36
Spintronics in applications: Hard drives, MRAM, and spin torque oscillators Olle Heinonen Materials Science Division Argonne Na5onal Laboratory

Spintronics in applications: Hard drives, MRAM, and spin … · Spintronics in applications: Hard drives, MRAM, and spin torque oscillators Olle$Heinonen$ Materials$Science$Division$

Embed Size (px)

Citation preview

Spintronics in applications: Hard drives, MRAM, and spin torque oscillators

Olle  Heinonen  Materials  Science  Division  Argonne  Na5onal  Laboratory  

2  

Acknowledgements I have benefited from collaborations and discussions with numerous colleagues, in particular

Bill Butler (Alabama MINT)

Xiaoguang Zhang (ORNL)

Mark Kief, Kristin Duxstad, Eric Linville, Konstantin Nikolaev, Xilin Peng, Dave Schouweiler, Kaizhong Gao, Haiwen Xi (Seagate)

Pranaba Muduli, Johan Åkerman (University of Gothenburg)

Janusz Nowak (IBM), Sining Mao (WD), David Larson (Imago), Amanda Petford-Long (ANL), Alfredo Cerezo (Oxford),

and many others Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

3  

Outline

•  Drivers for spintronics

•  Spintronics in Hard Disc Drives (HDDs)

•  Thin-film Anisotropic MagnetoResistance (AMR)

•  Giant MagnetoResistance (GMR)

•  Tunneling MagnetoResistance (TMR)

•  Outlook

•  Magnetic Random Access Memories (MRAMs)

•  Spin torque oscillators

•  Outlook

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

4  

Drivers for spintronics

•  Basic physics – magnetotransport, spin-dependent scattering, magnetic heterostructures…(Gruenberg, Fert)

•  Physics funding agencies – sometimes novelty-driven so you have to come up with a novelty that will solve the world’s problems

•  Semiconductor scaling running out of steam, but still hard to beat…

•  Now NAND flash at 19 nm node(!!!!!!), 2 bits/cell, 64 Gbit NAND, 3 bits/cell planned (SanDisk 2011)

•  Scaling limit drives new functionalities, 3D architectures

•  Semiconductor power consumption

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

5  

Drivers for spintronics – power consumption

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

6  

Drivers for spintronics – power consumption

Create  power-­‐efficient  electronics.  Magne5c  spintronics  can  create  devices  that  do  not  consume  power  in  off-­‐state  

Today:  slow  &  large  footprint   Future:  normally  “off”  electronics  

(Sam  Bader)  

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

7  

Areal Density progression in HDDs

Longitudinal Recording

Perpendicular Recording

(Mark Kief, Mark Kryder)‏

GMR and MTJ

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

8  

Spintronics in HDDs

•  Basic problem: sense relatively weak (~1000 Oe), spatially localized (~10 nm) fields with high SNR and at high frequencies (~1 GHz)

•  Basic drivers:

•  Scaling to smaller features, larger areal densities (Gbit/in2) while maintaining SNR

•  Power consumption

•  Basic idea in thin film heads: use magnetoresistance to sense stray fields from recorded bits in mediaèspin- and charge-currents in sub-micron thin film structures.

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

Bit size and reader technologies

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

9  

High  MR  ra5o  translates  to  High  Signal–  to–Noise  ra5o  

10  Gb/in2  

20  Gb/in2  

40  Gb/in2  

100  Gb/in2  

32  ktpi  x  345  kbpi  (794  nm  x  74  nm)    

45  ktpi  x  445  kbpi    (564  nm  x  57  nm)  

75  ktpi  x  530  kbpi  (339  nm  x  48  nm)  

167  ktpi  x  600  kbpi  (152  nm  x  39  nm)  

1  Terabit/in2   1,000  ktpi  x  1,000  kbpi  (25.4  nm  x  25.4  nm)  

200Gb/in2   200  ktpi  x  1,000  kbpi  (127  nm  x  25  nm)  

Areal  Density  vs.  Magne5c  Bit  Sizes    

Thin film GMR and AMR heads

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

10  

(From  Jimmy  Zhu)  

AMR head advantages

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

11  

•  Enabled  the  use  thin  film  deposi5on  (pla5ng,  spueering)  and  paeerning  

technologies  è  rapid  scaling  (reduc5on  of  feature  sizes)  

•  SNR  independent  of  disc  velocity  (in  contrast  with  induc5ve  heads)  

•  More  complex  process  technologies  

•  Mul5-­‐layer  structures  

•  Larger  materials  set  (sof  magnets,  hard  magnets,  insulators,  

conductors)  

