de S.

aureus en la cadena productiva de la carne es necesario determinar la tipificación molecular y

la susceptibilidad antimicrobiana.

Page 104: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

93

V. REFERENCIAS

Anderson, M.E.C. and J.S. Weese. 2007. Evaluation of a real-time polymerase chain reaction

assay for rapid identification of methicillin-resistant Staphylococcus aureus directly from

nasal swabs in horses. Vet. Microbiol. 122, 185–189.

Aydin, A., K. Muratoglu, M. Sudagidan, K. Bostan, B. Okuklu, and S. Harsa. 2011.

Prevalence and antibiotic resistance of foodborne Staphylococcus aureus isolates in

Turkey. Foodborne Pathog. Dis. 8, 63-69.

Bens, C.C.P.M., A. Voss, C.H.W. Klaassen. 2006. Presence of a novel DNA methylation

enzyme in methicillin-resistant Staphylococcus aureus Isolates associated with pig farming

leads to uninterpretable results in standard pulsed-field gel electrophoresis analysis. J. Clin.

Microbiol. 44, 1875-1876.

Black, C.C., L.C. Eberlein, S.M. Solyman, R.P. Wilkes, F.A. Hartmann, B.W. Rohrbach, D.A.

Bemis, and S.A. Kania. 2011. The role of mecA and blaZ regulatory elements in mecA

expression by regional clones of methicillin-resistant Staphylococcus pseudintermedius.

Vet. Microbiol. 151, 345–353.

Böcher, S., R. Smyth, G. Kahlmeter, J. Kerremans, M.C. Vos, and R. Skov 2008. Evaluation

of four selective agars and two enrichment broths in screening for methicillin-resistant

Staphylococcus aureus. J. Clin. Microbiol. 46, 3136-3138.

Broens, E.M., E.A. Graat, B. Engel, R.A. van Oosterom, A.W. van de Giessen, and P.J. van

der Wolf. 2011. Comparison of sampling methods used for MRSA-classification of herds

with breeding pigs. Vet. Microbiol. 147, 440-444.

Catry, B., E. Van Duijkeren, M.C. Pomba, C. Greko, M.A. Moreno, S. Pyörälä, M.

Ruzauskas, P. Sanders, E.J. Threlfall, F. Ungemach, K. Törneke, C. Munoz-Madero, J.

Torren-Edo, Scientific Advisory Group on Antimicrobials (SAGAM). 2010. Reflection

paper on MRSA in food-producing and companion animals: epidemiology and control

options for human and animal health. Epidemiol. Infect. 138, 626-44.

Page 105: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

94

Danial, J., M. Noel, K.E. Templeton, F. Cameron, F. Mathewson, M. Smith, and J.A. Cepeda.

2011. Real-time evaluation of an optimized real-time PCR assay versus Brilliance

chromogenic MRSA agar for the detection of meticillin-resistant Staphylococcus aureus

from clinical specimens. J. Med. Microbiol. 60, 323–328.

de Boer, E., J.T.M. Zwartkruis-Nahuis, B. Wit, X.W. Huijsdens, A.J. de Neeling, T. Bosch,

R.A.A. van Oosterom, A. Vila, and A.E. Heuvelink. 2009. Prevalence of methicillin-

resistant Staphylococcus aureus in meat. Int. J. Food Microbiol. 134, 52-56.

DuPont, H.L., J.H. Steele. 1987. Use of antimicrobial agents in animal feeds: implications for

human health. Rev. Infect. Dis. 9, 447-460.

FDA. 2012. Strategic plan 2012-2016. U.S. Food and Drug Administration, Department of

Health & Human Services. Available at

http://www.fda.gov/downloads/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/

NationalAntimicrobialResistanceMonitoringSystem/UCM236283.pdf. Date: 21/09/12.

Franco, D.A., J. Webb, C.E Taylor. 1990. Antibiotic and sulfonamide residues in meat.

Implications for human health. J. Food Protect. 53, 178-185.

García-Álvarez, L., M.T.G. Holden, H. Lindsay, C.R. Webb, D.F.J. Brown, M.D. Curran, E.

Walpole, K. Brooks, D.J. Pickard, C. Teale, J. Parkhill, S.D. Bentley, G.F. Edwards, E. K.

