18
National Institute of Information and Communications Technology 1 Demonstrations on Space Laser Communications in Japan Morio Toyoshima and Yoshihisa Takayama Space Communication Systems Laboratory Wireless Network Research Institute National Institute of Information and Communications Technology (NICT) Mail: [email protected] QUNAT 2012 in IPAM, UCLA, U.S., August 28, 2012 National Institute of Information and Communications Technology Outline Recent trends Ground Sampling Distance (GSD) Data rate requirement Past space laser communication projects ETS-VI/LCE project OICETS/LUCE project NeFOC project (airborne mission) Future laser communication projects SOCRATES/SOTA project VSOTA project Shindai-sat project JAXA’s pre-project Activities on Free-space QKD in NICT Concluding remarks 2

Space Communication Systems Laboratory Wireless Network ...helper.ipam.ucla.edu/publications/quant2012/quant2012_10812.pdfCute-1.7 1.0E+03 1.0E+06 1.0E+09 1.0E+12 1 10 100 1000 10000

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Space Communication Systems Laboratory Wireless Network ...helper.ipam.ucla.edu/publications/quant2012/quant2012_10812.pdfCute-1.7 1.0E+03 1.0E+06 1.0E+09 1.0E+12 1 10 100 1000 10000

National Institute of Information and Communications Technology1

Demonstrations on Space Laser Communications in Japan

Morio Toyoshima and Yoshihisa Takayama

Space Communication Systems Laboratory

Wireless Network Research Institute

National Institute of Information and Communications Technology (NICT)

Mail: [email protected]

QUNAT 2012 in IPAM, UCLA, U.S., August 28, 2012

National Institute of Information and Communications Technology

Outline• Recent trends

– Ground Sampling Distance (GSD)

– Data rate requirement

• Past space laser communication projects– ETS-VI/LCE project

– OICETS/LUCE project

– NeFOC project (airborne mission)

• Future laser communication projects– SOCRATES/SOTA project

– VSOTA project

– Shindai-sat project

– JAXA’s pre-project

• Activities on Free-space QKD in NICT

• Concluding remarks

2

Page 2: Space Communication Systems Laboratory Wireless Network ...helper.ipam.ucla.edu/publications/quant2012/quant2012_10812.pdfCute-1.7 1.0E+03 1.0E+06 1.0E+09 1.0E+12 1 10 100 1000 10000

National Institute of Information and Communications Technology3

GSD trends for Earth observation satellites

National Institute of Information and Communications Technology4

Data rate requirement after 2020

- Data rate>~20 Gbps

- Sensor resolution<GSD 10 cm

- Memory size>~1 Tbytes

- Digitized bits>~14 bits

Gbps-class laser communication is inevitable for data download from observation satellites.

Page 3: Space Communication Systems Laboratory Wireless Network ...helper.ipam.ucla.edu/publications/quant2012/quant2012_10812.pdfCute-1.7 1.0E+03 1.0E+06 1.0E+09 1.0E+12 1 10 100 1000 10000

National Institute of Information and Communications Technology5

Trends of data rate for space laser comm.

National Institute of Information and Communications Technology6

Trends of optical receiver sensitivity

Homodyne coherent PSK theoretical limit

IMDD

Coherent

Page 4: Space Communication Systems Laboratory Wireless Network ...helper.ipam.ucla.edu/publications/quant2012/quant2012_10812.pdfCute-1.7 1.0E+03 1.0E+06 1.0E+09 1.0E+12 1 10 100 1000 10000

National Institute of Information and Communications Technology

Space-based laser communication programs

Asia/Japan NASA/US Europe

Past - 1994: ETS-VI (GEO-GND) 0.8μm/0.5μm, IMDD, 1Mbps

- 2006: OICETS(LEO-GEO,LEO-GND) 0.8μm, IMDD, 50Mbps

- 2011: NeFOC (Air-GND) 1.5μm, QPSK, 40Gbps

- 2000: STRV-2 (LEO-GND, Failure) 0.8μm, IMDD, 1.2Gbps

- 2001: GeoLITE (GEO-GND)- 2008: NFIRE (LEO-LEO)