•  Low  AMR  ra5o  ~1%  limits  SNR  with  reduced  reader  size  

GMR read heads

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

12  

•  Much  larger  magnetoresistance  (signal)  then  in  AMR  heads  –  higher  SNR  while  shrinking  feature  size  

•  More  complicated  reader  structure,  more  aeen5on  to  interface  phenomena  •  More  advanced  deposi5on  (spueering)  and  paeerning  techniques  

Sof  Magne5c  Shield  

Sof  Magne5c  Shield  

Al203    Gap  

Al203    Gap  

Permanent  magnet    Permanent  magnet    

Current  Lead    Current  Lead    

Ac5ve  Sensing  Region  

13  

Bulk and interface scattering in CoFe/Cu multilayers

Majority spin suffers few scattering events

Minority spin suffers many scattering events

Cu

CoFe

GMR is generated by

•  Bulk spin-asymmetric scattering

•  Interface spin-asymmetric scattering

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

14  

GMR-effect: band-match and transmission properties at CoFe-Cu interface

•  CoFe and Cu in (111) texture have a very good band-match in the majority channel, and a poor band-match in the minority channel

•  Majority spins are transmitted relatively easily across the 2D Fermi surface; minority spins are largely reflected

•  This leads to a spin-asymmetric interface resistance which contributes (in addition to spin-asymmetric scattering within the CoFe layers) to the GMR resistance

Transmission probabilities for majority and minority electrons incident from CoFe to Cu.

Blue to white colors indicate increasing transmission probablility

W.H. Butler, O. Heinonen and X.-G. Zhang, in Physics of Ultra-High Density Magnetic Recording, J. van Ek, M. L. Plumer, and D. Weller (eds) (Springer 1999))‏

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

15  

CIP spin valves •  The potential use of the GMR effect in sensors and read-heads was immediately recognized

•  However, multilayer devices were not practical for applications:

•  Low sensitivity

•  Thick structures (relative to shield-to-shield spacing in read-heads)

•  Hard to bias for linear response

•  The GMR Spin Valve [B. Dieny et al., Phys. Rev. B43, 1297 (1991)] fixed this:

•  High sensitivity

•  Thin structure

•  Biased for linear response

•  Compatible with thin-film deposition and patterning techniques – scalable

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

16  

A thin Ru layer sandwiched between PL and RL couples them very strongly antiferromagnetically.

SAF does not respond to external field and exerts small stray field on FL – easier to bias

PL

RL

GMR SAF Spin Valve

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

17  

CIP SAF spin valve

Transmission probabilities for majority and minority electrons incident on Ru from CoFe.

Majority spins tend to be reflected, and minority transmitted.

W.H. Butler, O. Heinonen and X.-G. Zhang, in Physics of Ultra-High Density Magnetic Recording, J. van Ek, M. L. Plumer, and D. Weller (eds) (Springer 1999))‏

•  Unexpected bonus for transport and GMR: • Reflection of majority spin electrons incident on Ru from CoFe is beneficial to GMR!

•  Ru on CoFe smooths out the surface (reduces “doming”).

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

18  

Current density and GMR properties Better interface control, improved Cu, specular cap, and the magic of Ru improve magnetotransport properties

Cu

GMR signal

Free layer Reference layer

Pinned layer

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

19  

CIP spin valves – end-of-life

•  Highest achievable GMR was around 20%

•  Signal voltage limited by maximum current – Joule heating. Signal voltage is

As the device size decreases, heat is dissipated less efficiently from the reader, so the bias current has to be reduced.

•  Main limitations to continued scaling for SVs were

•  increased heat dissipation

•  unfavorable SNR scaling

•  insulating layers between SV and shields structures prevented small shield-to-shield spacing

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

20  

§  Device resistance depends on spin-dependent scattering at interfaces and bulk films

From GMR spin valves to MTJs

Free layer

Cu

Reference layer

Free layer!

Reference layer!

Barrier!

GMR MTJ

§  Device resistance depends on spin-dependent tunneling through the barrier layer §  Bandstructure effects in Co(Fe)-MgO-Co(Fe) can lead to very large magnetoresistance

§ W.H. Butler, X.-G. Zhang, T.C. Schulthess, and J.M. MacLauren, Phys Rev B 63, 054416 (2001)

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

21  

From GMR spin valves to MTJs

Similar stack structures, but

•  Metallic spacer replaced with insulating barrier

•  Metallic shields used as contact �better thermal management

•  Must insulate permanent magnets from stack (atomic layer deposition)

•  Signal amplitude: Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

22  

Tunneling readers – barrier materials •  Want:

•  High tunneling magnetoresistance (TMR)

•  Low resistance-area (RA) product (~1 Ω-µm2)‏

•  Reliable – able to withstand bias voltage during lifetime of reader

•  Initial MTJs were based on alumina barriers. Drawbacks:

•  Kinetics of alumina formation makes it hard to get a thin (low RA) barrier free of defects (pinholes)‏

•  Metallic Al deposited on CoFe electrode forms an alloy with Co.