Girvan, A.M. Kearns, B. Pichon, R.L.R Hill, A.R. Larsen, R.L. Skov, S.J. Peacock, D.J.

Maskell, and M.A. Holmes. 2011. Meticillin-resistant Staphylococcus aureus with a novel

mecA homologue in human and bovine populations in the UK and Denmark: a descriptive

study. The Lancet. 11, 595-603.

Golding, G.R., J.L. Campbell, D.J. Spreitzer, J. Veyhl, K. Surynicz, A. Simor, M.R. Mulvey,

Canadian Nosocomial Infection Surveillance Program. 2008. A preliminary guideline for

the assignment of methicillin-resistant Staphylococcus aureus to a Canadian pulsed-field

gel electrophoresis epidemic type using spa typing. Can. J. Infect. Dis. Med. Microbiol.

19, 273-281.

Page 106: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

95

Gorwitz, R.J., D. Kruszon-Moran, S.K. McAllister, G. McQuillan, L.K. McDougal, G.E.

Fosheim, B.J. Jensen, G. Killgore, F.C. Tenover, M.J. Kuehnert. 2008. Changes in the

prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001-

2004. J. Infect. Dis. 197, 1226-1234.

Guardabassi, L., M. O'Donoghue, A. Moodley, J. Ho, M. Boost. 2009. Novel lineage of

methicillin-resistant Staphylococcus aureus, Hong Kong. Emerg. Infect. Dis. 15, 1998-

2000.

Hagen, R.M., I. Seegmüller, J. Navai, I. Kappstein, N. Lehnc, and T. Miethke. 2005.

Development of a real-time PCR assay for rapid identification of methicillin-resistant

Staphylococcus aureus from clinical samples. Int. J. Med. Microbiol. 295, 77–86.

Higashide, M., M. Kuroda, S. Ohkawa, and T. Ohta. 2006. Evaluation of a cefoxitin disk

diffusion test for the detection of mecA-positive methicillin-resistant Staphylococcus

saprophyticus. Int. J. Antimicrob. Agent. 27, 500–504.

Hoorfar, J., N. Cook, B. Malorny, M. Wagner, D. De Medici, A. Abdulmawjood, and P. Fach.

2004. Diagnostic PCR: making internal amplification control mandatory. J. Appl.

Microbiol. 96, 221–222.

Huletsky, A., R. Giroux, V. Rossbach, M. Gagnon, M. Vaillancourt, M. Bernier, F. Gagnon,

K. Truchon, M. Bastien, F.J. Picard, A. van Belkum, M. Oulette, P.H. Roy, and M.G.

Bergeron. 2004. New real-time PCR assay for rapid detection of methicillin-resistant

Staphylococcus aureus directly from specimens containing a mixture of staphylococci. J

Clin. Microbiol. 42, 1875-1884.

Page 107: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

96

Ito T., K. Hiramatsu K., A. Tomasz, H. de Lencastre, V. Perreten, M. Holden, D. Coleman, R.

Goering, P. Giffard, R. Skov, K. Zhang, H. Westh, F. O'Brien, F. Tenover, D.C. Oliveira,

S. Boyle-Vavra, F. Laurent, A. Kearns, B. Kreiswirth, K. Ko, H. Grundmann, J. Sollid, J.

John, R. Daum, B. Soderquist, and G. Buist on behalf of the International Working Group

on the Classification of Staphylococcal Cassette Chromosome Elements (IWG-SCC). 2012.

Guidelines for reporting novel mecA gene homologues. Antimicrob. Agents. Chemother.

56, 4997-4999.

Jones, E.M., K.E. Bowker, R. Cooke, R.J. Marshall, D.S. Reeves, and A.P. MacGowan. 1997.

Salt tolerance of EMRSA-16 and its effect on the sensitivity of screening cultures. J.

Hosp. Infect. 35, 59-62.

Kim, M.H., W.I. Lee, and S.Y. Kang. 2013. Detection of methicillin-resistant Staphylococcus

aureus in healthcare workers using real-time polymerase chain reaction. Yonsei Med. J.

54, 1282-1284.

Krziwanek, K., S. Metz-Gercek, H. Mittermayer. 2009. Methicillin-Resistant Staphylococcus

aureus ST398 from human patients, upper Austria. Emerg. Infect. Dis. 15, 766-769.

