42
Sparse Polynomial Chaos Surrogate for ACME Land Model via Iterative Bayesian Compressive Sensing K. Sargsyan 1 , D. Ricciuto 2 , P. Thornton 2 C. Safta 1 , B.Debusschere 1 , H. Najm 1 1 Sandia National Laboratories Livermore, CA 2 Oak Ridge National Laboratory Oak Ridge, TN Sponsored by DOE, Biological and Environmental Research, under Accelerated Climate Modeling for Energy (ACME). Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 1

Sparse Polynomial Chaos Surrogate for ACME Land Model via ... · Polynomial Chaos surrogate for f( ) Scale the input parameters i 2[a i;b i] i = a i + b i 2 + b i a i 2 x i Forward

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

  • Sparse Polynomial Chaos Surrogatefor ACME Land Model

    via Iterative Bayesian Compressive Sensing

    K. Sargsyan1, D. Ricciuto2, P. Thornton2

    C. Safta1, B.Debusschere1, H. Najm1

    1Sandia National LaboratoriesLivermore, CA

    2Oak Ridge National LaboratoryOak Ridge, TN

    Sponsored by DOE, Biological and Environmental Research,under Accelerated Climate Modeling for Energy (ACME).

    Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation,a wholly owned subsidiary of Lockheed Martin Corporation,

    for the U.S. Department of Energy’s National Nuclear Security Administrationunder contract DE-AC04-94AL85000.

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 1

  • OUTLINE

    • Surrogates needed for complex models

    • Polynomial Chaos (PC) surrogates do well with uncertain inputs

    • Bayesian regression provide results with uncertainty certificate

    • Compressive sensing ideas deal with high-dimensionality

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 2

  • Application of Interest: ACME Land Model

    http://www.cesm.ucar.edu/models/clm/

    A single-site, 1000-yr simulation takes ∼ 10 hrs on 1 CPUInvolves ∼ 70 input parameters; some dependentNon-smooth input-output relationship

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 3

  • Surrogate construction: scope and challenges

    Construct surrogate for a complex model f (λ) to enable

    • Global sensitivity analysis• Optimization• Forward uncertainty propagation• Input parameter calibration• · · ·

    • Computationally expensive model simulations, data sparsity• Need to build accurate surrogates with as few

    training runs as possible

    • High-dimensional input space• Too many samples needed to cover the space• Too many terms in the polynomial expansion

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 4

  • Surrogate construction: scope and challenges

    Construct surrogate for a complex model f (λ) to enable

    • Global sensitivity analysis• Optimization• Forward uncertainty propagation• Input parameter calibration• · · ·

    • Computationally expensive model simulations, data sparsity• Need to build accurate surrogates with as few

    training runs as possible

    • High-dimensional input space• Too many samples needed to cover the space• Too many terms in the polynomial expansion

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 4

  • Surrogate construction: scope and challenges

    Construct surrogate for a complex model f (λ) to enable

    • Global sensitivity analysis• Optimization• Forward uncertainty propagation• Input parameter calibration• · · ·

    • Computationally expensive model simulations, data sparsity• Need to build accurate surrogates with as few

    training runs as possible

    • High-dimensional input space• Too many samples needed to cover the space• Too many terms in the polynomial expansion

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 4

  • Polynomial Chaos surrogate for f (λ)

    • Scale the input parameters λi ∈ [ai, bi]

    λi =ai + bi

    2+

    bi − ai2

    xi

    • Forward function f (·), output u

    u(x) = f (λ(x)) ≈K−1∑k=0

    ckΨk(x) ≡ g(x)

    • Global sensitivity information for free- Sobol indices, variance-based decomposition.

    • Bayesian inference useful for finding ck:

    P(c|u) ∝ P(u|c)P(c)

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 5

  • Polynomial Chaos surrogate for f (λ)

    • Scale the input parameters λi ∈ [ai, bi]

    λi =ai + bi

    2+

    bi − ai2

    xi

    • Forward function f (·), output u

    u(x) = f (λ(x)) ≈K−1∑k=0

    ckΨk(x) ≡ g(x)

    • Global sensitivity information for free- Sobol indices, variance-based decomposition.