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

Early product TMR head (~150 Gbit/in2)

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

23  

Free  sensing  layer  

Thin insulating barrier < 1 nm thickness

Antiferromagnet for pinning the fixed layer

§   Abueed  junc5on  layout  with  hard  bias  §   Reader  width  ~  90-­‐100nm  and  Shield  spacing  ~  80nm  

bcc FeCo also has only one band at the Fermi energy, also a Δ1 band that that decays relatively slowly in the MgO. There is no minority Δ1 band.

Tunneling density of states on each atomic layer at k|| = 0 for FeCo/MgO/FeCo tunnel junction. Top panel, parallel spin alignment, bottom panel, antiparallel spin alignment

Parallel  Alignment  of  FeCo  Moments   An5-­‐Parallel  Alignment  of  FeCo  Moments  

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

24  

Zhang  and  Butler,  PRB  70,  172407  (2004)  

MTJ in HDDs – present status and end-of-life

§  Currently  in  produc5on  RA≈0.5  Ω(μm)2  and  TMR≈100%  §  Reader  dimensions  <  50  nm  x  50  nm  §  Difficult  to  make  narrower  (for  higher  track  density)  and  

thinner  (for  higher  linear  density)  while  maintaining  stability,  amplitude  (SNR),  and  reliability  

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

25  

Page 26

Spin torque MRAM MRAM = Magnetic Random Access Memory Use a basic mangetic tunneling junction to store information.

Pinned layer

Free layer

Tunneling barrier

Free layer and Pinned layer parallel → low-resistance state. Free layer and pinned layer anti-parallel → high-resistance state Use shape anisotropy to make the two magnetization configurations bi-stable. Switching? Old scheme uses complicated wires to use current-induced magnetic fields to switch free layer (Freescale). Problem: difficult to scale down (magnetic cross-talk and bit selection)

© Seagate 2009

Low-resistance state High-resistance state

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

Spin torque •   A  spin-­‐polarized  current  exerts  a  torque  on  the  magne5za5on  in  a  thin  magne5c  film  

Current  direc5on  

Electron  flow  direc5on  

Current  direc5on  

Electron  flow  direc5on  

Back-­‐scaeered  electrons  an5-­‐parallel  to  the  magne5za5on  in  2    exert  a  torque  on  1  

Transmieed  electrons  parallel  to  the  magne5za5on  direc5on  in  1  exert  a  torque  on  2  

1   2  

1   2  

27  

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

Page 28

Perpendicular-anisotropy (PA) spin-torque RAM

Low-­‐energy  direc5ons  High-­‐energy  direc5ons  

In  in-­‐plane  STRAM  the  direc5on  of  the  Free  layer  magne5za5on  is  determined  by  the  shape  

In  PA  STRAM,  the  direc5on  of  the  Free  layer  magne5za5on  is  determined  by  intrinsic  magne5c  anisotropy.  This  offers  advantages  over  in-­‐plane  STRAM:  

•   The  thermal  stability  is  insensi5ve  to  shape  and  process  varia5ons  

•   Can  easily  make  circles  down  to  ~65  nm  diameter  with  193  nm  stepper  

•   The  switching  current  is  reduced  

The  thermal  stability  is  determined  by  the  energy  difference  between  high-­‐  and  low-­‐energy  direc5ons  and  depends  on  the  shape.  This  make  the  thermal  stability  sensi5ve  to  process  varia5ons.  Difficult  to  make  small  ellipses  (~1:2  aspect  ra5o)  small  axis  65  nm  or  smaller  with  193  nm  stepper.  