1.06μm, homodyne BPSK, 5.6Gbps

- 2009: DARPA ORCA (Air-Air-GND) TRL6

- 2001: SILEX (GEO-LEO, GEO-GND, GEO-Air) 0.8μm,IMDD, 50Mbps

- 2008: TerraSAR-X(LEO-LEO, LEO-GND) 1.06μm, homodyne BPSK, 5.6Gbps

Future plan

- 2013: RISESAT/ VSOTA (LEO-GND) 0.98/1.5μm, IMDD, ~1kbps

- 2013: SOCRATES/ SOTA (LEO-GND) 0.98/1.5μm, IMDD, 10Mbps

- 2013: LLCD/LADEE (Lunar-GND) 1.5μm, PPM, 622Mbps

- 2016: LCRD (Laser Communications Relay Demonstration) 1.5μm, DPSK/PPM, 2.8G/622Mbps

- DARPA System F6

- 2012: OSIRIS 1.5μm, IMDD, 20Mbps

- 2013: Alphasat/EDRS(European Data Relay System) 1.06μm, homodyne BPSK, ~1.8Gbps

7

National Institute of Information and Communications Technology8

Space laser communications in NICTETS-VI

LCEARTEMIS

OPALE(ESA)

1990 2000 2010

GEO

LEO

GND

1980

GMS-2 GMS-3 GMS-4

Laser TrasmissionExperiment

Ar laser+ Co2

Laser Ranging

OICETSLUCE(JAXA)

Optical Tracking

GEO-GNDLaserComm

GEO-LEOTwo-way LaserCom.

LEO-GNDTwo-way LaserCom.

NICT OGS (1.5m telescope System)

AJISAI,ADEOS, ADEOSII,LRE, ALOS, ETS-VIII

TerraSAR-XLCTSX(DLR)

Page 5: Space Communication Systems Laboratory Wireless Network ...helper.ipam.ucla.edu/publications/quant2012/quant2012_10812.pdfCute-1.7 1.0E+03 1.0E+06 1.0E+09 1.0E+12 1 10 100 1000 10000

National Institute of Information and Communications Technology9

Engineering Test Satellite VI (ETS-VI) Experiments (Dec. 1994 - July 1996)

NICT optical ground station

ETS-VI (GEO)Laser Communication

Equipment (LCE)

• 1 Mbps bi-directional optical link experiment

• 22 kg, 60 W onboard equipment verification

Uplink Downlink

National Institute of Information and Communications Technology

Experimental configuration with JPL

ETS-VIETS-VI

After 15 Hours Cruising

Telemetry/CommandOptical

Link

Optical Link

NASDATKSC

NASAGoldstone Station

Data Transmission and Communication UsingInternational ISDN Link

JPL Optical Ground StationNICT/CRL Optical

Ground Station

10

Page 6: Space Communication Systems Laboratory Wireless Network ...helper.ipam.ucla.edu/publications/quant2012/quant2012_10812.pdfCute-1.7 1.0E+03 1.0E+06 1.0E+09 1.0E+12 1 10 100 1000 10000

National Institute of Information and Communications Technology

Decoded telemetry data via optical communication link with 1 Mbps

Measured 1995/12/8

0.0

1.0

2.0

3.0

4.0

5.0

0 0.1 0.2 0.3 0.4

Time [sec]

Fin

e s

teering

mirro

r an

gle

[mra

d]

Azimuth

Elevation

Sampling freq. 500Hz

11

National Institute of Information and Communications Technology

Optical Inter-orbit Communication Engineering Test Satellite (OICETS) (August 2005 – Sept. 2009)

12

Solar Array Paddle

S-band Antennas

Optical Antenna

1.8 m

Satellite size 0.78x1.1x1.5 m

Mass 570 kg

Mission life 1 year

Altitude 610 km (circular)

Inclination 98 deg.