    • Bayesian inference useful for finding ck:

    P(c|u) ∝ P(u|c)P(c)

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 5

  • Polynomial Chaos surrogate for f (λ)

    • Scale the input parameters λi ∈ [ai, bi]

    λi =ai + bi

    2+

    bi − ai2

    xi

    • Forward function f (·), output u

    u(x) = f (λ(x)) ≈K−1∑k=0

    ckΨk(x) ≡ g(x)

    • Global sensitivity information for free- Sobol indices, variance-based decomposition.

    • Bayesian inference useful for finding ck:

    P(c|u) ∝ P(u|c)P(c)

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 5

  • Polynomial Chaos surrogate for f (λ)

    • Scale the input parameters λi ∈ [ai, bi]

    λi =ai + bi

    2+

    bi − ai2

    xi

    • Forward function f (·), output u

    u(x) = f (λ(x)) ≈K−1∑k=0

    ckΨk(x) ≡ g(x)

    • Global sensitivity information for free- Sobol indices, variance-based decomposition.

    • Bayesian inference useful for finding ck:

    P(c|u) ∝ P(u|c)P(c)

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 5

  • Bayesian inference of PC surrogate: high-d, low-data regime

    y = u(x) ≈∑K−1

    k=0 ckΨk(x)

    Ψk(x1, x2, ..., xd) = ψk1(x1)ψk2(x2) · · ·ψkd (xd)

    • Issues:

    • how to properly choosethe basis set?

    0 1 2 3 4 5 6 7 8 9 10

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    Dim 1

    Dim

    2

    • need to work in underdetermined regimeN < K: fewer data than bases (d.o.f.)

    • Discover the underlying low-d structure in the model

    • get help from the machine learning community

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 6

  • Bayesian inference of PC surrogate: high-d, low-data regime

    y = u(x) ≈∑K−1

    k=0 ckΨk(x)

    Ψk(x1, x2, ..., xd) = ψk1(x1)ψk2(x2) · · ·ψkd (xd)

    • Issues:

    • how to properly choosethe basis set?

    0 1 2 3 4 5 6 7 8 9 10

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    Dim 1

    Dim

    2

    • need to work in underdetermined regimeN < K: fewer data than bases (d.o.f.)

    • Discover the underlying low-d structure in the model

    • get help from the machine learning community

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 6

  • Bayesian inference of PC surrogate: high-d, low-data regime

    y = u(x) ≈∑K−1

    k=0 ckΨk(x)

    Ψk(x1, x2, ..., xd) = ψk1(x1)ψk2(x2) · · ·ψkd (xd)

    • Issues:

    • how to properly choosethe basis set?

    0 1 2 3 4 5 6 7 8 9 10

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    Dim 1

    Dim

    2

    • need to work in underdetermined regimeN < K: fewer data than bases (d.o.f.)

    • Discover the underlying low-d structure in the model

    • get help from the machine learning community

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 6

  • Bayesian inference of PC surrogate: high-d, low-data regime

    y = u(x) ≈∑K−1

    k=0 ckΨk(x)

    Ψk(x1, x2, ..., xd) = ψk1(x1)ψk2(x2) · · ·ψkd (xd)

    • Issues:

    • how to properly choosethe basis set?

    0 1 2 3 4 5 6 7 8 9 10

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    Dim 1

    Dim

    2

    • need to work in underdetermined regimeN < K: fewer data than bases (d.o.f.)

    • Discover the underlying low-d structure in the model

    • get help from the machine learning community

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 6

  • Bayesian inference of PC surrogate: high-d, low-data regime

    y = u(x) ≈∑K−1

    k=0 ckΨk(x)

    Ψk(x1, x2, ..., xd) = ψk1(x1)ψk2(x2) · · ·ψkd (xd)

    • Issues:

    • how to properly choosethe basis set?

    0 1 2 3 4 5 6 7 8 9 10

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    Dim 1

    Dim

    2

    • need to work in underdetermined regimeN < K: fewer data than bases (d.o.f.)

    • Discover the underlying low-d structure in the model

    • get help from the machine learning community

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 6

  • In a different language....

    • N training data points (xn, un) and K basis terms Ψk(·)• Projection matrix PN×K with Pnk = Ψk(xn)• Find regression weights c = (c0, . . . , cK−1) so that

    u ≈ Pc or un ≈∑

    k ckΨk(xn)

    • The number of polynomial basis terms grows fast; a p-th order,d-dimensional basis has a total of K = (p + d)!/(p!d!) terms.

    • For limited data and large basis set (N < K) this is a sparse signalrecovery problem⇒ need some regularization/constraints.