Free  layer  

Reference  layer  

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

Page 29

In-plane elliptical spin torque magnetic random access memory structure

SEM  image  of  nominally  90  nm  x  180  nm  STRAM  –  note  edge  roughness,  or  “wobbliness”  

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

30  

Perpendicular-anisotropy spin-torque MRAM

Advantages:  • Decouple  thermal  stability  (energy  barrier)  from  processing  condi5ons  • Reduced  cri5cal  current  density  for  switching  –  but  reduced  write  current  can  lead  to  read  disturbances…  Remaining  issues:  • Materials  science:  must  integrate  magne5c  layers  with  perpendicular  anisotropy  while  maintaining  high-­‐TMR  CoFe/MgO/CoFe  interface  with  (001)  texture.  Thin  (very  thin,  ~1  nm)  CoFeB  has  perpendicular  anisotropy  (Ohno)  • Must  maintain  low  cri5cal  current  density  –  reliability  as  well  as  size  of  selec5on  transistor  •   Recent  developments  perpendicular  spin-­‐torque  MRAM  (Tohoku  U  –  NEC):  Sato  et  al,  APL  2011  

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

31  

1T-­‐1R  64  bit  x  128  word  using  140  nm  CMOS  processing  Perpendicular-­‐anisotropy  CoFeB/MgO/CoFeB    

Design and Fabrication of a One-Transistor/One-Resistor Nonvolatile Binary

Content-Addressable Memory Using Perpendicular Magnetic Tunnel Junction Devices

with a Fine-Grained Power-Gating Scheme

Shoun Matsunaga, Masanori Natsui1, Shoji Ikeda2, Katsuya Miura2;3,Tetsuo Endoh4, Hideo Ohno2, and Takahiro Hanyu1!

Center for Spintronics Integrated Systems (CSIS), Tohoku University, Sendai 980-8577, Japan1Laboratory for Brainware Systems, Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan2Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan3Hitachi Advanced Research Laboratory, Kokubunji, Tokyo 185-8601, Japan4Center for Interdisciplinary Research, Tohoku University, Sendai 980-8578, Japan

Received February 24, 2011; accepted March 24, 2011; published online June 20, 2011

A perpendicular magnetic tunnel junction (P-MTJ)-based one-transistor/one-resistor (1T–1R) binary content-addressable memory (CAM) is

proposed for a high-density nonvolatile CAM. The proposed CAM cell performs an equality-search operation between an input bit and thecorresponding stored bit by detecting the difference of a ‘‘cell resistance’’, where the cell resistance is determined by the series connection of one

metal–oxide–semiconductor (MOS) transistor and one P-MTJ device. This circuit structure makes it possible to implement a compact nonvolatile

CAM cell circuit with 1.25 !m2 of a cell size in a 0.14 !m complementary MOS (CMOS)/P-MTJ process. Moreover, the equality-search operation

in a bit-serial fashion is used for great reduction of the activity rate in the proposed CAM cell array, since most of the mismatched words in theCAM are detected by just several higher bits of comparison results in the word circuits. By applying a bit-level fine-grained power gating scheme, a

fabricated 64-bit ! 128-word nonvolatile CAM achieves high density with maintaining low search energy under 3.1% of activity rate in the cell

array. # 2011 The Japan Society of Applied Physics

1. Introduction

A content-addressable memory (CAM) is a powerful data-searching hardware with a parallel data processing cap-ability. It can be used for a number of applications suchas parallel image processors, data compression hardware,and central processing unit (CPU) caches.1–6) However, aconventional complementary metal–oxide–semiconductor(CMOS)-based CAM tends to su!er from an area penaltysince it must consist of a normal static random accessmemory (SRAM) cell (six transistors) to perform datastorage function and additional logic circuit (three transistorsat least) to perform equality-search operation.7) Moreover,standby power dissipation due to leakage current in aCMOS-based cell circuit is increasingly dominating itspower dissipation in recent nanometer-scaled technol-ogy.8–12)

One possible solution to realize a high-density and low-standby-power CAM is to use metal–oxide–semiconductor(MOS)/nonvolatile-device-hybrid logic-in-memory circui-try, where nonvolatile storage elements are distributed andstacked over a logic-circuit plane,13–21) and to cut o! thepower supply to inactive circuit blocks whenever they arein standby mode (power gating).22,23) In order to fully takeadvantages of the logic-in-memory circuitry, it is importantto implement a nonvolatile device that has superiorcapabilities such as shorter access time, unlimited endur-ance, scalable write, and small dimension comparable to theemployed CMOS technology. The only available candidateof a nonvolatile storage device that can satisfy all the aboverequirements at present is the one using spin-transfer-torque(STT) magnetic tunnel junction (MTJ) devices.24) Inparticular, a newly-developed MTJ device which uses largeperpendicular magnetic anisotropy at the interface betweenan insulator and magnetic electrode, called perpendicularMTJ (P-MTJ) device, is expected to provide a great

advantage to achieve ultra-low power consumption in verylarge scale integrated circuits (VLSIs).25)