9.4 m

Courtesy of JAXA

Page 7: Space Communication Systems Laboratory Wireless Network ...helper.ipam.ucla.edu/publications/quant2012/quant2012_10812.pdfCute-1.7 1.0E+03 1.0E+06 1.0E+09 1.0E+12 1 10 100 1000 10000

National Institute of Information and Communications Technology

International laser communications experiment

NICT (Japan)

Laser communication

ESA/ARTEMIS OICETS/Kirari satellite

NASA JPL (U.S.)

DLR (Germany)

ESA (Spain)

International cooperation between 4 OGSs

13

Data acquisition of laser beam propagation and link establishment at

different sites

Examining optimum error correcting codes and the

best combination of OGSs

Contribution to the standardization inITU-R and CCSDS*.

*CCSDS: Consultative Committee for Space Data Systems

Modeling the atmospheric propagation channels and

learning site diversity effect

National Institute of Information and Communications Technology14

Statistics of link establishment

• Probability of success during all the experiments– NICT: 49.1 %

– NASA JPL: 57.1 %

– DLR: 60.0 %

– ESA: 88.9 %

• Total probability of success between Earth and space:– 1-[(1-0.491)x(1-0.571)

x(1-0.60)x(1-0.889)] = 0.9903

• Four OSGs combination will help to download massive data from space with the probability of 99%.

Statistics of link establishment at NICT

Page 8: Space Communication Systems Laboratory Wireless Network ...helper.ipam.ucla.edu/publications/quant2012/quant2012_10812.pdfCute-1.7 1.0E+03 1.0E+06 1.0E+09 1.0E+12 1 10 100 1000 10000

National Institute of Information and Communications Technology

Acquisition and tracking

15

Wide FOV CCD

CCD at Tx bench

Guide Telescope

CCD at Rx bench

National Institute of Information and Communications Technology

BER performances

16

Uplink BER characteristics Downlink BER characteristics

Page 9: Space Communication Systems Laboratory Wireless Network ...helper.ipam.ucla.edu/publications/quant2012/quant2012_10812.pdfCute-1.7 1.0E+03 1.0E+06 1.0E+09 1.0E+12 1 10 100 1000 10000

National Institute of Information and Communications Technology

Polarization characteristics through space-to-ground atmospheric paths

17

Polarization rms error: 1.6 °(2.8%)DOP: 99.4±4.4%

Toyoshima, et. al., Optics Express, 17(25), (2009)

National Institute of Information and Communications Technology

ERSEnvisat1

TRMM

Radarsat1

Spot

IRS-1A,1B,1CAS1000

JERS1

ADEOS

ALOS

MOS 1AMOS 1B

EOS-PM1

Landsat

Terra

Ikonos2

Orbview2

Orbview4Orbview3

TOMS-EP

GeoEye-1

TerraSAR-X

AlSat

TopSat

PRISM

UK-DMC1

UK-DMC2

WorldView1

QuickBird2

EROS-B

Kompsat2

EROS-A

Formosat2

RazakSat-1

EarlyBird

Lewis

MicroLabSat

Cute-I

Cute-1.7

1.0E+03

1.0E+06

1.0E+09

1.0E+12

1 10 100 1000 10000

Dat

a ra

te f

or E

arth

obs

erva

tion

sate

llite

s [b

ps]

Satellite mass [kg]

Laser communication infrastructure for micro-satellites

18

Optical~Mbps

New region covered by SOCRATES

Short term space verification by micro satellites (2~3 years)

RF~kbps

Micro satellites

GbpsMid/small satellites

High-end communications by mid/small satellites

(5~ years)

~100Mbps

Short term space verification of component level technologies

by micro-satellites

Quasi realtime data transmission via

site diversity

Offline transmission

only

Page 10: Space Communication Systems Laboratory Wireless Network ...helper.ipam.ucla.edu/publications/quant2012/quant2012_10812.pdfCute-1.7 1.0E+03 1.0E+06 1.0E+09 1.0E+12 1 10 100 1000 10000

National Institute of Information and Communications Technology

Space Optical Communications Research Advanced Technology Satellite (SOCRATES)

19

Small satellite busSize: ~50cmPower: ~100WMass: ~50kgWheels: 3Accuracy: <2 deg.