    • Least-squares argminc {||u− Pc||2}

    • The ‘sparsest’ argminc {||u− Pc||2 + α||c||0}

    • Compressive sensing argminc {||u− Pc||2 + α||c||1}

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 7

  • In a different language....

    • N training data points (xn, un) and K basis terms Ψk(·)• Projection matrix PN×K with Pnk = Ψk(xn)• Find regression weights c = (c0, . . . , cK−1) so that

    u ≈ Pc or un ≈∑

    k ckΨk(xn)

    • The number of polynomial basis terms grows fast; a p-th order,d-dimensional basis has a total of K = (p + d)!/(p!d!) terms.

    • For limited data and large basis set (N < K) this is a sparse signalrecovery problem⇒ need some regularization/constraints.

    • Least-squares argminc {||u− Pc||2}

    • The ‘sparsest’ argminc {||u− Pc||2 + α||c||0}

    • Compressive sensing argminc {||u− Pc||2 + α||c||1}Bayesian Likelihood Prior

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 7

  • BCS removes unnecessary basis terms

    f (x, y) = cos(x + 4y) f (x, y) = cos(x2 + 4y)

    0 1 2 3 4 5 6 7 8 9 10

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    Order (dim 2)

    Ord

    er

    (dim

    1)

    −18

    −16

    −14

    −12

    −10

    −8

    −6

    −4

    −2

    0 1 2 3 4 5 6 7 8 9 10

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    Order (dim 2)

    Ord

    er

    (dim

    1)

    −18

    −16

    −14

    −12

    −10

    −8

    −6

    −4

    −2

    The square (i, j) represents the (log) spectral coefficientfor the basis term ψi(x)ψj(y).

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 8

  • Iterative Bayesian Compressive Sensing (iBCS)

    Iterative BCS: We implement an iterative procedure that allowsincreasing the order for the relevant basis terms while maintaining thedimensionality reduction [Sargsyan et al. 2014], [Jakeman et al. 2015].Combine basis growth and reweighting!

    Initial Basis

    Iterations

    WeightedBCS

    Model data

    Sparse Basis Final Basis

    BasisGrowth

    ReweightingNew Basis

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 9

  • Basis set growth: simple anisotropic function

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 10

  • Basis set growth: ... added outlier term

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 11

  • Application of Interest: ACME Land Model

    http://www.cesm.ucar.edu/models/clm/

    A single-site, 1000-yr simulation takes ∼ 10 hrs on 1 CPUInvolves ∼ 70 input parameters; some dependentNon-smooth input-output relationship

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 12

  • FLUXNET experiment

    60°N

    30°N

    30°S

    60°S

    60°N

    30°N

    30°S

    60°S

    180° 180°120°W 60°W 0° 60°E 120°E180° 180°

    FLUXNET sites

    96 FLUXNET sites covering major biomes and plant functional types

    Varying 68 input parameters over given ranges; 5 steady state outputs

    Ensemble of 3000 runs on Titan, DoE Leadership Computing Facility atOak Ridge National Lab

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 13

  • Sparse PC surrogate and uncertainty decompositionfor the ACME Land Model

    Main effect sensitivities : rank input parametersJoint sensitivities : most influential input couplingsAbout 200 polynomial basis terms in the 68-dimensional spaceSparse PC will further be used for• sampling in a reduced space• parameter calibration against experimental data

    9

    33 - bp

    31

    31 - br_mr

    19

    19 - froot_leaf

    2

    2 - mp

    16

    16 - frootcn3232 - q10_mr

    9 - slatop

    Site # 31

    GPP

    33 - bp

    9

    9 - slatop

    19

    19 - froot_leaf

    31

    31 - br_mr

    25

    25 - fr_fcel2020 - flivewd

    Site # 31

    TLAI

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 14

  • Sparse PC surrogate and uncertainty decompositionfor the ACME Land Model

    Main effect sensitivities : rank input parametersJoint sensitivities : most influential input couplingsAbout 200 polynomial basis terms in the 68-dimensional spaceSparse PC will further be used for• sampling in a reduced space• parameter calibration against experimental data