In this paper, we propose a nonvolatile bit-serial binaryCAM using P-MTJ-based fine-grained power-gatingscheme, and demonstrate its operating mechanism witha fabricated 64-bit " 128-word CAM chip in a 0.14 !mCMOS/P-MTJ process. Since a P-MTJ device is used as notonly a nonvolatile storage element but also a logic-operationelement, one-transistor/one-resistor (1T–1R)-style compactCAM cell circuit is implemented. Moreover, a combinationof bit-level equality-search scheme and a fine-grainedpower-gating scheme which is achieved by the nonvolatilestorage capability of MTJ devices decreases the cell activityrate to 3.1%, which further reduces power dissipation of thecircuit. As the result, an ultra-low-power bit-serial CAMwhich eliminates most of the wasted standby power can beobtained.

2. MOS/MTJ-Hybrid 1T–1R Binary CAM Cell withThree-State Combined Resistance

Figure 1 shows a P-MTJ-based CAM cell structure anda measured resistance versus current (R–I) characteristic ofthe fabricated P-MTJ device. The proposed CAM cellconsists of one transistor and one P-MTJ device. The CAMcell is designed and fabricated by using two-finger layoutwhich is the same as that of a standard magnetic randomaccess memory (MRAM) cell array with a 1T–1R structure.The P-MTJ device, whose shape is 100 nm! circular, isstacked over the MOS and metal layers with its upper andlower electrodes.

The most important advantage of the P-MTJ device overconventional in-plane STT MTJ device26) is its lower writecurrent. However the lower write current may causeunexpected spin inversion of the MTJ device during readoperation (read disturbance). To avoid this, it is important todetermine the current direction at read (equality-search)operation in the CAM by considering an asymmetric shapeof the R–I characteristic of P-MTJ device as shown in!E-mail address: [email protected]

Japanese Journal of Applied Physics 50 (2011) 063004

063004-1 # 2011 The Japan Society of Applied Physics

REGULAR PAPERDOI: 10.1143/JJAP.50.063004

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

32  

Spin-torque oscillators

•   New  physics  coupling  DC  currents  with  magne5za5on  dynamics  

•   Spin  torque  oscillators  –  very  high  Q-­‐values  in  nanoscale  GHz  oscillators  

Nazarov,  Nikolaev,  Gao,  Cho,  and  Song  –  MgO    MTJ  (MMM-­‐2007)  

Magnetization dynamics – Landau-Lifshitz-Gilbert equation

33  

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

!

d ˆ m dt

= "# e ˆ m $! H eff[ ] " # e %

1+% 2 ˆ m $ ˆ m $! H eff( )[ ]

Precession    (conserva5ve  torque)  

Dissipa5on    (non-­‐conserva5ve  torque)  

!

! H eff

!

ˆ m Magne5za5on  precesses  around  the  effec5ve  field.  The  dissipa5ve  torque  brings  the  magne5za5on  parallel  to  the  effec5ve  field.  

!

ˆ m =!

M !

M α  =  dimensionless  damping  constant  

Add “Slonczewski spin torque”:

34  

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

!

! H eff || ˆ m RL

!

ˆ m

Depending  on  the  sign  of  the  current,  the  spin  torque  term  adds  dissipa5on,  or  pumps  energy  into  the  system  è  can  have  undamped  oscilla5on!  Large  spin  torque  can  make  magne5za5on  switch  (Ka5ne  et  al,  PRL  2000)  

!

! " = # e aJ ˆ m FL $ ˆ m FL $ ˆ m RL( )[ ],

!

aJ "#jPMSt

aJ=effec5ve  field  due  to  spin  torque  j=  current  density  P=spin  polariza5on  MS=magne5za5on  density  t=  FL  thickness  

STOs

35  

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland  

•  Metallic  nano-­‐contacts  or  MgO  MTJs  •  MTJs  provide  large  signal,  but  worse  tunability  •  Couple  oscillators  for  larger  output  •  Sub-­‐micron  sized  GHz  oscillator  driven  by  dc  currents(!)  with  frequencies  up  to  tens  of  GHz;  readily  integrated  with  Si-­‐CMOS  using  back-­‐end-­‐of-­‐line  processing.  

Issues  •  Synchroniza5on  of  many  oscillators  •  Frequency  range  for  MgO  STOs  •  Amplitude  for  nano-­‐contact  STOs  •  Ul5mate  coherence  limit:  

•  Temperature-­‐driven  decoherence  •  Mode-­‐hopping  driven  decoherence  

36  

Back-ups

Olle  Heinonen  6th  Nordic  Magne5c  Confrence  Oct.  4  -­‐  5,  2011,  Pori,  Finland