Small Optical TrAnsponder (SOTA)

by NICTMass: 6.2 kg, Power ~30 WMitigated PAT characteristicsOptical ground

station(NICT Koganei)

TT&C station TT&CRF link

Optical linkSmall

camera

Small satellite system

Data & controlsignals

Image data& control

Ground system

TT&C

DirectComm.

*TT&C: Tracking, Telemetry and Control

National Institute of Information and Communications Technology20

Small Optical TrAnsponder (SOTA) mission

50-kg-class small satellite bus

Small Optical TrAnsponder(SOTA) by NICT

Basic experimental items for satellite QKD Protocol Quasi B92

Clock rate 10 MHz

Mean photon number ~0.1 photons/pulse at the OGS

Measurement

QBER To be measured

Dark count rate To be measured

Main objectives:- In-orbit verification of acquisition, tracking and

pointing performances- Data acquisition of laser beam propagation at

various wavelengths- Laser communication experiments with coding- Basic experiments for satellite QKD- Experiments with international Optical Ground

Stations (OGSs)

Page 11: Space Communication Systems Laboratory Wireless Network ...helper.ipam.ucla.edu/publications/quant2012/quant2012_10812.pdfCute-1.7 1.0E+03 1.0E+06 1.0E+09 1.0E+12 1 10 100 1000 10000

National Institute of Information and Communications Technology21

National Institute of Information and Communications Technology22

Page 12: Space Communication Systems Laboratory Wireless Network ...helper.ipam.ucla.edu/publications/quant2012/quant2012_10812.pdfCute-1.7 1.0E+03 1.0E+06 1.0E+09 1.0E+12 1 10 100 1000 10000

National Institute of Information and Communications Technology23

National Institute of Information and Communications Technology24

Page 13: Space Communication Systems Laboratory Wireless Network ...helper.ipam.ucla.edu/publications/quant2012/quant2012_10812.pdfCute-1.7 1.0E+03 1.0E+06 1.0E+09 1.0E+12 1 10 100 1000 10000

National Institute of Information and Communications Technology25

National Institute of Information and Communications Technology26

Page 14: Space Communication Systems Laboratory Wireless Network ...helper.ipam.ucla.edu/publications/quant2012/quant2012_10812.pdfCute-1.7 1.0E+03 1.0E+06 1.0E+09 1.0E+12 1 10 100 1000 10000

National Institute of Information and Communications Technology27

National Institute of Information and Communications Technology28

Page 15: Space Communication Systems Laboratory Wireless Network ...helper.ipam.ucla.edu/publications/quant2012/quant2012_10812.pdfCute-1.7 1.0E+03 1.0E+06 1.0E+09 1.0E+12 1 10 100 1000 10000

National Institute of Information and Communications Technology29

Live demo: Free-space laser communication and QKD experiments in UQCC conference

Bob

Hotel New Otani

Hotel New Otani

Bob

~1.37kmAlice

Alice

ANA Intercontinental

Tokyo Hotel

National Institute of Information and Communications Technology

Measurement of Cn2 between two buildings

Scintillometer (Tx)

Scintillometer (Rx)Distance:1.35km, Height of the link:138m

30

0 3 6 9 12 15 18 21 240

0.5

1

1.5

2

2.5

x 10-15

Local time [hour]

Cn2

Page 16: Space Communication Systems Laboratory Wireless Network ...helper.ipam.ucla.edu/publications/quant2012/quant2012_10812.pdfCute-1.7 1.0E+03 1.0E+06 1.0E+09 1.0E+12 1 10 100 1000 10000

National Institute of Information and Communications Technology

Conceptual designs for satellite QKD

31

Terminal model 1: WCP + decoy

Terminal model 2: Entanglement (E91)

National Institute of Information and Communications Technology

Hybrid entanglement generation and verification experiment

32

Alice:Polarization analysis– Half-waveplate +PBS– Si detector

Bob:Time-bin (phase/time) analysis– Planer Lightwave circuit (PLC)– InGaAs detector (gated mode)

AZ0

Gated voltage

532nm

810nm 1550nm

Delay adj.