Kumar, P., I. Shukla, and S. Varshney. 2011. Nasal screening of healthcare workers for nasal

carriage of coagulase positive MRSA and prevalence of nasal colonization with

Staphylococcus aureus. Biol. Med. 3, 182-186.

Laurent, F., H. Chardon, M. Haenni, M. Bes, M.-E. Reverdy, J.-Y. Madec, E. Lagier, F.

Vandenesch, and A. Tristan. 2012. MRSA harboring mecA variant gene mecC, France.

Emerg. Infect. Dis. 18, 1465-1467.

Lewis, H.C., K. Mølbak, C. Reese, F.M. Aarestrup, M. Selchau, M. Sørum, R.L. Skov. 2008.

Pigs as source of methicillin-resistant Staphylococcus aureus CC398 infections in humans,

Denmark. Emerg. Infect. Dis. 14, 1383-1389.

Page 108: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

97

Maes, N., J. Magdalena, S. Rottiers, Y. De Gheldre, and M.J. Struelens. 2002. Evaluation of a

triplex PCR assay to discriminate Staphylococcus aureus from coagulase-negative

staphylococci and determine methicillin resistance from blood cultures. J. Clin. Microbiol.

40, 1514–1517.

Mainous III, A.G., W.J. Hueston, C.J. Everett, and V.A. Diaz. 2006. Nasal carriage of

Staphylococcus aureus and methicillin-resistant S. aureus in the United States, 2001-2002.

Ann. Fam. Med. 4, 132-137.

Makgotlho, P.E., M.M. Kock, A. Hoosen, R. Lekalakala, S. Omar, M. Dove, and M.M. Ehlers.

2009. Molecular identification and genotyping of MRSA isolates. FEMS Immunol. Med.

Microbiol. 57, 104-115.

Marinelli, F., and A. Tomasz. 2010. Antimicrobials. Curr. Opin. Microbiol. 13, 547-550.

McDougal, L.K., C.D. Steward, G.E. Killgore, J.M. Chaitram, S.K. McAllister, F.C. Tenover.

2003. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus

isolates from the United States: establishing a national database. J. Clin. Microbiol. 41,

5113-5120.

Monecke, S., D. Gavier-Widen, R. Mattsson, L. Rangstrup-Christensen, A. Lazaris, D.C.

Coleman, A.C. Shore, and R. Ehricht. 2013. Detection of mecC-Positive Staphylococcus

aureus (CC130-MRSA-XI) in diseased european hedgehogs (Erinaceus europaeus) in

Sweden. PLoS One. 8, e66166.

Nimmo, G.R., H. Bergh, J. Nakos, D. Whiley, J. Marquess, F. Huygens, and D.L. Paterson.

2013. Replacement of healthcare-associated MRSA by community-associated MRSA in

Queensland: Confirmation by genotyping. J. Infect. 67, 439-447.

Paule, S.M., A.C. Pasquariello, R.B. Thomson, K.L. Kaul, and L.R. Peterson. 2005. Real-time

PCR can rapidly detect methicillin-susceptible and methicillin-resistant Staphylococcus

aureus directly from positive blood culture bottles. Am. J. Clin. Pathol. 124, 404-407.

Page 109: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

98

Petersen A., M. Stegger, O. Heltberg, J. Christensen, A. Zeuthen, L.K. Knudsen, T. Urth, M.

Sorum, L. Schouls, J. Larsen, R. Skov and A.R. Larsen. 2012. Epidemiology of

methicillin-resistant Staphylococcus aureus carrying the novel mecC gene in Denmark

corroborates a zoonotic reservoir with transmission to humans. Clin. Microbiol. Infect.

19, E16-E22.

Pu, S., F. Han, and B. Ge. 2009. Isolation and characterization of methicillin-resistant

Staphylococcus aureus strains from Louisiana retail meats. Appl. Environ. Microbiol. 75,

265-267.

Pu, S., F. Wang, and B. Ge. 2011. Characterization of toxin genes and antimicrobial

susceptibility of Staphylococcus aureus isolates from Louisiana retail meats. Foodborne

Pathog. Dis. 8, 299-306.

Ryffel, C., W. Tesch, I. Bireh-Machin, P.E. Reynolds, L. Barberis-Maino, F.H. Kayser, and B.