    33 - bp

    31

    31 - br_mr

    2

    2 - mp

    19

    19 - froot_leaf

    16

    16 - frootcn99 - slatop

    Site # 31

    TOTVEGC

    9

    3131 - br_mr

    35

    35 - cn_s3

    3

    3 - bp

    32

    32 - q10_mr

    34

    34 - cn_s219

    19 - froot_leaf

    9 - slatop

    Site # 31

    TOTSOMC

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 14

  • Sparse PC surrogate and uncertainty decompositionfor the ACME Land Model

    Main effect sensitivities : rank input parametersJoint sensitivities : most influential input couplingsAbout 200 polynomial basis terms in the 68-dimensional spaceSparse PC will further be used for• sampling in a reduced space• parameter calibration against experimental data

    MP

    BP

    ROOTB_PAR

    SLATOP

    FLNR

    FROOTCN

    FROOT_LEAF

    LEAF_LONG

    BDNR

    BR_M

    R

    Q10_M

    R

    CN_S2

    CN_S3

    RF_S2S3

    RF_S3S4

    R_M

    ORT

    GPP

    TLAI

    TOTVEGC

    EFLX_LH_TOT

    TOTSOMC

    10−3

    10−2

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 14

  • Sparse PC surrogate and uncertainty decompositionfor the ACME Land Model

    Main effect sensitivities : rank input parametersJoint sensitivities : most influential input couplingsAbout 200 polynomial basis terms in the 68-dimensional spaceSparse PC will further be used for• sampling in a reduced space• parameter calibration against experimental data

    GPPgross primaryproductivity

    1 2 3 4 5 6 7 8 9 10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    38

    39

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    66

    67

    68

    69

    70

    71

    72

    73

    74

    75

    76

    77

    78

    79

    80

    81

    82

    83

    84

    85

    86

    87

    88

    89

    90

    91

    92

    93

    94

    95

    960.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Sensitivity

    soilpsi_offmpbp

    slatopcrit_onset_swileafcn

    flnrfrootcnfroot_leaf

    fstor2tranbdnr

    br_mrq10_mr

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 14

  • Sparse PC surrogate and uncertainty decompositionfor the ACME Land Model

    Main effect sensitivities : rank input parametersJoint sensitivities : most influential input couplingsAbout 200 polynomial basis terms in the 68-dimensional spaceSparse PC will further be used for• sampling in a reduced space• parameter calibration against experimental data

    TLAIleaf area index

    1 2 3 4 5 6 7 8 9 10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    38

    39

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    66

    67

    68

    69

    70

    71

    72

    73

    74

    75

    76

    77

    78

    79

    80

    81

    82

    83

    84

    85

    86

    87

    88

    89

    90

    91

    92

    93

    94

    95

    960.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Sensitivity

    soilpsi_offbp

    slatopleafcn

    flnrfrootcn

    froot_leafleaf_long

    bdnrbr_mr

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 14

  • Sparse PC surrogate and uncertainty decompositionfor the ACME Land Model

    Main effect sensitivities : rank input parametersJoint sensitivities : most influential input couplingsAbout 200 polynomial basis terms in the 68-dimensional spaceSparse PC will further be used for• sampling in a reduced space• parameter calibration against experimental data

    TOTVEGCvegetation carbon

    1 2 3 4 5 6 7 8 9 10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    38

    39

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    66

    67

    68

    69

    70

    71

    72

    73

    74

    75

    76

    77

    78

    79

    80

    81

    82

    83

    84

    85

    86

    87

    88

    89

    90

    91

    92

    93

    94

    95

    960.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Sensitivity

    mpbp

    leafcnflnr

    frootcnfroot_leaf

    r_mortfstor2tran

    bdnrbr_mr

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 14

  • Sparse PC surrogate and uncertainty decompositionfor the ACME Land Model

    Main effect sensitivities : rank input parametersJoint sensitivities : most influential input couplingsAbout 200 polynomial basis terms in the 68-dimensional spaceSparse PC will further be used for• sampling in a reduced space• parameter calibration against experimental data

    EFLX LH TOTlatent heat flux

    1 2 3 4 5 6 7 8 9 10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    38

    39

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    66

    67

    68

    69

    70

    71

    72

    73

    74

    75

    76

    77

    78

    79

    80

    81

    82

    83

    84

    85

    86

    87

    88

    89

    90

    91

    92

    93

    94

    95

    960.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Sensitivity

    soilpsi_offcn_s3

    rootb_parslatop

    leafcnflnr

    frootcnfroot_leaf

    br_mrq10_mr

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 14

  • Sparse PC surrogate and uncertainty decompositionfor the ACME Land Model

    Main effect sensitivities : rank input parametersJoint sensitivities : most influential input couplingsAbout 200 polynomial basis terms in the 68-dimensional spaceSparse PC will further be used for• sampling in a reduced space• parameter calibration against experimental data