Fibers2.5nsPBS

Format converter

2.5ns

BZ0

BZ1

AZ1

OR

Alice Bob

H

V

LensPLC

HWPFree-space

Trigger signals

BX1

BX0

pumplaser

SF SF F S

+ ++

VS

HS

HVSS

HVSS

Correlation?

HBS

AX0

AX1

Page 17: Space Communication Systems Laboratory Wireless Network ...helper.ipam.ucla.edu/publications/quant2012/quant2012_10812.pdfCute-1.7 1.0E+03 1.0E+06 1.0E+09 1.0E+12 1 10 100 1000 10000

National Institute of Information and Communications Technology

Coincidence results

33

Fujiwara, et al., APL95, 261103 (2009).Yoshino, et. al,. Technical Report of QIT (2010)

National Institute of Information and Communications Technology

High speed laser communication links and global QKD networks

Optical fiber networks

Delivery of quantum keys via aircraft and satellites

Polarization QKD

Time-bin QKD

Observation data download from aircraft and satellites

NICT in-house technologies

Security analysis

SSPD

Entanglement source

Entanglement conversion

SAR-applications

Acquisition/tracking

Page 18: Space Communication Systems Laboratory Wireless Network ...helper.ipam.ucla.edu/publications/quant2012/quant2012_10812.pdfCute-1.7 1.0E+03 1.0E+06 1.0E+09 1.0E+12 1 10 100 1000 10000

National Institute of Information and Communications Technology35

Conventional communications

Quantum communications

2010~2005 2015 2020~

R&D load map for space optical communications

• Communication protocols• Photon counting technology• Radio-on-Fiber (RoF) technology• Large capacity wireless network protocols

• IMDD technology• 10 Gbps class comm. technology• Fiber coupling technology• WDM technology

• 0.8 mm, 1.5 mm comm. technology• 10 – 26 cm class antenna• 50 M – 2 Gpbs class comm.

technology

IMDD (Terrestrial fiber comm.)

OICETS, NeLS development

Coherent communications

Space qualified fiber technology

5 - 10 years ahead

Unconditional securityApplication to high security use• Absolute security

• Almost practical applicable (5 years ahead)• Quantum teleportation and quantum swapping

• Quantum receivers (Kennedy rec. and Dolinar rec.) towardthe Helstrom limit beyond the homodyne limit in BER

• Quantum collective decoding to approach the Holevo limitbeyond the Shannon limit of the capacity

Practical application of coherent technology

5 – 15 years ahead

R&D of space optical communication establishes:

- High-speed and large-capacity communications network,

- Long-distance space communications network,

- Secure communications network.

Small satellites/LEO TDN

Next gen. data relay sat.

Quantum key distribution

Quantum cryptography

Quantum channel coding technology Large-capacity communicationsLong distance quantum communicationsrevolutionary increase of comm. capacity

National Institute of Information and Communications Technology

Concluding remarks• Recent trends of GSD and data rates for RF and optical

links were introduced.• Past Japanese laser communication missions such as

ETS-VI/LCE and OICETS/LUCE projects were introduced.• As an application to micro-satellites, new NICT’s laser

communication missions called SOCRATES/SOTA and RISESAT/VSOTA were introduced, and these micro-satellites are expected to be launched in 2013.

• Airborne 40-Gbps laser communication demonstration between a balloon and a mobile station called NeFOCproject was introduced.

• Shindai-sat and JAXA’s pre-project were introduced.• Activities on Free-space QKD in NICT were shown.

36