Berger-Bgehi. 1990. Sequence comparison of mecA genes isolated from methicillin-

resistant Staphylococcus ureus and Staphylococcus epidermidis. Gene. 94, 137-138.

Smith, D.L., A.D. Harris, J.A. Johnson, E.K. Silbergeld, J.G. Morris. 2002. Animal antibiotic

use has an early but important impact on the emergence of antibiotic resistance in human

commensal bacteria. Proc. Natl. Acad. Sci. U. S. A. 99, 6434-6439.

Swartz, M.N. 1997. Use of antimicrobial agents and drug resistance. N. Engl. J. Med. 337,

491-492.

Tenhagen, B.A., A. Fetsch, B. Stührenberg, G. Schleuter, B. Guerra, J.A. Hammerl, S.

Hertwig, J. Kowall, U. Kämpe, A. Schroeter, J. Bräunig, A. Käsbohrer, and B. Appel. 2009.

Prevalence of MRSA types in slaughter pigs in different German abattoirs. Vet. Rec. 165,

589-593.

Tenover, F.C., R. Arbeit, G. Archer, J. Biddle, S. Byrne, R. Goering, G. Hancock, A. Hebert,

B. Hill, R. Hollis, W.R. Jarvis, B. Kreiswirth, W. Eisner, J. Maslow, L. McDougal, J. M.

Miller, M. Mulligan, M. Pfaller. 1994. Comparison of traditional and molecular methods

of typing isolates of Staphylococcus aureus. J. Clin. Microbiol. 32, 407-415.

Page 110: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

99

Thomas, L.C., H.F. Gidding, A.N. Ginn, T. Olma, and J. Iredell. 2007. Development of a real-

time Staphylococcus aureus and MRSA (SAM-) PCR for routine blood culture. J.

Microbiol. Methods. 68, 296–302.

Tiwari, H.K. and M.R. Sen. 2006. Emergence of vancomycin resistant Staphylococcus aureus

(VRSA) from a tertiary care hospital from northern part of India. BMC Infec. Dis. 6, 156-

161.

van Belkum, A., D.C. Melles, J.K. Peeters, W.B. van Leeuwen, E. van Duijkeren, X.W.

Huijsdens, E. Spalburg, A.J. de Neeling, H.A. Verbrugh, on behalf of the Dutch Working

Party on Surveillance and Research of MRSA (SOM). 2008. Methicillin-resistant and -

susceptible Staphylococcus aureus sequence type 398 in pigs and humans. Emerg. Infect.

Dis. 14, 479-483.

Van den Broek IV, F., B.A. Van Cleef, A. Haenen, E.M. Broens, P.J. Van der Wolf, M.J. Van

den Broek, X.W. Huijsdens, J.A. Kluytmans, A.W. Van de Giessen, E.W. Tiemersma.

2009. Methicillin-resistant Staphylococcus aureus in people living and working in pig

farms. Epidemiol. Infect. 137, 700-708.

Weese, J.S., H. Dick, B.M. Willey, A. McGeer, B.N. Kreiswirth, B. Innis, D.E. Low, D.E.

2006. Suspected transmission of methicillin-resistant Staphylococcus aureus between

domestic pets and humans in veterinary clinics and in the household. Vet. Microbiol. 115,

148-155.

Weese J.S., B.P. Avery, and R.J. Reid-Smith. 2010. Detection and quantification of

methicillin-resistant Staphylococcus aureus (MRSA) clones in retail meat products. Lett.

Appl. Microbiol. 51, 338-342.

Wertheim, H., H.A. Verbrugh, C. van Pelt, P. de Man, A. van Belkum, and M.C. Vos. 2001.

Improved detection of methicillin-resistant Staphylococcus aureus using phenyl mannitol

broth containing aztreonam and ceftizoxime. J. Clin. Microbiol. 39, 2660-2662.

Page 111: Staphylococcus Detection and molecular typing of …repositorio.udec.cl/jspui/bitstream/11594/905/1/Tesis... · 2021. 3. 31. · multiplex PCR, multiplex real-time PCR..... Detection

100

Zhang, W., Z. Hao, Y. Wang, X. Cao, C.M. Logue, B. Wang, J. Yang, J. Shen, and C. Wu.

2011. Molecular characterization of methicillin-resistant Staphylococcus aureus strains

from pet animals and veterinary staff in China. Vet. J. 190, e125-e129.