    TOTSOMCsoil organicmatter carbon

    1 2 3 4 5 6 7 8 9 10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    38

    39

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    66

    67

    68

    69

    70

    71

    72

    73

    74

    75

    76

    77

    78

    79

    80

    81

    82

    83

    84

    85

    86

    87

    88

    89

    90

    91

    92

    93

    94

    95

    960.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Sensitivity

    cn_s3slatop

    leafcnflnr

    bpfrootcn

    froot_leaffstor2tran

    br_mrq10_mr

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 14

  • SummarySurrogate models are necessary for complex models• Replace the full model for both forward and inverse UQ

    Uncertain inputs• Polynomial Chaos surrogates well-suited

    Limited training dataset• Bayesian methods handle limited information well

    Curse of dimensionality• The hope is that not too many dimensions matter• Compressive sensing (CS) ideas ported from machine learning• We implemented iteratively reweighting Bayesian CS algorithm that

    reduces dimensionality and increases order on-the-fly.

    Open issues• Computational design. What is the best sampling strategy?• Overfitting still present. Cross-validation techniques help.

    Software: employed SNL-CA UQ library UQTk (www.sandia.gov/uqtoolkit)

    K. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 15

  • Literature

    • M. Tipping, “Sparse Bayesian learning and the relevance vector machine”, JMachine Learning Research, 1, pp. 211-244, 2001.

    • S. Ji, Y. Xue and L. Carin, “Bayesian compressive sensing”, IEEE Trans. SignalProc., 56:6, 2008.

    • S. Babacan, R. Molina and A. Katsaggelos, “Bayesian compressive sensing usingLaplace priors”, IEEE Trans. Image Proc., 19:1, 2010.

    • E. J. Candes, M. Wakin and S. Boyd. “Enhancing sparsity by reweighted `1minimization”, J. Fourier Anal. Appl., 14 877-905, 2007.

    • A. Saltelli, “Making best use of model evaluations to compute sensitivityindices”,Comp Phys Comm, 145, 2002.

    • K. Sargsyan, C. Safta, H. Najm, B. Debusschere, D. Ricciuto and P. Thornton,“Dimensionality reduction for complex models via Bayesian compressive sensing”,Int J for Uncertainty Quantification, 4(1), pp. 63-93, 2014.

    • J. Jakeman, M. Eldred and K. Sargsyan, “Enhancing `1-minimization estimates ofpolynomial chaos expansions using basis selection”, J Comp Phys, 289, pp. 18-34,2015.

    Thank YouK. Sargsyan ([email protected]) AGU Fall Meeting 2015 Dec 18, 2015 16

  • Random variables represented by Polynomial Chaos

    X 'K−1∑k=0

    ckΨk(η)

    • η = (η1, · · · , ηd) standard i.i.d. r.v.Ψk standard polynomials, orthogonal w.r.t. π(η).

    Ψk(η1, η2, . . . , ηd) = ψk1(η1)ψk2(η2) · · ·ψkd (ηd)

    • Typical truncation rule: total-order p, k1 + k2 + . . . kd ≤ p.Number of terms is K = (d+p)!d!p! .

    • Essentially, a parameterization of a r.v. by deterministic spectralmodes ck .

    • Most common standard Polynomial-Variable pairs:(continuous) Gauss-Hermite, Legendre-Uniform,(discrete) Poisson-Charlier.

    [Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002; Le Maı̂tre & Knio, 2010]

  • Bayesian inference of PC surrogate

    u '∑K−1

    k=0 ckΨk(x) ≡ gc(x)Posterior︷ ︸︸ ︷P(c|D) ∝

    Likelihood︷ ︸︸ ︷P(D|c)

    Prior︷︸︸︷P(c)

    • Data consists of training runsD ≡ {(xi, ui)}Ni=1

    • Likelihood with a gaussian noise model with σ2 fixed or inferred,

    L(c) = P(D|c) =(

    1σ√

    )N N∏i=1

    exp(− (ui − gc(x))

    2

    2σ2

    )• Prior on c is chosen to be conjugate, uniform or gaussian.• Posterior is a multivariate normal

    c ∈ MVN (µ,Σ)

    • The (uncertain) surrogate is a gaussian processK−1∑k=0

    ckΨk(x) = Ψ(x)Tc ∈ GP(Ψ(x)Tµ,Ψ(x)ΣΨ(x′)T)

  • Sensitivity information comes free with PC surrogate,

    g(x1, . . . , xd) =K−1∑k=0

    ckΨk(x)

    • Main effect sensitivity indices

    Si =Var[E(g(x|xi)]

    Var[g(x)]=

    ∑k∈Ii c

    2k ||Ψk||2∑

    k>0 c2k ||Ψk||2

    Ii is the set of bases with only xi involved

  • Sensitivity information comes free with PC surrogate,

    g(x1, . . . , xd) =K−1∑k=0

    ckΨk(x)

    • Main effect sensitivity indices

    Si =Var[E(g(x|xi)]

    Var[g(x)]=

    ∑k∈Ii c

    2k ||Ψk||2∑

    k>0 c2k ||Ψk||2

    • Joint sensitivity indices

    Sij =Var[E(g(x|xi, xj)]

    Var[g(x)]− Si − Sj =

    ∑k∈Iij c

    2k ||Ψk||2∑

    k>0 c2k ||Ψk||2

    Iij is the set of bases with only xi and xj involved

  • Sensitivity information comes free with PC surrogate,but not with piecewise PC

    g(x1, . . . , xd) =K−1∑k=0

    ckΨk(x)

    • Main effect sensitivity indices

    Si =Var[E(g(x|xi)]

    Var[g(x)]=

    ∑k∈Ii c

    2k ||Ψk||2∑

    k>0 c2k ||Ψk||2

    • Joint sensitivity indices

    Sij =Var[E(g(x|xi, xj)]

    Var[g(x)]− Si − Sj =

    ∑k∈Iij c

    2k ||Ψk||2∑

    k>0 c2k ||Ψk||2

    • For piecewise PC, need to resort to Monte-Carlo estimation[Saltelli, 2002].

  • Basis normalization helps the success rate

    0 5 10 15 20 25 30 35 40 45Number of measurements

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0Success rate

    LU Basis

    LU Normalized Basis

  • Input correlations: Rosenblatt transformation

    • Rosenblatt transformation maps any (not necessarily independent) set ofrandom variables λ = (λ1, . . . , λd) to uniform i.i.d.’s {xi}di=1[Rosenblatt, 1952].

    x1 = F1(λ1)

    x2 = F2|1(λ2|λ1)x3 = F3|2,1(λ3|λ2, λ1)...

    xd = Fd|d−1,...,1(λd|λd−1, . . . , λ1)0.18

    0.2

    0.22

    0.24

    0.4

    0.45

    0.5

    0.3

    0.32

    0.34

    0.36

    LabileCellulose

    Lig

    nin

    • Inverse Rosenblatt transformation λ = R−1(x) ensures a well-defined inputPC construction

    λi =

    K−1∑k=0

    λikΨk(x)

    • Caveat: the conditional distributions are often hard to evaluate accurately.

  • Strong discontinuities/nonlinearities challenge globalpolynomial expansions

    • Basis enrichment [Ghosh & Ghanem, 2005]

    • Stochastic domain decomposition• Wiener-Haar expansions,

    Multiblock expansions,Multiwavelets, [Le Maı̂tre et al, 2004,2007]

    • also known as Multielement PC [Wan & Karniadakis, 2009]

    • Smart splitting, discontinuity detection[Archibald et al, 2009; Chantrasmi, 2011; Sargsyan et al, 2011; Jakeman et al, 2012]

    • Data domain decomposition,• Mixture PC expansions [Sargsyan et al, 2010]

    • Data clustering, classification,• Piecewise PC expansions

  • Piecewise PC expansion with classification

    • Cluster the training dataset into non-overlapping subsets D1and D2, where the behavior of function is smoother• Construct global PC expansions gi(x) =

    ∑k cikΨk(x) using

    each dataset individually (i = 1, 2)• Declare a surrogate

    gs(x) =

    {g1(x) if x ∈∗ D1g2(x) if x ∈∗ D2

    ∗ Requires a classification step to find out which cluster xbelongs to. We applied Random Decision Forests (RDF).

    • Caveat: the sensitivity information is harder to obtain.

    0.0: 0.1: 0.2: 0.3: 0.4: 0.5: 0.6: 0.7: 0.8: anm0: 1.0: 1.1: 1.2: 1.3: 1.4: 1.5: 1.6: 1.7: 1.8: 1.9: 1.10: anm1: