84
Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11 Page 1 SP-2062 Specification for HSE Cases Printed 11/03/13 The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED. Petroleum Development Oman L.L.C. Document Title: Specification for HSE Cases Document ID SP2062 Document Type Specification Security Unrestricted Discipline Technical Safety Engineering Owner MSE/4 – Head of Technical Safety Engineering Issue Date 31 March 2011 Version 1.0 Keywords: This document is the property of Petroleum Development Oman, LLC. Neither the whole nor any part of this document may be disclosed to others or reproduced, stored in a retrieval system, or transmitted in any form by any means (electronic, mechanical, reprographic recording or otherwise) without prior written consent of the owner.

SP-2062 - HSE Specification Specifications for HSE Cases

Embed Size (px)

Citation preview

Page 1: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 1 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

 

Petroleum Development Oman L.L.C. 

 

Document Title:  Specification for HSE Cases 

 

Document ID  SP‐2062 

Document Type  Specification 

Security  Unrestricted 

Discipline  Technical Safety Engineering  

Owner  MSE/4 – Head of Technical Safety Engineering 

Issue Date  31 March 2011 

Version  1.0 

 

Keywords: This document is the property of Petroleum Development Oman, LLC.  Neither the whole nor any part of  this document may be disclosed  to others or  reproduced, stored  in a  retrieval system, or transmitted  in  any  form by  any means  (electronic, mechanical,  reprographic  recording or otherwise) without prior written consent of the owner.

Page 2: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 2 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

This page was intentionally left blank

Page 3: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 3 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

i Document Authorisation

Page 4: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 4 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

ii Revision History

The following is a brief summary of the 4 most recent revisions to this document. Details of all revisions prior to these are held on file by the issuing department. Version No.

Date Author Scope / Remarks

Draft 22/02/2011 Karen McConnachie New document

iii Related Business Processes

Code Business Process (EPBM 4.0)

iv Related Corporate Management Frame Work (CMF) Documents

The related CMF Documents can be retrieved from the Corporate Business Control Documentation Register CMF.

Page 5: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 5 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

TABLE OF CONTENTS i  Document Authorisation ......................................................................................................... 3 

ii  Revision History ..................................................................................................................... 4 

iii  Related Business Processes ................................................................................................. 4 

iv  Related Corporate Management Frame Work (CMF) Documents ........................................ 4 

1  Introduction ............................................................................................................................ 8 

1.1  Purpose ............................................................................................................................ 8 

1.2  General Definitions ........................................................................................................... 8 

1.3  Review and Improvement (SP 2062) ............................................................................... 8 

1.4  Deviation from Standard .................................................................................................. 8 

2  WHEN ARE HSE CASES REQUIRED? ................................................................................ 9 

3  WHAT TYPES OF HSE CASES ARE THERE? .................................................................. 11 

3.1  Asset/Facility HSE Cases at different ORP phases ....................................................... 11 

3.1.1  Identify and Assess ...................................................................................... 12 

3.1.2  Select ............................................................................................................ 12 

3.1.3  Define ........................................................................................................... 12 

3.1.4  Execute ......................................................................................................... 12 

3.1.5  Operate ......................................................................................................... 13 

3.2  Roles and Responsibilities for the HSE Case ................................................................ 13 

3.2.1  Sign Off Dates .............................................................................................. 13 

3.3  Roles and Responsibilities within the HSE Case ........................................................... 13 

3.4  Workforce Involvement .................................................................................................. 16 

3.5  Deliverables .................................................................................................................... 16 

3.6  Performance Monitoring ................................................................................................. 16 

3.6.1  Review and Improvement (HSE Cases)....................................................... 17 

3.6.2  Material Change ........................................................................................... 17 

4  ASSET INTEGRITY - PROCESS SAFETY MANAGEMENT .............................................. 18 

4.1  Process Safety Manual, HSSE Control Framework, Section ........................................ 18 

4.2  Centre for Chemical Process Safety Guidelines for Risk Based Process Safety (CCPS RBPS) ...................................................................................................................................... 18 

4.3  Process Safety in Projects ............................................................................................. 19 

4.4  Critical Drawings ............................................................................................................ 19 

5  HEMP ................................................................................................................................... 20 

5.1  Hazards and Effects Register ........................................................................................ 21 

6  BOW-TIES ........................................................................................................................... 22 

7  SAFETY CRITICAL ELEMENTS ......................................................................................... 25 

7.1  SCE (Hardware) Barriers ............................................................................................... 25 

7.2  SCE Selection ................................................................................................................ 27 

7.3  Performance Standards ................................................................................................. 28 

Page 6: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 6 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

7.3.1  Performance Standard Approval .................................................................. 29 

8  HSE CRITICAL TASKS ....................................................................................................... 30 

9  MATRIX OF PERMITTED OPERATIONS (MOPO) ............................................................ 31 

9.1  Using the MOPO ............................................................................................................ 31 

9.2  Deviations from the MOPO ............................................................................................ 31 

10  ALARP demonstration .................................................................................................... 32 

10.1  ALARP Definition .......................................................................................... 32 

10.2  How to Undertake an ALARP Assessment .................................................. 33 

10.2.1  Principles of Hazard Management ............................................................... 33 

10.2.2  Good Engineering Practice .......................................................................... 33 

10.2.3  Good Engineering Principles ........................................................................ 34 

10.2.4  HEMP Studies .............................................................................................. 34 

10.2.5  ALARP Review ............................................................................................. 34 

10.3  Assessment of Complex Decisions .............................................................. 35 

11  OPERATE PHASE CONTINUOUS IMPROVEMENT .................................................... 36 

11.1  Drivers for Improvement ............................................................................... 36 

11.2  Remedial Actions .......................................................................................... 36 

11.2.1  Qualitative Analysis of RAP Items ................................................................ 37 

11.2.2  Interpreting the RAP ..................................................................................... 38 

12  STATEMENT OF FITNESS ........................................................................................... 39 

13  MANAGEMENT OF CHANGE ....................................................................................... 41 

14  CONCEPT SELECTION REPORT ................................................................................ 43 

14.1  DCAF Deliverables for Identify, Assess and Select Phases ........................ 44 

15  DESIGN HSE CASE REQUIREMENTS ........................................................................ 45 

15.1  Basic Requirements ..................................................................................... 45 

15.2  Format .......................................................................................................... 45 

15.2.1  Contents ....................................................................................................... 45 

15.2.2  Part 1 Introduction ........................................................................................ 45 

15.2.3  Part 2 CSR ALARP demonstration Summary .............................................. 46 

15.2.4  Part 3 Design Basis & Facility Description ................................................... 46 

15.2.5  Part 4 Hazards & Effects Management Process .......................................... 46 

15.2.6  Part 5 Improvement (Action Plan) ................................................................ 47 

15.3  DCAF Deliverables for Define and Execute phases .................................... 47 

16  OPERATIONS HSE CASE REQUIREMENTS .............................................................. 49 

16.1  Basic Requirements ..................................................................................... 49 

16.2  Format .......................................................................................................... 49 

16.2.1  Contents ....................................................................................................... 49 

16.2.2  Part 1 Introduction ........................................................................................ 50 

16.2.3  Part 2 Facility Description ............................................................................. 50 

Page 7: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 7 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

16.2.4  Part 3 People, HSE Critical Tasks ................................................................ 50 

16.2.5  Part 4 Hazard and Effects Management ...................................................... 50 

16.2.6  Part 5 Improvement (Action Plan) ................................................................ 51 

16.3  DCAF Deliverables for Execute and Operate Phases ................................. 51 

Appendix 1  Glossary of Definitions, Terms and Abbreviations ....................................... 53 

Appendix 2  Related Business Control Documents and References ............................... 55 

Appendix 3  Hazard Inventory Checklist .......................................................................... 56 

Appendix 4  Example Hazard and Effects Register ......................................................... 63 

Appendix 5  Safety Critical Elements Categories ............................................................. 64 

Appendix 6  Example Safety Critical Elements Register .................................................. 65 

Appendix 7  Example Design Performance Standard ...................................................... 66 

Appendix 8  Example Operations Performance Standard (EP 2009-9009, Ref. 10) ....... 69 

Appendix 9  Example of Implementation Table ................................................................ 70 

Appendix 10  MOPO ........................................................................................................... 72 

Appendix 11  Operations HSE Case Change Approval ..................................................... 78 

Appendix 12  CCPS RBPS Process Safety Elements ....................................................... 83 

Page 8: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 8 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

1 Introduction

An HSE Case provides a documented demonstration that risk reduction philosophies and measures have been developed and implemented at each phase of the Opportunity Realisation Process (ORP) to ensure that the risks are tolerable and as low as reasonably practicable (ALARP) through the systematic application of the Hazards and Effects Management Process (HEMP) as set out in the PDO HSE Management System (HSE-MS).

This document should be read in conjunction with the guideline Applying Process Safety in Projects GU-648 [ 4].

1.1 Purpose

This purpose of this specification is to establish minimum requirements for the content of HSE Cases and it shall be used for the development of HSE Input to Concept Select Reports, Design HSE Cases and Operations HSE Cases.

This specification SHALL [PS] be used for demonstration of the following requirements of the Process Safety Manual in the Shell HSSE & SP Control Framework [Ref. 7]:

Identify and document Hazards with RAM red and yellow 5A and 5B Process Safety Risks for existing and new Assets (Requirement 1).

Develop a Statement of Fitness for the Assets (Requirement 7)

Review the Process Safety Risks to the Asset at least annually, in line with 8 Management Review (of the HSSE & SP Management System) (Requirement 20).

This specification contains information on the contents of each type of HSE Case and gives guidance and examples of information to be contained in specific sections.

1.2 General Definitions

The capitalised term SHALL [PS] indicates a process safety requirement.

The lower case word shall indicates a requirement.

The word should indicates a recommendation.

1.3 Review and Improvement (SP 2062)

Responsibility for the upkeep of this Specification shall be with the CFDH Technical Safety Engineering (Owner of this Specification). Changes to this document shall only be authorised and approved by the Owner.

Any user of this document who encounters a mistake or confusing entry is requested to immediately notify the Document Custodian using the form provided in CP 122 Health, Safety and Environment Management System [Ref. 1].

This document shall be reviewed as necessary by the Owner, but not less than every two years.

1.4 Deviation from Standard

Deviation to this Specification shall follow the requirements of PR-1247 “Project Change Control & Standards Variance Procedure”, Version 1 31/8/1999.

Page 9: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 9 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

2 WHEN ARE HSE CASES REQUIRED?

HSE Cases are mandatory for all PDO operated (owned, leased or contracted) projects/operations containing hazards rated severity five or high risk on the PDO risk assessment matrix (RAM) as per Figure 2-1 [Ref. 1]. Hazards to that fall into this category are referred to as Major Accident Hazards (MAH), and are typically identified during the HAZID conducted at the start of concept phase of a project.

However, for smaller, less complex projects or modifications to an existing asset where an Operations HSE Case already exists, it may be suitable to undertake a design review in place of a Design HSE Case and then update the existing Operations HSE Case.

For projects that fall into Category C as per Figure 2-2 overleaf, both qualitative (bow-tie analysis) and quantitative analysis (QRA) are required to determine the level of risk and to demonstrate that risks are reduced to tolerable and ALARP, thus a Design and Operations HSE Case must be compiled.

Guidance and confirmation shall be sought from MSE/4 on an individual project basis.

Figure 2-1: PDO Risk Assessment Matrix

Figure 2-2 shows the industry guidelines for a framework for risk related decision support by Oil and Gas UK in 1997 (formerly the UK Offshore Operations Association, UKOOA).

Once a new project has been assessed against the risk assessment matrix in Figure 2-1 and found to contain level 5 or high risk hazards, it shall be categorised as per the chart in Figure 2-2.

A B C D ENever

heard of in the Industry

Heard of in the Industry

Has happened in PDO or more than 1>yr in the

Industry

Has happened

at the Asset or

more than 1>yr in PDO

Has happened more than 1>yr at the

Asset

0No injury or health effect

No damageNo

effectNo

impact

1Slight injury

or health effect

Slight damage

Slight effect

Slight impact

2Minor injury

or health effect

Minor damage

Minor effect Minor impact

3Major injury

or health effect

Moderate damage

Moderate effect

Moderate impact

4PTD or up to

3 fatalitiesMajor

damageMajor effect major impact

5More than 3

fatalitiesmassive damage

massive effect

Massive impact

Increasing likelihood

Rep

uta

tio

n

As

se

t

En

vir

on

me

nt

Consequences

Se

ve

rity

Peo

ple

Page 10: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 10 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Figure 2-2: Framework for risk related decision support in PDO

To use the Framework, first relate the decision being considered to the decision context characteristics on the right hand side of the Framework. Establish a horizontal line across the Framework at the point that best fits the nature of the decision. The segments of this horizontal line define the relative weight that should be given to the different decision making approaches in the ALARP determination. The descriptors on the lefthand side of the diagram describe the type and extent of consultation that is needed for the selected decision context and type.

Type B and C decisions shall be taken at higher levels within an organisation than Type A decisions.

Type A decisions are those involving well-understood hazards and proven solutions. The lessons learned from past years have been incorporated into authoritative Good Practice. Reference to the relevant Good Practice, supported by expert judgment, is sufficient to define the barriers needed to reduce the risks to both tolerable and ALARP.

Type B decisions are those involving less well-understood hazards. Good Practice has to be supplemented by more detailed analytical methods such as quantified risk assessment (QRA) particularly to address the uncertainties of novel aspects of design. However, risk-based analysis cannot be the only approach, as illustrated by the fact that it forms no more than 40% of a horizontal line through the Type B band.

Type C decisions are those involving hazards that may create societal concerns. The more technological factors in the ALARP determination need to be “conditioned”, or viewed in the context of how the situation will be seen by stakeholders.

The A, B, C groupings are not intended to split the framework into three discrete sections, but should be used to indicate a continuum of decision context types from a strongly Type A (technology based) at one extreme to a strongly Type C (judgment based) at the other extreme. A range of decision-making approaches will contribute, especially to Type B and C decisions. The background to the Framework is described in [ 4].

Page 11: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 11 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

3 WHAT TYPES OF HSE CASES ARE THERE?

PDO activities and operated facilities fall into different categories and the different types of HSE Cases used to cover these are listed below:

o Asset/facility: hydrocarbon gathering/production facilities organised into delivery teams or hydrocarbon transporting infrastructure and storage facilities. The majority of PDO HSE Cases fall into this category and the content shall meet the requirements of this HSE Case Specification

o Contractor drilling rigs and hoists; the content shall meet the requirements of International Association of Drilling Contractors (IADC) [Ref. 4] and this HSE Case Specification

o Air Operations; the content shall meet the requirements of EP 2005-0263 Air Transportation Standard and this HSE Case Specification

o Land Transport; the content shall meet the requirements of EP 2005-0261 Road Transportation Standard and this HSE Case Specification

Air transport operations, road transport operations and marine operations with severity 5 or high level hazards (as defined by the RAM in Figure 2-1) that are PDO operated (owned, leased or contracted) shall have an Operations HSE Case.

The nature of Transport and Drilling Rig HSE Cases is that they are developed to describe the hazards and set out controls associated with the respective operation or activity. These cases are reviewed and updated as they develop, but rarely is there a requirement to develop a new HSE Case for these activities.

Asset/Facility HSE Cases differ in that new design projects or production stations may require that a new HSE Case is developed in accordance with this specification. Asset/Facility HSE Cases are further separated into the following types of HSE Cases:

o Concept Select Report: This demonstrates that there has been a systematic application of HEMP during the Identify, Assess and Select phases, that the HSE risks associated with each development option have been identified and assessed, the lowest risk option has been chosen or that the cost/effort required to adopt the lowest risk concept is grossly disproportionate to the benefit.

o Design HSE Case: This demonstrates that there has been a further systematic application of HEMP during the Define and Execute phases, demonstrates that the severity 5 or high level hazards identified are both tolerable and ALARP and that all safety critical elements (with associated performance standards) have been identified and meet the performance standards.

o Operations HSE Case: This describes management of the severity 5 or high level hazards to ensure that they are tolerable and ALARP, bow-tie diagrams showing the hazards and the barriers to the hazards, a list of HSE critical tasks, references to operational management systems and a statement of fitness. This acts as confirmation that the HSE Case Owner (Director) is satisfied that the arrangements are in place for the facility to operate safely.

3.1 Asset/Facility HSE Cases at different ORP phases

The opportunity realisation process (ORP) is split into 5 phases punctuated by Decision Gates (Dg1-5) and Value Assurance Reviews (VAR1-5). Once the need for an HSE Case has been identified, the type of HSE Case and when it should be compiled needs to be identified as per Figure 3-1.

The Identify & Assess; Select; Define; Execute and Operate phases are discussed in the following sections.

Page 12: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 12 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Figure 3-1: 5 stages and applicable HSE Cases

3.1.1 Identify and Assess

This phase initiates opportunities and demonstrates the feasibility of those opportunities. Ideas are generated and aligned with business principles and strategies and potential values established so a decision to fund and staff further development of these ideas can be made.

This phase also asks the question as to whether the project has looked sufficiently at the risks, different development options, realisations and all possible outcomes. Is there at least one solution that would work in most, perhaps all, of the realisations? The project must understand what it is going to be taking into the Select phase.

HSE input at this stage is at a high level and includes a preliminary HAZID, HSE-SD Plan and input to the Risk Register.

3.1.2 Select

This stage must select the best concept solution for delivering value from the opportunity and make it clear why one choice was the preferred option.

HSE input into the select phase has potentially the greatest impact. The option selected to take forward into the define phase must be ALARP. An ALARP demonstration must be provided in the CSR (see section 14).

3.1.3 Define

The selected concept must be defined technically (scope, cost, schedule) or commercially (JVA, JOA, country entry) for final investment decision (FID). Note that the timing of a technical FID may not coincide with a commercial FID.

HSE activities and deliverable at the define stage include a Design HSE Case and other HEMP Studies.

3.1.4 Execute

The project is to be delivered as a facility consistent with the forecast scope, cost, schedule and proven performance and has to be accepted by the Owner of operations (usually the Relevant Director) for use.

Page 13: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 13 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

During the execute phase the Design HSE Case is refined. The Operations HSE Case is developed prior to handover to operations. Further HEMP studies are carried out to support the ALARP Demonstration.

3.1.5 Operate

The project is operating as per expected and is maximising returns to Shareholders and protecting the License to Operate. The Owner of operations (usually the relevant Director) has accepted responsibility for continued safe operations.

The Operations HSE Case will contain the ALARP demonstrations for the Operate phase. This is built and maintained throughout the operate phase, (see section 16).

3.2 Roles and Responsibilities for the HSE Case

Delivery Team Leaders (DTL): DTLs are responsible for ensuring that the HSE Cases are developed and maintained for their assets and meet the requirements of this specification.

Project Managers: Project Managers are responsible for ensuring that the Concept Select Report and Design HSE Cases are developed and meet the requirements of this specification.

Contract Holders: For Air Operations, Road Transport and Drilling & Hoist Rigs, it is the Contract Holders that are responsible for ensuring that their Contractors develop and maintain HSE Cases that meet the requirements of this specification.

3.2.1 Sign Off Dates

Sign off dates for the CSR/HSE Cases shall be as follows:

o The Concept Select Report Case shall be signed off prior to VAR3.

o The Design HSE Case shall be signed off prior to VAR4.

o The Design HSE Case during detailed design phase shall be signed off when completed and prior to the PSUA.

o The Operations HSE Case shall be signed off prior to start up.

3.3 Roles and Responsibilities within the HSE Case

There are three main roles for developing, implementing and maintaining an HSE Case; the HSE Case Owner, HSE Case Custodian and the HSE Case Administrator. These roles for each type of HSE Case are shown in Table 3-1 and cover new projects and modifications to existing facilities.

Table 3-1: Roles and responsibilities within an HSE Case

HSE Input to Concept Select Report (CSR)

Design HSE Case Operations HSE Case

HSE Case Owner

Project Manager

Identifies the requirement for a HSE Section in the CSR in accordance with this specification

Appoints HSE resource

Project Manager

Identifies the requirement for an HSE Case in accordance with this specification

Appoints HSE Case Custodian and assigns responsibilities

Asset Director

Identifies the requirement for an HSE Case in accordance with this specification

Initiates Operations Case and assigns responsibilities

Page 14: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 14 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

HSE Input to Concept Select Report (CSR)

Design HSE Case Operations HSE Case

Approves the Concept Select Report

Approves outcome of ALARP multi-disciplinary reviews

Develops a Statement of Fitness for the Asset

Approves the Design HSE Case

Develops a Statement of Fitness for the Asset

Approves outcome of HEMP studies

Approves the Operations HSE CaseAssigns HSE Critical Element ownership to the appropriate Technical Authority/HSE Adviser;

Ensures ongoing compliance with this specification

Conducts periodic Operations HSE Case reviews

Ensures facility is operated according to the Operations HSE Case

HSE Case Custodian

Project HSE Lead

Manages HEMP studies, ensures risk tolerability and suitable and robust ALARP demonstrations are made

Prepares HSE content of the CSR and checks DCAF content all signed off

Coordinates the development of the HSE Input to the CSR.

Lead Technical Safety Engineer

Identifies HEMP studies to assess the hazards and risk associated with the project

Develops risk reduction strategies, identifies safety critical elements (SCE) and associated Performance Satandards in conjunction with SCE Technical Authorities (TA)

Facilitates that suitable and robust ALARP demonstrations are made.

Reviews and approves all action items raised for correct detail, action party and target date

Compiles/co-ordinates the HSE Case

Delivery Team Leader

Ensures the HSE Cases are developed and maintained for their assets in accordance with latest requirements.

Ensures participation in development and awareness and proper use of the HSE Case by the organisation

Validates HEMP studies and technical accuracy of the contents of the HSE Case

Co-ordinates review of HSE critical tasks listings and associated Performance Standards

Ensures that revisions and updates are prepared when necessary, adequately controlled and distributed

Reviews facility specific emergency response plans

Reviews and approves all action items raised for correct detail, action party and target date

Page 15: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 15 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

HSE Input to Concept Select Report (CSR)

Design HSE Case Operations HSE Case

HSE Case Administrator

N/A N/A Directorate Technical Safety Engineer

Compiles/co-ordinates the HSE Case and subsequent reviews and updates

Supports the HSE Case Custodian

Page 16: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 16 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

3.4 Workforce Involvement

The HSE Case shall demonstrate that the workforce have been part of the development and review of the HSE Case. Workforce in this context is the front line operations and maintenance staff that are directly involved in the day-to-day running of the facilities.

The purpose of this requirement is to ensure that front line operations and maintenance staff:

have knowledge of the Major Accident Hazards that have been identified for the facility where they work

are aware of the controls and barriers in place to manage these MAHs (SCEs, performance Standards, HSE Critical Tasks, MOPOs)

have knowledge of how these controls are managed (MIE, FSR, assurance reviews)

For Design HSE Cases, workforce involvement can be demonstrated by ensuring that relevant staff representatives have been involved in the design. This may be done by ensuring they participate directly in the design activities (HAZIDs, HAZOPs, HEMP studies) and by participating in project assurance reviews such as Design Reviews, peer reviews and project Audits.

Operations HSE Cases shall be communicated to the operations and maintenance teams on site. The focus shall be on what the case means to them and what impact is it likely to have. In addition, representatives from current operational, engineering, and maintenance teams and workforce representatives (where applicable) shall be included in the regular reviews as described in Section 13. This engagement may be demonstrated by ensuring that the HSE case is reviewed regularly by operations and maintenance staff, which can be achieved through

job descriptions and staff performance contracts

dedicated communications initiatives

staff onboarding

committees or working groups (e.g. AIPSALT).

For both types of HSE Cases, the details of how workforce involvement has been achieved shall be described in the HSE Case or in the documentation of the periodic review of the HSE Case.

3.5 Deliverables

Design and Operations HSE Cases are classified as Essential Records according to CP-102 “Documents & Records Management” and shall be maintained on Livelink by the HSE Case Administrator.

Design and Operations HSE Cases are mandatory deliverables for new projects and existing assets, as described by the Discipline Control and Assurance Framework (DCAF) section in SP-2061 Technical Authority System [Ref. 7].

3.6 Performance Monitoring

Routine performance monitoring of HSE Cases shall include:

o Assurance of Design HSE Cases at VARs

o Review of Operations HSE Cases during Pre-Start up Audits

Page 17: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 17 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

o AI-PSM Assurance of Operations HSE Cases

o Monitoring of Operations HSE Case KPIs

3.6.1 Review and Improvement (HSE Cases)

Once the Concept Select Report is signed off, it is not anticipated that any revisions will be required as further project work will be covered in the Design HSE Case.

The Design HSE Case may need to go through several revisions during the Define and Execute phases depending on the nature of the design of the new project.

The Operations HSE Case shall be reviewed and updated at a maximum interval of 5 years unless any of the following circumstances occur:

o As part of a Material Change to the Facility, operation or surrounding environment that may have a potential impact on the risk profile

o When it cannot be verified that the performance of safety critical elements (SCEs) meet the performance standards and/or when mitigation measures have been employed for extended periods to compensate for this shortfall

o Prior to any material changes to the organisational arrangements or personnel levels

o Following a major incident involving the Facility or operation, or from lateral learning from other major incidents applicable to the Facility or operation

o Enhancements in knowledge or technology that change the basic assumptions on which the risk tolerability and ALARP demonstrations are based

o If there is a change to any of the signatory parties for the HSE Case, i.e. HSE Case Owner (Director), HSE Case Custodian (Delivery Team Leader) or HSE Case Administrator (Technical Safety Engineer)

3.6.2 Material Change

A material change is any change that significantly affects the basis for original the ALARP demonstration in the HSE Case. In practice this usually includes changes that have the potential to affect the major accident hazards or their controls, either directly or indirectly.

Examples of direct effects are:

o Significant modifications or repairs to the plant or equipment, either as single large modifications or multiple smaller modifications.

o an increase in hydrocarbon inventory, o new technology, processes or operational complexity, o new types of combined operations, or new activities in connection with an

installation, o new operational risk controls.

Examples of indirect effects are:

o new ownership or operatorship, introducing a change in the management system,

o a major change of contractor, and o extension of the use of the installation or its components beyond the

original design life.

Page 18: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 18 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

4 ASSET INTEGRITY - PROCESS SAFETY MANAGEMENT

Assuring the safety of people, assets, the environment and reputation is a core value and providing assurance that major process safety risks are being managed is a critical aspect of PDO corporate governance. Asset Integrity – Process Safety Management (AI-PSM) describes the way in which PDO assets are managed so that the process risk is as low as reasonably practicable (ALARP).

There are two Process Safety implementation mechanisms within PDO:

1. The Process Safety Manual of the Shell Group HSSE Control Framework [Ref. 6]

2. AI-PSM as developed by Centre for Chemical Process Safety Guidelines for Risk Based Process Safety (CCPS RBPS) [Ref. 9].

4.1 Process Safety Manual, HSSE Control Framework, Section

The HSSE & SP Control Framework replaces the mandatory requirements in EP2005 series, and includes mandatory Standards, Manuals, Specifications and Glossary terms, and non-mandatory Assurance Protocols and Guides.

The Process Safety Manual of the HSSE & SP CF comprises four elements:

1. Asset Integrity – Process Safety Management Application Manual

2. Design and Engineering Manual 1 (DEM1)

3. Design and Engineering Manual 2 (DEM2)

4. Override of Safeguarding Systems.

A full description of each element can be obtained in The HSSE & SP Control Framework [Ref. 6]

Compliance to the detailed requirements of the Process Safety Manual is demonstrated by signing a Statement of Fitness (SoF). The Statement of Fitness is shown in section 12 and testifies that the hazards have been appropriately managed in accordance with HEMP and that a suitable and robust ALARP demonstration has been made.

The Statement of Fitness is a requirement of the AI-PSM Application Manual and a signed SoF shall be included in Design and in Operations HSE Cases, respectively.

For operational assets the SoF shall be signed by Asset Directors, and for new projects by the Project Manager before handover to operations.

4.2 Centre for Chemical Process Safety Guidelines for Risk Based Process Safety (CCPS RBPS)

The CCPS RBPS AI-PSM process is an assurance process containing 20 elements 1that describe minimum expected standards and stipulates the requirements for a range of process related activities ranging from organisational culture, workforce involvement, risk management, HEMP and audit through to design.

The assurance process includes routine checking, self-assessments and audits, as well as independent 3rd party verification that the AI-PSM system and practices are consistent with industry best practice and are controlling process risk to ALARP.

The assurance process also identifies opportunities for improving the management and control of process risk and therefore, is a key driver for continuous improvement.

1 A description of the 20 AI-PSM elements is provided in Appendix 12.

Page 19: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 19 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

HEMP is an integral element of the AI-PSM process and the HSE Case and provides a clear link between the two processes. Both the AI-PSM and HSE Case processes aim to identify, control and reduce risk levels to ALARP.

4.3 Process Safety in Projects

AI-PS requirements in projects, from project identification through to execution, is described in “GU-648 Guide for Applying Process Safety in Projects” [Ref. 4].

This guideline extracts all the relevant information from the existing ORP documentation that is necessary to meet the AI-PS requirements at handover. It also provides further clarity with regards to the assurance processes which underpin the project team’s ability to demonstrate that AI-PS requirements are met at the end of every project phase.

The main objective of this guideline is to explain the key AI-PS objectives and deliverables throughout the project phases that demonstrate the facility is fit for the safe introduction of process fluids and that systems, processes and procedures are in place so that AI-PS can be safeguarded in the subsequent operate phase.

This will allow PDO to make the statement that “Our Asset is Safe and we know it” after each project phase.

4.4 Critical Drawings

Critical drawings are those drawings which are required to be maintained in order to support the implementation of critical tasks. Critical drawings are required to ensure that the risks from MAHs are ALARP.

A list of critical drawings shall be made for each facility. All critical drawings shall be stored in an easily accessible database to reflect the current design and status of the asset (as-built status).

This will ensure that all personnel have access to reliable and up to date information to allow accurate planning of work operations and activities, management of change and investigative activities (when an incident has occurred).

Critical drawings include, but are not limited to:

o PFS

o PEFS

o Cause and Effect matrix

o Hazardous area classification

o Area Layout

o Site plan (sub-field layout)

o Key plan and Plot plan

o Escape routes

o Safety equipment layout

o Critical valve list (including locked open and locked closed valves)

o Fire and Gas layouts.

Page 20: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 20 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

5 HEMP

The hazards and effects management (HEMP) process identifies and asses HSE hazards, implements control and recovery measures and maintains a documented demonstration that major HSE risks have been reduced to a level that is as low as reasonably practicable (ALARP).

HEMP shall be applied to all activities over which PDO has operational control and shall cover the entire lifecycle of the asset or operation; from concept through to decommissioning and disposal. Work undertaken by a Contractor and under the Contractor’s own management system shall have a requirement for an equivalent HEMP approach expressly stated in the contract.

HEMP is fundamental to all analysis and assessment elements of the formal HSE activities, and is at the heart of the HSE management system used in PDO. The HEMP process comprises four basic steps:

Systematic identification of hazards, threats, unwanted events and their effects

Assessment of the risks against screening criteria, taking into account the likelihood of unwanted events and the potential severity of the consequences in terms of effects to people, assets, the environment and reputation of PDO

Implementation of suitable risk reduction measures to control or mitigate the hazard and its effects

Planning for recovery in the event of a loss of control leading to an unacceptable effect.

The main objective of HEMP activities is to demonstrate that hazards (and associated risks) have been identified and where the hazard cannot be eliminated the risks are controlled to a level that is tolerable and as low as reasonably practicable (ALARP). The HEMP model is characterised by Figure 5-1.

Figure 5-1: HEMP Model

HEMP studies shall be performed by staff who are knowledgeable about the facility and operations and who are competent in the HEMP techniques necessary. The studies shall be planned and implemented in a timely manner to enable the results to be incorporated without incurring avoidable rework and costs. The studies should be documented such that key information and decisions made are transparent and available for future reference. Recommendations arising from HEMP studies shall be recorded in an appropriate action tracking system.

Identify ControlAssess

RISKS TOLERABILITY & ALARP

Recover

DOCUMENT

Page 21: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 21 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

5.1 Hazards and Effects Register

Hazards and their effects on people, the environment, the assets and the reputation of PDO shall be systematically identified and listed for the full lifecycle of the asset and operations.

The hazards are identified in a Hazard Identification (HAZID) meeting, and the outcome of this meeting is used to develop the Hazards and Effects Register.

PDO use a checklist of potential hazards to populate the Hazards and Effects Register. It is recommended that a multi-disciplinary team facilitated by an experienced person go through the list of hazards and identify those relevant to the specific facility/asset/ operation under consideration. Ideally the team should be made up of Management, Operations, HSE, Maintenance and Engineering Disciplines (Concept, Detailed Design as appropriate) personnel.

The PDO Risk Assessment Matrix in Figure 2-1 shall be used to assess the hazards and their severity and frequency of occurrence. The experience of the team will be used to brainstorm hazards known to have been realised from previous experience or thinking whether it is a credible hazard that could occur within PDO operations. This is a subjective process and care must be taken not to over-complicate the process by thinking of multiple events, double jeopardy events or highly unlikely events.

Examples of credible scenarios could include major leak from oil storage tank at MAF, leak at a Booster station on the main oil line, leak from offtake tanker hose, loss of containment from on-plot processing facilities, loss of containment of H2S (affecting both onsite personnel and the general public). Consequences from such incidents usually cover injury/fatalities, fires/explosions, environmental impact, loss of facility and negative impacts on reputation.

For low and medium risk hazards, the controls for the hazards, i.e. permit to work, job safety assessment, operating procedures, competence assessments, tool box talks, etc., are discussed and then added to the Hazards and Effects Register.

Hazards that have been assessed as being a severity 5 or high risk on the risk assessment matrix are then modelled further using bow-tie methodology as described in next section.

See Appendix 3 for the full checklist of potential hazards, and an example of a Hazard and Effects Register is provided in Appendix 4.

Page 22: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 22 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

6 BOW-TIES

The Hazards and Effects Register documents that all hazards associated with the facility and that control and mitigation measures have been identified. Hazards that have been assessed as being a severity 5 or high risk on the risk assessment matrix (Figure 2-1) are then modelled further using bow-tie methodology.

The Bow-Tie is a model that represents how a Hazard can be released, escalate, and how it is controlled. It contains the elements required to effectively manage the Hazard such that the risks are tolerable and ALARP. Bow-Ties can also be used to support risk management of non-HSE processes.

For each severity 5 or high level hazard, the bow-tie methodology allows for:

1. Identification of the hazard release, escalation and consequence scenarios 2. Identification of controls, e.g. barriers and escalation factor controls required to

manage the hazards 3. Categorisation of controls into Inherent Safety, Safety Critical Element (hardware)

or Critical activity (procedures, processes, operator action) 4. A clear visual representation to enable the ALARP review to be undertaken 5. An aid in the incident review process if occurrence of such a major incident has

occurred.

The bow-tie is a model that represents how a hazard can be released, escalate and how it is controlled. ‘Bow-Tie XP’ is the PDO preferred software tool

Figure 6-1: Generic bow-tie model

Page 23: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 23 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Table 6-1: HEMP definitions and Bow-tie terminology

ALARP As Low As Reasonably Practicable (Risk) means that having reviewed all practical alternatives for Major Accident Hazard elimination, Threat Controls and Recovery Measures, further reduction in risk would involve disproportionate cost or resources for the risk reduction achieved.

Barrier Barriers prevent or reduce the probability of each Threat (left hand side of the bow-tie), limit the extent of, of provide immediate recovery from the Consequences (right hand side of the bow-tie). Barriers may be hardware, such as safety systems (e.g. F&G ESD, etc) or management systems and procedures.

Consequence Consequences in the bow-tie are a direct result of the Top Event occurring. Indirect consequences, if applicable shall be modelled in a separate bow-tie, Can include potential consequences that have not been heard of in the industry.

Escalation Factor

Factors that defeat, or reduce the effectiveness of a Barrier

Escalation Factor Control

Measures put into place to prevent or mitigate the effects of Escalation Factors.

Hazard Any situation with the potential for harm to people, environment, asset or reputation e.g. hydrocarbons under pressure, dropped load.

HSE Critical Task

An HSE Critical Task develops, implements or maintains the effectiveness and integrity of a Barrier or Escalation Control Factor in Bow-Ties for Severity 5 or High Risk Hazards. HSE Critical Positions are those that execute HSE Critical Tasks

HSE Critical Position

HSE Critical Positions are those that execute HSE Critical Tasks

Major Accident Hazards (MAH)

Hazards that are classed as High Risk (Red) or severity 5 on the PDO Risk Assessment Matrix. This means any situation with the potential for major consequences (harm) to people, environment, asset and reputation if released.

Recovery Measure

Any measure put in place to manage Consequences and assist recovery from a Top Event.

Risk The likelihood of a Top Event combined with the severity of the Consequences (The risk is from the Hazard to people, environment, asset and reputation).

Threat Any action or mechanism that could bring about the unplanned release of a hazard.

Threat Control Any measure put in place to prevent a Threat being successful.

Tolerable Risk Tolerable Risks are those that have been reduced to a level where they comply with the applicable laws and regulations, standards, strategic objectives and other agreed Tolerability Criteria.

Top Event The first thing that happens when a hazard is released. Individual bow-ties shall have a single Top Event.

The role of a barrier on the bow-tie diagrams is to prevent (Left hand side of BT) or limit (Right hand side of BT) the consequence of a major incident. Barriers may be:

Page 24: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 24 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

1. Design (inherent) features, e.g. separation distances, reduction of process pressures, minimisation of leak sources, etc. (depicted blue on the bow-tie).

2. Safety Critical Elements (hardware and logic software), e.g. Process Containment Systems, Pressure Relief Valves, ESD, Fire and Gas Detection, Escape & Evacuation Systems, Breathing Protection, etc. (depicted green on the bow-tie)

3. Operational Safety Processes, e.g. valve lock out/tag out, breaking containment procedures, permit to work, etc. (depicted yellow on the bow-tie)

4. Operational Intervention Tasks, e.g. Plant Monitoring, Alarm Response, Shutdown, etc. (depicted yellow on the bow-tie)

Barriers shall be:

1. Effective in preventing the Top Event or Consequence

2. Able to prevent a specific Threat from releasing the Hazard

3. Verifiable – how shall the effectiveness of the barrier be confirmed?

4. Independent of other barriers in the same Threat line, e.g. no ‘common mode failure’.

Hardware Barriers for Severity 5 or High Risk Hazards (HSE) shall be classified as HSE Critical Elements. Selection of these Barriers shall be in accordance with EP2009-9009 SCE Management Manual [Ref. 10]and is further described in Section 7.

Common barriers or escalation factor controls that appear frequently, e.g. such as those to do with Operator/Human Error, should be modelled using a separate bow-tie to manage the single Threat of ‘Operator/Human Error’.

See Section 10 ‘ALARP demonstration’ for further information.

Page 25: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 25 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

7 SAFETY CRITICAL ELEMENTS

A Safety Critical Element (SCE) is any item of hardware, system or logic software the failure of which could cause a major Accident Hazard (MAH) or whose purpose is to prevent or mitigate the effects of a MAH. SCEs groups are categorised according to Shell EP2009-9009 ‘Safety Critical Element Management Manual’ [Ref. 10]. These groups or barriers (see section 7.1) contain the definitions of those items that may be classed as safety critical on any given facility.

Safety Critical Elements shall be selected from these groups during the bow-tie development process. The bow-tie diagrams show the SCEs as ‘barriers’ to the MAH. A deliverable of the Bow-Tie development process is a list of SCEs applicable to the facility. This list shall be further developed as part of a SCE identification process that defines the safety critical components of each SCE barrier.

The role of a barrier on the bow-tie diagrams is to prevent or limit the consequence of a major incident. Barriers may be:

1. Design (inherent) features, e.g. separation distances, reduction of process pressures, minimisation of leak sources, etc.

2. Safety Critical Elements (hardware and logic software), e.g. Process Containment Systems, Pressure Relief Valves, ESD, Fire and Gas Detection, Escape & Evacuation Systems, Breathing Protection, etc.

3. Operational Safety Processes, e.g. valve lock out/tag out, breaking containment procedures, permit to work, etc.

4. Operational Intervention Tasks, e.g. Plant Monitoring, Alarm Response, Shutdown, etc.

The SCE management manual [Ref. 10] describes the activities and processes for managing the critical hardware barriers (SCEs) that appear in the MAH bow-ties.

7.1 SCE (Hardware) Barriers

Each SCE is grouped under one of 8 hazard management barriers, as depicted in the Swiss Cheese Model (Figure 7-1). The hazard management barriers are as follows:

Structural Integrity

Process Containment

Ignition Control

Detection Systems

Protection Systems

Shutdown Systems

Emergency Response

Life Saving Equipment

Each SCE belongs to one hazard management barrier. Generally, the Structural Integrity, Process Containment and Ignition Control SCEs together with some aspects of the PSD/ESD system, reside on the left hand-side of the bow-tie top event. Failure of any of these barriers could cause or significantly contribute to a MAH. The remaining SCEs normally reside on the left hand-side of the bow-tie top event. These SCEs are provided to control or mitigate the effects of a MAH after it has occurred.

Page 26: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 26 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Figure 7-1: SCE Hardware Barriers and SCE Groups

The hardware barriers in Figure 7-1 are depicted with a number of small holes that represent an integrity failure either in design or operating performance. On their own, these failures may not be significant but, if the holes line up, there may be no effective barriers in place between safe operations and escalating consequences, leading to a major incident.

For example, a loss of containment in a sweet gas facility would not normally be expected to cause fatalities unless it is ignited. An integrity failure in the process containment system combined with a failure in the ignition control system could cause an ignited event, i.e. a fire or explosion. If there are no personnel in the area then this in itself would not cause fatalities. However, if there are integrity failures in the fire and gas detection system then the event may not be detected and the process system not isolated and the event may have the potential to escalate to adjacent inventories. This would also be the case if an ESD Valve or Blowdown Valve failed to operate on demand. Finally, if adequate assembly points and EER systems such as emergency telecoms are not provided or are not suitable, then personnel may not be evacuated quickly enough and the process release would have the potential to cause fatalities. The example shows that a number or what on their own would sometimes be considered as ‘minor failures’ have combined to produce a Major Accident causing fatalities.

Page 27: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 27 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Figure 7-1 shows the importance of maintaining and monitoring and ensuring the integrity status of all hardware barriers, so that what might be considered to be relatively small faults in individual barriers do not combine together in an unforeseen manner that compromises the ability if the barriers to prevent or control a major incident.

Note that it is not necessary for all barriers to fail to lead to a major incident. For example, failure of a single barrier such as process containment on a high sour facility may lead directly to major incident.

Each SCE is attached to a relevant discipline who are designated as the owner of the associated Performance Standard.

7.2 SCE Selection

SCEs should be colour coded green on the Bow-tie and the specific SCE category denoted beneath the barrier that appears in the Bow-tie.

The process for selection of SCEs starts with a review of the generic list of SCE’s provided in the SCE Management Manual [Ref. 10] to identify those SCEs that are applicable to the facilities, for each of the identified Major Hazards. The list of selected SCEs shall be reviewed and agreed by the relevant discipline engineers during the define phase.

Figure 7-2 depicts the process for the selection of SCE’s.

The HSE Case shall contain a list of the SCEs identified in the bow-tie diagrams as per the table provided in Appendix 5.

The HSE Case shall contain a table showing each SCE against the MAH bow-ties where they appear as hardware barriers, and an example is shown for the SCE group ‘Process Containment’ in Appendix 6.

Page 28: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 28 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Figure 7-2: Selection Process for Safety Critical Elements

7.3 Performance Standards

A Performance Standard is a statement, which can be expressed in qualitative or quantitative terms, of the functional performance required of a SCE, and which is used as the basis for managing the risk from the Major Hazards. Defining and ensuring compliance with suitable Performance Standards provides assurance that the SCE is and will remain a barrier to the identified MAH.

Generally, the SCEs and Performance Standards follow a one-to-one relationship where each SCE has its own Performance Standard.

Performance Standards are used as the basis for design and technical (operational) integrity verification and are expressed in terms of functionality, availability, reliability, survivability and dependencies/interactions with other SCEs.

Functionality

Functionality is an expression used to define what the system or equipment is required to achieve in order to ensure design integrity.

Reliability and Availability

Reliability is defined as the required probability that the system or equipment will operate on demand, when required.

Availability is defined as the extent to which the system or equipment is required in order to retain its functional integrity.

Is the purpose of this element to prevent a

MAH?

Could failure of this element

cause a MAH?

Could failure of this element contribute

substantially to a

Is the purpose of this element

to limit the effects a

This item is a Safety Critical

Element.

This item is not a Safety

Critical El t

No

No

No

No

Ye

Ye

Ye

Ye

Generic List of SCEs

EP9009-2009

Page 29: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 29 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Survivability

Survivability defines the external loading events such as fires, explosions or extreme weather, associated with the various MAHs against which the system or equipment is required to retain its functional integrity.

Dependencies and Interactions

This is used to identify other systems or equipment that are critical to the functionality of the primary system or equipment. By identifying these dependencies and interactions it is ensured that all interfaces have been covered.

There are two types of Performance standards;

Design Performance Standards. Design Performance Standards must be developed during the Define phase. They shall provide a list of key functional criteria to which the SCE must comply with during the design. In practice the content of the performance standards will be largely taken from the design and engineering standards that apply to the item or SCE. However, other information may be taken from the basis for design, the design philosophies, or the results of workshops and HEMP Studies such as HAZID/HAZOP, Design Review, Layout Reviews, Fire & Explosion Analysis, QRA, IPF, SAFOP, etc.

The Design Performance Standards will mature further during the execute phase and will check that the SCEs have been constructed as designed. The existing QA/QC procedures and practices should be used to support the Design Performance Standards. The design must take into account operational demands so that suitability can be ensured into the operate phase.

The Design Performance Standards will evolve into Operate phase Performance Standards at the end of the execute phase before handover.

Operations Performance Standards. The Operate phase Performance Standards for SCE’s should evolve from the Design Performance Standards. These Performance Standards are formatted to comply with the requirements of SAP-PM and SAP-QM in terms of minimum assurance tasks, assurance measures, assurance value and units of measure for the correct allocation to the appropriate level in the asset hierarchy.

Examples of the two types of Performance Standard are provided in Appendix 7 and Appendix 8, respectively.

7.3.1 Performance Standard Approval

Each performance standard is allocated an ‘owner’. The owner is responsible for ensuring that the content of the performance standard is appropriate and achievable. The performance standard owner is normally the CFDH for the items covered by the SCE. However, the CFDH may delegate the review and approval of their performance standards to the relevant TA2.

Page 30: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 30 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

8 HSE CRITICAL TASKS

An HSE Critical Tasks is one that is in place to develop, implement or maintain the effectiveness and integrity of a Barrier, Escalation Factor Control or Recovery Measure Control in the MAH bow-ties.

An HSE Critical Position are those that execute HSE critical tasks.

The minimum information required for a HSE critical task shall be:

The description and purpose of the HSE critical task required

The person (position and reference indicator) responsible for performing each task

Reference to supporting documentation, e.g. work instructions, SAP, procedure, etc

The method and criteria to verify that the task is performed as required to maintain barrier effectiveness.

HSE critical tasks should be developed to the level of the party responsible for ensuring that tasks are completed on time and to the required standard, e.g. Managers, Supervisors and Specialists – the position responsible for ensuring that the task is done and not the person who is actually undertaking the work.

Bow-tie XP software enables the HSE critical tasks to be linked to the relevant barriers.

Inspections and preventative maintenance activities for hardware SCEs are implemented via the Maintenance Management System, i.e. SAP. The task information is contained within the task description in SAP for all SCE barriers and is NOT listed as an HSE critical task, and is considered part of the hardware barrier itself. This applies to for example maintenance and calibration of a gas detector.

Implementation tables shall be developed for each HSE Critical Position. The implementation tables describe each HSE Critical Task, its supporting business controls and the business records required to verify that the task is being adequately executed. The implementation tables also provide a link to relevant barriers (HSE Critical Activities) and hazards on the Bow-Tie diagrams.

See Appendix 9 for an example extract from an Implementation table. Communication of HSE Critical tasks to affected people in affected position is the responsibility of the HSE Case Custodian.

Page 31: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 31 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

9 MATRIX OF PERMITTED OPERATIONS (MOPO)

A matrix of permitted operations (MOPO) is an information tool to assist Supervisors and Line Managers during the planning and coordination of operations and activities by providing useful information on:

The operation or activity operating envelope and safe operating limits. Actions(s) to take if/when certain situations arise that could compromise safe

operations.

The MOPO is a set of matrices that maps operational activities against foreseeable situations that if or when they arise could compromise safe operating limits – these situations are identified from:

The Threats and Escalation Factors identified as part of the Bow-tie assessments for severity 5 and high risk hazards.

An assessment of other operations and activities that could contribute to the escalation of an incident, e.g. continuing with hot work when fire pumps (a safety critical element (SCE)) are unavailable.

Circumstances that could compromise safe operations are grouped into three categories:

Simultaneous operations (SIMOPs), where large work parties under different management structures carry out work which results in hazards that may impact the other. e.g. removal or overhaul of equipment and/or production and/or construction and/or drilling in the same area (MOPO entitled SIMOPs MOPO)

External influences, e.g. extreme weather, visibility, security issues (MOPO entitled Adverse Weather MOPO)

Inactive safeguards; i.e. SCE unavailability or impairment, e.g. ESD systems, firefighting systems (MOPO entitled SEC Impairment MOPO).

The MOPOs shall identify and differentiate between ‘stop’ (red) conditions, i.e. operation NOT permitted and what are ‘proceed with caution’ (amber) conditions, i.e. continue following appropriate risk assessment and provide additional controls where necessary. All other activities in the MOPO that do not require further assessment or controls are denoted ‘safe to proceed’ (green).

For developing a new MOPO or reviewing and updating an existing MOPO, refer to Appendix 10.

9.1 Using the MOPO

Copies of the MOPO shall be readily available in a suitable format (poster size, laminated, etc) and displayed in the control room and other operational and job planning /coordination areas.

The MOPO shall be referred to during both routine work planning and coordination and in responding to unforeseen conditions.

9.2 Deviations from the MOPO

In event of a situation arising where the preferred option is contrary to that given in the MOPO, this shall be assessed and approved by the Delivery Team Leader and relevant discipline authority as defined in DCAF. In the event of a SCE being impacted, relevant discipline authorities shall also be consulted using the FSR process.

Page 32: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 32 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

10 ALARP demonstration

10.1 ALARP Definition

ALARP (As Low As Reasonably Practicable) allows a proportional level of effort to be put into risk reduction once the initial level of risk has been assessed for a particular operation or process. The ALARP principle is used to determine whether risks are broadly acceptable, tolerable or intolerable via comparison against company risk criteria.

The use of the ALARP principle requires judgement to determine whether or not risk levels are as low as reasonably practicable. ALARP can be demonstrated when the sacrifice (cost, time, effort) required to reduce the risk any further, would be disproportionate to the risk reduction potentially achieved (the benefit). The term ‘sacrifice’ relates to the time, effort and/or cost of the complete implementation and future maintenance and operation of the particular risk reduction measure in question. ‘Benefit’ relates to the level of risk reduction offered by a risk reduction measure. ‘Reasonably practicable’ is the balance between the sacrifice and benefit of implementing the risk reduction measure, or suite of measures.

ALARP justification also requires demonstration that all risk reduction measures assessed as reasonably practicable have been implemented. The use of ‘reasonably practicable’ uses a goal setting approach to risk reduction rather than a prescriptive one. This is a standard approach for all high risk industries including the oil and gas industry.

ALARP demonstration can be based on a comparison of the suite of barriers and control measures that are in place, versus those expected to be seen in equivalent assets or industries. This represents ‘good practice’ and can be identified as standards for controlling risk that have been judged and recognised as satisfying a particular set of laws or regulations. In the absence of a developed regulatory system, company standards, corporate global standards, best engineering practice and engineering judgement may be used as a basis for comparison.

For ALARP to be demonstrated, all hazards and risks must have been identified as far as practicable and assessed against the PDO Risk Assessment Matrix (RAM) (Figure 2-1) and as described in Section 5. This provides a prioritised listing of hazards. As a minimum, all Major Accident Hazards (High Risk and Severity 5 hazards) shall be subjected to Bow-Tie analysis as described in Section 6. This is a qualitative approach to demonstrating ALARP using the engineering, process, Process Safety and HSE knowledge and experience of the selected workshop group.

In addition to this approach, ALARP demonstration can employ a combination of qualitative and quantitative techniques dependent on the novelty, complexity and type of process or project under assessment. The HSE Cases are assessed in line with the Framework for risk related decision support in PDO as shown in Figure 2-1 and the level of risk assessment performed proportional to the level of risk associated with the process or project.

Refer also to GU-648 “Guide for Applying Process Safety in Projects” [Ref. 4] and CP-117 “Project Engineering Code of Practice” [Ref. 6] for further description of ALARP requirements.

Page 33: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 33 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

10.2 How to Undertake an ALARP Assessment

10.2.1 Principles of Hazard Management

The hazard management hierarchy as shown in Erreur ! Source du renvoi introuvable.Error! Reference source not found. is used to manage HSE risks and shall be referenced when demonstrating ALARP. .

Nevertheless, all hazard management controls should be considered at each stage of the development.

Figure 10-1: Hazard Management Hierarchy

The strategy selected for managing a hazard will differ depending on the project phase, and this principle shall form part of the evaluation when making ALARP demonstrations.

As the opportunity for influencing the facility design is greatest during early design phases, the focus shall be on elimination or substitution of the hazards. This typically applies to Identify& Assess and Select phases of the ORP process.

As the project matures into Define and Execute, there is less opportunity to apply elimination or substitution and hence the predominant hazard management controls consist of isolation/separation and engineering solutions that can be put in place.

Once a facility becomes operational, the hazard management will largely focus on the organizational and procedural controls. PPE is generally regarded as the last principle of hazard management and therefore also the least effective.

10.2.2 Good Engineering Practice

In most situations, deciding whether HSE risks have been reduced to ALARP involves a comparison between the control measures a project is proposing and the measures PDO would normally expect to see in such circumstances i.e. the requirements of relevant good practice captured in Company specifications and procedures listed in GU-611.

PPE

Isolate

Engineer

Admin

Isolate/Separate

PPE

Engineer

Organisation

Procedures

MOST EFFECTIVE

LEAST EFFECTIVE

EliminateSubstitute

Not assessed in quantitative

termsPPE

Isolate

Engineer

Admin

Isolate/Separate

PPE

Engineer

Organisation

Procedures

MOST EFFECTIVE

LEAST EFFECTIVE

EliminateSubstitute

Not assessed in quantitative

terms

Eliminate –Eliminate the hazard

Substitute -Use processes or methods with lower risk impact

Isolation / Separation –Segregate hazards and/or targets

Engineered Safeguards –PREVENTION Design to prevent an unwanted eventRECOVERY Design to mitigate harmful consequences

Organisational Controls –Training, Competency, Communication

Procedural Controls -Operating procedures, Work instructions, PermitsMaintenance regimesEmergency Response procedures

Personal Protective EquipmentProtect the person

Page 34: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 34 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

The scope for eliminating hazards and threats and reducing the scale of consequences is greatest at the beginning of the project and progressively reduces as the project develops. In part this is because the cost and difficulty of delivering a given risk reduction solution increases as the project develops. ALARP demonstrations must be robust for each of the HSE Cases as per Figure 3-1.

CP-122 “Health, Safety and Environment Mgmt System – CoP” describes application of the AI-PSM process from CCPS RBPS within PDO to demonstrate compliance to good engineering practice and to ensure that risk levels are ALARP. This is made via demonstrating compliance against the 20 Process Elements shown in Appendix 12.

10.2.3 Good Engineering Principles

Company specifications and engineering standards should be followed unless there is sound justification, and then consideration given to whether there is any more that can be done to reduce the risk. If there is more that can be done, these further measures need to be assessed by comparing the risk reduction with the cost and effort involved in further reducing it.

Simply following standards does not in itself demonstrate ALARP, particularly for more complex or novel projects, where additional considerations shall be made.

10.2.4 HEMP Studies

HEMP studies undertaken during the select, define, execute and/or operate phases of the development are used to assess risk levels and identify any further risk reduction measures.

Applicable HEMP studies for each project phase are defined in DCAF.

10.2.5 ALARP Review

In assessing the risks associated with the Design or Operations HSE Case hazards, a qualitative review of the Bow-ties shall be undertaken. The review shall be led by an experienced facilitator and the review team shall be comprised of experienced staff from the following areas of expertise:

o Engineering

o Process

o HSE

o Maintenance

o Operations

o Management

o Asset stakeholders.

Each of the threat lines in the bow-ties shall be reviewed in turn and the discussion should cover such questions such as:

o Does industry best practice state what should be done or make any recommendations?

o Can a benchmark exercise be undertaken against other operators and similar controls implemented?

o Where are the gaps/shortfalls and what action needs to be taken to address these gaps/shortfalls? See Section 11.2.

o Is there sufficient quantity and quality of barriers?

o Is there anything else that can be done to further reduce the risk?

Page 35: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 35 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Both barrier effectiveness and the number of barriers contribute to the overall effectiveness of control, although in general, the effectiveness of individual barriers is more critical.

The number, independence and reliability of the control and recovery measures shall be commensurate with the risk.

By approaching the bow-tie review in this systematic fashion, the barriers can be challenged in terms of completeness and adequacy and gaps identified and addressed so that the review team is satisfied that the risks arereduced to ALARP.

The HSE Case process enables an ALARP argument to be formulated although in isolation, a complete ALARP argument cannot be made. The claims made against the numbers, quality, performance and location of the barriers must also be verified. This verification of the safeguards (both hardware and procedural controls) is performed via AI-PSM audit and the TR-MIE and TI-HBV processes. These processes substantiate the claims made within the Bow-Ties and MOPO in terms of barrier integrity and performance.

10.3 Assessment of Complex Decisions

Demonstrating ALARP shall involve consideration of fundamentally different options to provide assurance that the Company gets the best value for money over the lifetime of the facility. The assessment of fundamentally different options normally takes place in the identify, assess and select phases.

Assessment of complex decisions requires consideration of all the hard and soft issues related to a range of options and should reflect a decision taken at the right level in the organisation with full knowledge of all the options and their associated risks and costs.

The following structure is recommended for documenting ALARP demonstration for complex project decisions:

1. IDENTIFY

a. Problem Definition

b. HSE Issues and Potential Risk

c. HSE Standard & Tolerability Criteria

2. ASSESS

a. Options Considered

b. Basis for Selection and Uncertainties

c. Justification for Chosen Option

3. CONTROL & EVALUATION

a. Residual HSE Risks

b. Recommendation for Next Project Phase

c. Requirements for the Operations HSE Plan/Case

The ALARP demonstration for such decisions shall be signed by the person developing the demonstration as well as relevant discipline Technical Authorities.

Page 36: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 36 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

11 OPERATE PHASE CONTINUOUS IMPROVEMENT

11.1 Drivers for Improvement

Key Performance Indicators (KPIs) have been established for the AI-PSM programme within PDO. AI-PSM KPIs consist of:

o A set of KPIs defined by Operational and Functional Leadership, collected on a uniform basis at all assets (Corporate KPIs).

o Any additional asset-specific KPIs targeted at the key risks of that asset.

Typical AI-PSM KPIs include:

o Number of Process Safety incidents reported YTD.

o Number of Process Safety near misses reported YTD.

o Percentage compliance with Level 2/3 audit schedule.

o Number of deviations/non-compliance with PTW discovered during worksite visits (in the quarter).

o Number of approved waivers, forces and safeguarding overrides in place.

o Safety Critical Element corrective maintenance compliance.

o Safety Critical Element preventive maintenance compliance.

o Number of overdue actions arising from Process Safety studies (HAZOP, OBRA, FERM, TI-HBV, PSBR, Incident investigations, LEVEL 1/2/3 AI-PSM audits, PSUA).

o Number of SCEs that failed to meet Performance Standard (per quarter).

11.2 Remedial Actions

Action items can be raised during compilation of a new HSE Case or review and update of an existing HSE Case. These areas for improvement in the systems or controls in place to manage Major Accident Hazards need to be addressed to ensure that operations continue to be maintained at ALARP.

All action items raised shall be reviewed and approved by the action party and the HSE Case Custodian prior to be entered into the HSE Case and the action tracking system (FIM) for close out. The HSE Case Administrator is responsible for ensuring that actions are closed out in a timely manner. The HSE Case Custodian has overall responsibility for ensuring all technical information within the action close out is correct and complete.

Target dates are dictated by the most reasonably practicable timescale within which the actions can be completed. Items in the remedial action plan (RAP) must be rectified in accordance with the timescales set out. Where an action is not to be taken because the cost and resources required to complete the action are not considered reasonably practicable in view of the benefits gained in risk reduction (ALARP evaluation), this is stated in the RAP.

Page 37: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 37 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Sample Score Assignments

Range Proposed Action

1-4 Do

6-9 Study

12 or greater Pass

Solution Matrix

Cost x Effort H Benefit

1 M Benefit

2 L Benefit

3

1 1 2 3

2 2 4 6

3 3 6 9

4 4 8 12

6 6 12 18

9 9 18 27

11.2.1 Qualitative Analysis of RAP Items

Risk reduction measures, and in particular those warranting the implementation of additional safeguards, shall be compared against a simplistic cost benefit matrix, as detailed in the ‘Cost, Benefit, Effort Multiplier’ in Table 11-1. This results in each of the potential risk reduction measures being categorised as:

o Do - Implement the option

o Study - Investigate the option further and implement if practicable

o Pass – Review category to confirm rating, if still assessed as Pass, record decision making process and do not invest further effort. Review in future for practicability.

The decision on whether to take the action shall be dependent on the resulting score. The multiplication results in a numerical score from 1 (most attractive) to 27 (least attractive).

The result of this iterative process shall be tabulated in the Remedial Action Plan within the HSE Case.

Table 11-1: Cost * Benefit * Effort Multiplier

Score 1 2 3

Cost (over 3 years)

<$50K $50-$500k >$500k

Benefit High Medium Low

Effort Quick fix Simple Fix Complex

Page 38: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 38 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

11.2.2 Interpreting the RAP

The remedial actions shall be included in a table as described below so that actions and targets appear in a consistent format.

Table 11-2: Example Remedial Action Plan

Item no.

Bowtie

ref. Action

Description

Strategy to Achieve the

Action

Measure / Indicator

C B E S Resource

Action Owner

Target Date

Comments / Status

1 H-01.005b

H-01.003a

H-01.003d

H-01.005d

H-04.002

H-10.016

Ensure compliance of speed limits inside NRPS. Speed limits within NRPS are currently not complied with.

Conduct drive to further communicate hazards of speeding within NRPS.

Develop and implement program to reinforce awareness of speed limits inside NRPS.

Implement PDO consequence management procedures for speeding.

Install speed limits signs (if not present).

Developed and implement program to reinforce awareness of speed limits inside NRPS.

PDO consequence management procedures for seeding implemented.

Speed limits installed (if required).

1 2 1 2 OSO OSS Q1’09 Closed

12/09/2009

PDO consequence matrix implemented. Drive for road safety (within the 4MW). Various campaigns and posters displaying consequences for breaking road rules (includes speeding).

Table 11-3: Interpreting the RAP

TITLE SCOPE/COMMENTS

Action No Sequential action number or FIM reference

Bow-Tie Ref Reference number of the Bow-Tie diagram where the action was raised

Action Description Description of action

C A qualitative assessment of the cost of implementation, derived using the Qualitative ALARP matrix (Section 0)

B A qualitative assessment of the HSE benefit from implementation, derived using the Qualitative ALARP matrix (Section 0)

E A qualitative assessment of the effort of implementation, derived using the Qualitative ALARP matrix (Section 0)

S A qualitative score derived using the Qualitative ALARP matrix (Section 0)

Action Resource The person responsible for carrying out the action

Action Owner The individual who is accountable for the completion of the action.

Date Action Was Logged

The date when the action was raised.

Target Date

Date at which the target will be reached and action completed. Timescales can be revised at the annual review stage of the action plan. If an action is no longer applicable and/or the target cannot be met, clear reasoning and steps to resolve must be given.

Comments/Risks Opportunities and risks if action is not undertaken.

Page 39: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 39 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

12 STATEMENT OF FITNESS

A Statement of Fitness is required by CP-117 [Ref. 6] and CP-122 “HSE Management Manual” and shall be included in the HSE Case.

A Statement of Fitness shall be developed for the Assets prior to teh pre start up audit for a project, before starting or commissioning a new Asset or a modification to an existing Asset.

Table 12-1 contains each element of the Statement of Fitness together with a guide to minimum requirements for demonstrate compliance with each element. Further guidance is provided in GU-648.

Table 12-1: Statement of Fitness

REQUIREMENT DEMONSTRATION

Process Safety Risks have been identified and documented and are managed to ALARP

HSE Risk studies including HAZOP, HEMP, FERM and Bow-Ties have been completed

ALARP demonstration has been made for the asset ALARP demonstration includes assessment of

SIMOPS and development of a MOPO Risk register and Risk Management Plan in place An Emergency Response Plan addressing each of the

identified Major Accident Hazards has been developed and is routinely tested

Critical PCAP deliverables No outstanding unapproved variations to DEM1,

DEM2 or actions from ALARP workshops

Employees or Contractors executing HSE Critical Activities are competent and fit to work

Operator competence assurance plans with HSE critical roles indentified in job descriptions

Personnel in HSE Critical roles are fit to work TA approval framework is in place (DCAF or similar)

Safety Critical Equipment meets its Technical Integrity Requirements

SCEs have been indentified and documented and included in the HSE Case

Performance Standards have been developed for all identified SCEs and approved by TAs

PCAP in place & followed TIV Report (assurance and verification of the SCEs)

finalized – all punch listed items closed out

Design and Construction of new Assets and modifications to existing Assets meet design and engineering requirements

All requirements of DEM 1 are met – a derogation register is maintained where DEPs cannot be satisfied

Critical documents and drawings are prepared and approved.

Well Handover Document completed

Process Safety Basic Requirements are met

All applicable PSBRs are met (DEM2)

Procedures are in place to operate Safety Critical Elements within its Operational Limits.

The Asset Register, Safety Critical Elements (SCEs), SCE related Performance Standards (PSs) acceptance criteria and Maintenance /

Operations procedures are in place Integrity operating envelopes and Alarm Catalogues

are completed Protection Device (Trip) settings in place, including

wells Operations Procedures in place Performance Standards and maintenance/ inspection

routines are current and uploaded to SAP

Page 40: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 40 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

REQUIREMENT DEMONSTRATION

Inspection Routines are identified and loaded into the maintenance management system (SAP).

Asset register is current and uploaded to SAP CMMS and SCE Management system is populated

and available Corrosion management plans are in place Well integrity management is in place FSR is in place

Modifications are complete and have been managed via the Management of Change process (PR-1001)

Management of Change (MOC) Process is documented

Staff in HSE Critical Positions are trained and a log maintained

MOC procedures are in place and used A change register is maintained

HSE audit and inspection programmes test compliance with the AI-PSM and HSE Case Standards

Level 1, 2 and 3 audits are scheduled and completed as per the HSE Business Plan

Audit findings are internally communicated to all levels in the organisation and a RAP developed

Page 41: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 41 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

13 MANAGEMENT OF CHANGE

All PDO Operations HSE Cases shall be reviewed on an annual basis (by year end) to ensure that all the following sections of the HSE Case remain true and valid to operations.

It is the responsibility of the Delivery Team Leader as the HSE Case Custodian to ensure these updates are completed, with support from the HSE Case administrator.

Bow-tie assessment

o Have any new severity 5 or high level risks been identified?

o Are all barriers still valid?

o Have any new barriers been identified?

o Are all barriers correctly categorised (Inherent Safety, SCE, Critical Activity)?

SCE listing

o Is the hardware barrier correctly identified as an SCE?

o Does the barrier have the correct SCE identifier attached?

o Are all the performance standards complete and up to date?

o Has all SCE been entered into the Asset Register?

o Has the task information embedded within the system been added to the HSE Critical Task information?

HSE Critical Tasks

o Has there been any Directorate/Departmental re-organisation?

o Are all the reference indicators and positions still current?

o Have all personnel signed off to say they are aware of their tasks (annual requirement) and that their assigned tasks are correct?

Remedial Actions

o Are any of the remedial actions overdue?

o Do any of these open action items compromise safe operations of the plant as signed in the Statement of Fitness?

Statement of Fitness

o Annual review of the Statement of Fitness to ensure that it is correct and accurately reflects the status of operations.

o The Statement of Fitness shall be signed off by the HSE Case Custodian after each review.

Other changes that may trigger a revision to the Operations HSE Case are listed below:

o As part of a Material Change to the Facility, operation or surrounding environment that may have a potential impact on the risk profile

o When it cannot be verified that the performance of safety critical elements (SCEs) meet the performance standards and/or when mitigation measures have been employed for extended periods to compensate for this shortfall

o Prior to any material changes to the organisational arrangements or personnel levels

Page 42: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 42 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

o Following a major incident involving the Facility or operation, or from lateral learning from other major incidents applicable to the Facility or operation

o Enhancements in knowledge or technology that change the basic assumptions on which the risk tolerability and ALARP demonstrations are based

o Updated HEMP study findings/results

o If there is a change to any of the signatory parties for the HSE Case, i.e. HSE Case Owner (Director), HSE Case Custodian (Delivery Team Leader) or HSE Case Administrator (Technical Safety Engineer)

All identified changes to the HSE Case, whether as a result of a periodic review or any of the other criteria listed above shall be assessed by the HSE Custodian, the Technical Safety Engineer and the HSE Case administrator (where this is not the TSE). Where relevant, the change should also be assessed by a discipline Technical Authority.

The roles and responsibilities for changes to the HSE Case and how these changes shall be recorded are further described in Appendix 11.

Page 43: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 43 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

14 CONCEPT SELECTION REPORT

The Concept Selection report forms the basis for the engineering activities in the Define phase. It clarifies the context in which the selection decision has been made, the data that have been used, the alternatives that have been studied, and the values and trade- offs between alternatives.

The purpose of the HSE content of the Concept Selection report is to:

1. Demonstrate that there has been a systematic application of HEMP during the Identify & Assess and Select Concept phases of the ORP [18] for each option being considered;

2. Confirm that the lowest risk option have been actively sought and selected; or alternatively, demonstrate that the cost/effort required to adopt the lowest risk concept is grossly disproportionate to the benefit (ALARP).

The HSE content of the Concept Selection report shall include:

o Reference to descriptions of the options being considered;

o A Hazards and Effects Register in accordance with EP Tool ‘Hazards and Effects Register’ [14] for each development option considered;

o Summary of the risk profiles associated with each option;

o A summary of the HEMP studies and key assumptions that have been made in the Hazard identification and risk assessments studies;

o Summaries of the philosophies and measures implemented during this phase to reduce residual risks to ALARP

o The justification that the selected option shall present the lowest overall risks, or alternatively, the ALARP demonstration showing that the cost/effort required to adopt the lowest risk concept is grossly disproportionate to the benefit;

o Any issues that may have an impact on the risk profile and so need to be addressed during the Define and Execute phases.

o Summary of rejected options with a description of reason for not pursuing the respective options.

o SIMOPS considerations for Sour projects

Relevant HEMP studies will depend on the nature, size and complexity of the project.

Large and complex projects will typically require a separate ALARP demonstration report to meet the above requirements.

Page 44: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 44 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

14.1 DCAF Deliverables for Identify, Assess and Select Phases

Individual components of the Concept Select Report are required deliverables under the Discipline Controls and Assurance Framework (DCAF). The Concept Select Report is itself a required DCAF deliverable.

The full list of HSE DCAF deliverables for the Select phase which should be produced and signed off individually by the relevant competent person/Technical Authority is given below. Ensure DCAF is consulted for latest version of specified deliverables and the Discipline Authority Manual (TAs):

o ALARP Demonstration Report

o HEMP Findings and Close out Report

o HAZID Report

o Concept Risk Assessment Report (i.e. the Qualitative Risk Assessment (QRA))

o Preliminary Hazard and Effects Register

o Greenhouse Gas (GHG) and Energy Efficiency Report

o Fire and Explosion Assessment

o Sustainable Development Strategy

o Regulatory Compliance and Permitting Plan

o HSSE and SP (Social Policy) Plan

o HSSE and SP Philosophy Document

The Concept Select Report shall contain summaries and/or references to all the above documents.

Page 45: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 45 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

15 DESIGN HSE CASE REQUIREMENTS

The Concept Select Report is the starting point for developing the Design HSE Case as it describes the Identify & Assess and Select phases in detail.

The Design HSE Case focuses on the chosen concept through the Define and Execute phases and is a DCAF Deliverable. It must be signed off by the project management prior to VAR4 (for FEED) and prior to the Pre-Start Up Audit for HSE Cases at the end of detailed design. The final design HSE Case is used as part of the ALARP demonstration in the Operations HSE Case.

15.1 Basic Requirements

The Design HSE Case:

o Is required to demonstrate that there has been a systematic application of HEMP during the Define and Execute phases and that the risk has been actively and systematically reduced to ALARP

o shall incorporate any design changes made during the Define and Execute phases that impact severity 5 or high level hazards and updating the risk tolerability and ALARP demonstrations

o shall incorporate a full list of safety critical elements (SCEs) with relevant performance standards (SCEs shall be identified in accordance with EP2009-9009)

o shall be signed off by the Project Manager

o shall be used to develop the Operations HSE Case prior to the pre-start up audit (PSUA) and subsequent operate phase

15.2 Format

The Design HSE Case shall be based on the following structure:

o Contents

o Part 1 Introduction

o Part 2 Concept Select Report Summary

o Part 3 Design Basis & Facilities Description

o Part 4 HEMP and major accident hazard (MAH) assessment (including ALARP Demonstration, safety critical elements (SCE) and Bow-ties)

o Part 5 Improvement (Remedial Action Plan)

15.2.1 Contents

This part shall contain:

o Document authorisation, identification of the HSE Case Owner, HSE Case Custodian, and HSE Case Administrator and their responsibilities

o Version control, showing the scope of each revision

o Signed off Statement of Fitness for the Design HSE Case by the HSE Case Owner (usually the Project Manager).

The Statement of Fitness is signed on the understanding that all remedial actions outlined in Part 5 of the Design HSE Case are, or will be, closed out effectively by their action target dates.

15.2.2 Part 1 Introduction

Part 1 shall:

Page 46: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 46 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

o Describe the scope of the Design HSE Case

o State the relationship with the HSE Management System (HSE-MS) Manual, CP-122

o Provide a summary of the change control process applied trhough the various stages of the project.

o Include a project summary

15.2.3 Part 2 CSR ALARP demonstration Summary

Part 2 shall contain a summary of the ALARP demonstration in the Concept Select Report which describes the process from the Identify & Assess phase to the Select phase and the selection of the chosen concept. This includes a list of supporting safety studies undertaken.

15.2.4 Part 3 Design Basis & Facility Description

Part 3 shall contain:

o A detailed description of the chosen concept, including site selection, plant layout, material selection, etc., including a project overview to show boundaries of the HSE Case

o A description of all of the safety critical elements and any other safety systems provided.

o A list of all DEPs, codes, standards and specifications used in the design

o A summary description and reference to, the Operations and HSSE Philosophies, including manning strategies and philosophies

o A list of identified HSE risks from the Project Risk Register.

o A list of the MAH associated with the facilities

o A Variance Register, or reference to it, providing justification why the engineering standards or specifications for the project deviate from applicable Design Engineering practices (DEP)

o A list of all safety critical elements (SCE) - defined as hardware barriers on the bow-ties (in accordance with EP2009-9009)

15.2.5 Part 4 Hazards & Effects Management Process

Part 4 shall contain:

o A Hazard and Effects Register containing details of all severity 5 and high risk hazards and an assessment of each hazard including the key assumptions (assessed using the PDO risk assessment matrix in Figure 2-1)

o Bow-Tie diagrams for severity 5 and high risk hazards, with barriers categorised as inherent safety, safety critical element (SCE), procedural control and remedial action/shortfall

o ALARP Demonstration, to state how the qualitative Bow-Tie assessment has been reviewed to ensure all applicable measures to reduce risk to tolerable and ALARP have been assessed and implemented

o Details of utilised HSE Risk Tolerability, Acceptance Criteria, and ALARP Framework

o Summaries of the philosophies and measures implemented during the Design phase to reduce residual risks to ALARP

o Summary of HEMP studies undertaken since the Concept Select Report, e.g. Hazard Identification studies (HAZID), Hazard and Operability studies (HAZOP), Instrumented Protective Function (IPF), plant layout study, Quantified Risk Assessment (QRA), Health Risk Assessment (HRA) Human Factors Engineering (HFE), consequence modelling, EER Assessment, etc.

Page 47: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 47 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

o A summary of practical risk reduction measures and their implementation unless demonstrated not reasonably practicable. These may be represented on ALARP Worksheets.

o Any issues that may have an impact on the risk profile and so need to be addressed during the Operate phase

See Sections 5, 6 and 10 for more details on undertaking HEMP, Bow- Ties and ALARP Demonstrations, respectively.

15.2.6 Part 5 Improvement (Action Plan)

Part 5 shall contain an action plan that is SMART (specific, measurable, agreed, realistic and timely) which lists all the actions to be carried forward to, and dealt with, in the Operations HSE Case.

All remedial action items arising from review and update of the HSE Case shall be accepted by the appropriate action parties and approved by the HSE Case Custodian (Delivery Team Leader).

Following approval, the action items shall then be entered into the PDO action tracking system to be formally tracked and closed out. At the time of issue of this Specification, the Fountain Incident Management (FIM) system is used for tracking actions from HSE Cases.

See Section 11 for more details on continuous improvement.

15.3 DCAF Deliverables for Define and Execute phases

Many of the individual components of the Design HSE Case are required deliverables under the Discipline Controls and Assurance Framework (DCAF) (note that the Design HSE Case is a required deliverable in itself).

Some deliverables may simply require an update of the DCAF deliverable from I/A and Select phase. The Design HSE Case shall contain summaries of, and/or references to, the following HSE DCAF deliverables for the Define and Execute phases:

o ALARP Demonstration Report (Final)

o HEMP Findings and Close out Report (updated)

o HAZID Report (updated)

o Concept Risk Assessment Report (i.e. the Qualitative Risk Assessment (QRA) updated)

o Hazard and Effects Register (Updated)

o Greenhouse Gas (GHG) and Energy Efficiency Report

o Facilities Layout Rational

o Living Quarters Specification and temporary refuge where applicable, e.g. Sour projects.

o Performance Standards for Safety Critical Elements

o Impact Assessment Implementation (including Baseline studies)

o Fire and Explosion Assessment (updated)

o Sustainable Development Plan (Updated)

o HSSE and SP (Social Policy) Plan

o HSSE and SP Philosophies Document (updated)

o Environmental Permit

o Health Hazards Exposure Monitoring

o Medical facilities Assessment

o Matrix of Permitted Operations (MOPO) – part of the Design HSE Case.

Page 48: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 48 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Consult DCAF for latest version of specified deliverables and the Discipline Authority Manual (TAs)

Page 49: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 49 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

16 OPERATIONS HSE CASE REQUIREMENTS

The Operations HSE Case focuses on the Operate phase of the project and covers safe and continuous operation of the facility. It ensures that all procedural (operational, maintenance and inspection) controls are in place to ensure that the facility remains within pre-set design limits and specifications (as per the Design HSE Case where relevant).

For new projects, the Design HSE Case will usually be the starting point for developing the Operations HSE Case.

For brownfield projects, the Design HSE Case serves as the starting point for updating the existing Operations HSE Case.

The Operations HSE Case shall be signed by HSE Case Owner, Custodian and Administrator prior to the Start-Up of the facility.

16.1 Basic Requirements

The Operations HSE Case:

o Is required to demonstrate how severity 5 or high level hazards are managed during operations to ensure that the risk is tolerable and ALARP

o Shall describe how the relevant management systems (asset integrity, Maintenance Integrity Execution, competence and permit to work, etc.) implement the requirements of the PDO HSE-MS and the AI-PSM systems, including management of medium hazards

o Shall be accepted and signed off by the relevant Director (in the Statement of Fitness)

16.2 Format

The Operations HSE Case shall be based on the following structure:

o Contents (including the Statement of Fitness)

o Part 1 Introduction

o Part 2 Facility Description

o Part 3 People, HSE critical tasks

o Part 4 HEMP and major accident hazard (MAH) assessment (including ALARP Demonstration, safety critical elements (SCE) and Bow-ties)

o Part 5 Improvement (Action Plan)

16.2.1 Contents

This part shall contain:

o Document authorisation, identification of the HSE Case Owner, HSE Case Custodian, and HSE Case Administrator and their responsibilities

o Version control, showing the scope of each revision

o Signed off Statement of Fitness of the Operations HSE Case by the HSE Case Owner (the relevant Director).

The Statement of Fitness is signed on the understanding that all remedial actions outlined in Part 5 are, or will be, closed out effectively by their action target dates.

Page 50: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 50 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

16.2.2 Part 1 Introduction

Part 1 shall:

o Describe the scope of the HSE Case

o State the relationship with the HSE Management System (HSE-MS) Manual, CP-122

o State the purpose of the Operations HSE Case in relation to different users and where relevant information can be found within the document

o Summarise the change control process to be applied to the HSE Case and the mandatory review and update requirements.

16.2.3 Part 2 Facility Description

Part 2 shall contain:

o A detailed description of the facility, including plant layout, material selection, safety system, process systems, utilities, etc., including a project overview to show boundaries of the HSE Case

o A description and reference to, the Operations and HSSE Philosophies, including manning strategies and philosophies

o A list of the MAHs associated with the facilitiesA list of all safety critical elements (SCE) – defined as hardware barriers on the bow-ties (in accordance with EP2009-9009)

o A list of major changes to the HSE Case since its inception

16.2.4 Part 3 People, HSE Critical Tasks

Part 3 shall contain:

o Normal operation facility manning levels and listing of key positions

o An organogram showing the organisational structure and highlighting all personnel within the Operations HSE Case who hold an HSE Critical Position, i.e. they have HSE critical tasks assigned to them

o Tables arranged by HSE Critical Position identifying for each HSE Critical Task:

Where the HSE Critical Task fits into the Bow-ties e.g., Facilities/ Equipment and Hazards/Barriers

A brief description of the HSE Critical Task and link to the specifications and procedures, documenting how the HSE Critical Task is implemented

The means by which the HSE Critical Task is assured e.g. PTW forms, FAIR Reports, etc.

o A summary of the HSE Competency assurance system and links for further information

16.2.5 Part 4 Hazard and Effects Management

Part 4 shall contain:

o A Hazards and Effects Register containing all hazards identified for the facility/operations are to be listed and assessed using the PDO risk assessment matrix (Figure 2-1). The severity 5 and high risk hazards contain references to the relevant Bow-Tie diagrams

o Bow-Tie diagrams for severity 5 and high risk hazards, with barriers categorised as inherent safety, safety critical element (SCE), procedural control and remedial action/shortfall

Page 51: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 51 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

o ALARP Demonstration, to state how the qualitative Bow-Tie assessment has been reviewed to ensure all applicable measures to reduce risks to tolerable and ALARP levels have been assessed and implemented – see Section 10.2.5.

o Summary of HEMP studies undertaken since the Design HSE Case, e.g. Hazard Identification studies (HAZID), Hazard and Operability studies (HAZOP), Instrumented Protective Function (IPF), plant layout study, Quantified Risk Assessment (QRA), SIMOPS QRA, Human Factors Engineering (HFE), consequence modelling, etc.

o A matrix of permitted operations (MOPO) to define the operating envelope and safe operating limits for the facility and provide guidance on action required in event of abnormal situations. Situations mapped shall cover:

Adverse weather conditions

Simultaneous operations (SIMOPs)

Safety critical element (SCE) and critical manpower unavailability

See Appendix 10 for details on MOPO requirements.

16.2.6 Part 5 Improvement (Action Plan)

Part 5 shall contain an action plan that is SMART (specific, measurable, agreed, realistic and timely) which lists all the actions raised during the development of the Operations HSE Case.

All action items shall be entered into the PDO action tracking system to be formally tracked and closed out once they have been fully approved by the HSE Case Custodian. At the time of issue of this Specification, Fountain Incident Management (FIM) is used for tracking actions from PDO HSE Cases.

Part 5 also contains a brief description of how the Operations HSE Case is continually improved through the use of annual HSE Plans, HSE Case key performance indicators (KPIs) and audit and review.

See Section 11 for more details on continuous improvement.

16.3 DCAF Deliverables for Execute and Operate Phases

Many of the individual components of the Operations HSE Case are required deliverables under the Discipline Controls and Assurance Framework (DCAF) (note that the Operations HSE Case is a required deliverable in itself).

The full list of HSE DCAF deliverables for the later Execute and Operate phases which should be produced and signed off individually by the relevant competent person/Technical Authority are:

o ALARP Demonstration (Bow-ties for qualitative ALARP demonstration)

o HEMP Findings and Close out Report (updated)

o HAZID/HAZOP Reports (updated)

o Concept Risk Assessment Report, i.e. the Qualitative Risk Assessment (QRA) updated

o Hazard and Effects Register (updated)

o Greenhouse Gas (GHG) and Energy Efficiency Plan

o Performance Standards for Safety Critical Elements

o Impact Assessment

o Fire and Explosion Assessment (updated)

o Sustainable Development Plan (Updated)

o HSSE and SP (Social Policy) Plan (updated)

o HSSE and SP Philosophies Document (updated)

Page 52: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 52 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

o Environmental Permit

o Health Hazards Exposure Monitoring Plan

o Health Risk Assessment report

o Medical facilities Assessment

o Job type Health Risk Assessment

o Emergency Response Plan

o Security Management Plan

Consulted DCAF for latest version of specified deliverables and the Discipline Authority Manual (TAs)The Operations HSE Case shallcontain summaries and/or references to all the above documents. The following DCAF documents will be incorporated into the Operations HSE Case, either within the main body or as an appendix.

o Statement of Fitness (within the Operation HSE Case)

o Matrix of Permitted Operations (MOPO) (within the Operations HSE Case)

o Asset Register (updated) (Appendix)

o Safety Critical Element Register (Appendix)

Page 53: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 53 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Appendix 1 Glossary of Definitions, Terms and Abbreviations

Acronym Definition

AI-PSM Asset Integrity - Process Safety Management

ALARP As low as reasonably practicable

CFDH Corporate Functional Discipline Head

CSR Concept Selection Report

DCAF Discipline Controls and Assurance Framework

DEP Design engineering practise

DG Decision Gate

FEED Front End Engineering and Design

FERM Fire and Explosion Risk Management study

FID Final investment decision

GHG Greenhouse gas

HAZID Hazard Identification

HAZOP Hazard and operability study

HBV Hardware Barrier Verification

HEMP Hazards and Effects Management Process

HFE Human Factors Engineering

HSE Health, Safety and Environmental

HSE-MS Health, Safety and Environmental Management System

HSSE Health, Safety, Security and Environmental

IADC International Association of Drilling Contractors

IPF Instrumented protective function

JOA Joint Operating Agreement

JVA Joint Venture Agreement

KPI Key performance indicator

MAH Major accident hazard - Any situation with the potential for major consequences (harm) to people, environment, asset and reputation if released (severity 5 or high risk hazard)

MIE Maintenance Integrity Execution

MOPO Matrix of permitted operations

ORP Opportunity Realisation Process

PEFS Process engineering flow schematics

PSBR Process safety basic requirements

PSUA Pre-start up audit

PTW Permit to Work

QRA Quantitative Risk Assessment

RAM Risk assessment matrix

Recovery measure Any measure put in place to manage consequences and assist recovery from a top event

Risk The likelihood of a Top Event combined with the severity of the Consequences (The risk is from the Hazard to people, environment, asset and reputation).

SCE Safety Critical Element

SIEP Shell International Exploration and Production

SMART Specific, measurable, agreed, realistic and time-constrained

Page 54: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 54 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Acronym Definition

SP Social policy

TA Technical Authority

Threat Any action or mechanism that could bring about the unplanned release of a hazard

Threat control Any measure put in place to prevent a Threat being successful

Tolerable risk Tolerable Risks are those that have been reduced to a level where they comply with the applicable laws and regulations, standards, strategic objectives and other agreed Tolerability Criteria.

Top event The first thing that happens when a hazard is released (also known as first consequence)

TR-HBV Total Reliability - Hardware Barrier Verification

TR-MIE Total Reliability - Maintenance integrity Execution

UKOOA UK Offshore Operators Association

VAR Value Assurance Review

Page 55: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 55 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Appendix 2 Related Business Control Documents and References

1. CP-122 - Health, Safety and Environment Management System – CoP, Version 4, 22/04/02

2. Shell Yellow Guide, Risk Assessment Matrix, Issue 3.0, March 2006

3. A Framework for Risk-related Decision Support, UKOOA, 1999 http://www.ukooa.co.uk/

4. GU-648 - Guide for Applying Process Safety in Projects, Rev 1.0, 15th December 2010

5. International Association of Drilling Contractors (IADC) Drilling Contractors, Health, Safety and Environment Case Guidelines for Land Drilling Contractors, Issue 1.0.1, 27 July 2009. Click Here for latest version of this document.

6. CP-117 - Project Engineering Code of Practice, Rev 4.0, 11 January 2011

7. SP-2061 - Functional Technical Directorates, Technical Authority System, Revision 2.0, Jun-10

8. Shell Group HSSE & SP Control Framework, Section 03, “Process Safety Manual”. http://sww.manuals.shell.com/HSSE/

9. “Guidelines for Risk Based Process Safety”. Center for Chemical Process Safety, 978-0-470-16569-0, 2007. http://www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=1794

10. Safety Critical Element Management Manual, Second Edition, EP2009-9009, Feb 2009. Click Here for all Operational Excellence documentation on Shell Wiki.

Page 56: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 56 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Appendix 3 Hazard Inventory Checklist

Ref. No Hazard Name Possible Source

H-01 Hydrocarbons (Unrefined)

H-01.001 Liquid Natural Gases (LNGs) Cryogenic plants, tankers.

H-01.002 Condensate Storage tanks, gas wells, gas pipelines, gas separation vessels.

H-01.003 Hydrocarbon gas Reservoirs, wells, oil/gas separators, gas processing plants, compressors, gas pipelines.

H-01.004 Coal Mining activities, boiler fuel source. H-01.005 Crude (oil) Reservoirs, wells, pipelines, pressure vessels, storage tanks. H-01.006 Hydrocarbons from Shale Mining activities, extracted oil shale deposits. H-01.007 Oil Sands Tar sands, bituminous sands (clay, sand, water, bitumen). H-01.008 Other Hydrocarbon source Sub sea gas hydrates.

H-02 Hydrocarbons (Refined)

H-02.001 Liquefied Petroleum Gases (e.g. Propane)

Process fractionating equipment, storage tanks, transport trucks and rail cars.

H-02.002 Gasoline's (Napthas) Vehicle fuelling stations, vehicle maintenance.

H-02.003 Kerosenes / Jet Fuels Aircraft, portable stoves, portable lanterns, heating systems, storage tanks.

H-02.004 Gas Oils (Diesel Fuels / Heating Oils) Vehicle fuelling stations, vehicle maintenance.

H-02.005 Heavy Fuel Oils Shipping fuel, bunkers, heating systems, storage tanks.

H-02.006 Lubricating Oil Base Stocks Engines and rotating equipment, hydraulic pistons, hydraulic reservoirs and pumps.

H-02.007 Aromatic Extracts Heavy fuels, petroleum pitches and resins, rubber and plastics, naphtha.

H-02.008 Waxes and Related Products Filter separators, well tubulars, pipelines.

H-02.009 Bitumen's and Bitumen Derivatives Road construction.

H-02.010 Petroleum Coke Furnaces, boilers

H-03 Explosives

H-03.001 Detonators Seismic operations, pipeline construction.

H-03.002 Commercial Explosive Material Seismic operations, blasting, construction, firework displays.

H-03.003 Shaped Charges Well completion activities, demolition.

H-03.004 Military Ordnance Spent munitions, UXB, land mines, depleted uranium rounds, improvised explosive devices.

H-04 Pressure

H-04.001 Gas under Pressure Welding bottles, laboratory gas, pipe-works, air lines, air brakes, air guns, diving operations (air tanks).

H-04.002 Liquid under Pressure Water disposal, water floods and injection operations, strength testing of pipe works, well fracturing and treatments.

H-04.003 Vacuum Tanks, accumulators.

H-04.004 Hyperbaric Operations Diving operations.

H-04.005 Hypobaric Operations Working at high altitude (generally >2000m).

H-05 Differences in Height

Page 57: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 57 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Ref. No Hazard Name Possible Source

H-05.001 Personnel at Height >2m Working on scaffolding, suspended access, ladders, platforms, excavations, towers, stacks, roofing, working overboard, working on monkey board.

H-05.002 Personnel at Height 0m<2m Slippery/uneven surfaces, climbing/descending stairs, obstructions, loose grating.

H-05.003 Objects Overhead Objects falling while being lifted/handled or working at a height over people, equipment or process systems, elevated work platforms, slung loads, hoists.

H-05.004 Ground / Slope Stability Pipeline trenches, excavations, repairing buried facilities.

H-06 Objects under Induced Stress

H-06.001 Objects under Tension Guy and support cables, anchor chains, tow & barge tie-off ropes, slings.

H-06.002 Objects under Compression Spring-loaded devices such as relief valves and actuators and hydraulically operated devices.

H-07 Dynamic Situations

H-07.001 Land Transport (Driving) Driving to and from locations and camps, transporting materials, supplies and products, seismic field operations, moving drilling rigs and work over rigs.

H-07.002 Water Transport (Boating)

Boat transport to and from locations and camps, transporting materials, supplies and products, marine seismic operations, barges moving drilling rigs and work over rigs, boat collision.

H-07.003 Air Transport (Flying) Helicopter and fixed wing travel to and from locations and camps, transporting materials, supplies and products.

H-07.004 Equipment with Moving or Rotating Parts

Engines, motors, compressors, drill stems, rotary table, thrusters on DP ships.

H-07.005 Using Hand Tools Galley, seismic line clearing, grubbing operations.

H-08 Natural Environment

H-08.001 Weather Conditions Winds, temperature extremes, rain, storms.

H-08.002 Marine / Water Conditions Physical impact of waves, tides or other sea states, river currents, floods, tsunami.

H-08.003 Tectonic / Land Effects Earthquakes, landslips or other earth movement activity.

H-08.004 Fire Natural wild fire potential, forests, grasslands.

H-08.005 Lightning Working in open spaces, close to power lines, close to trees, near seismic spreads.

H-09 Electricity

H-9.001 Voltage > 50v

Power cables, temporary electrical lines, electric motors, electric switchgear, power generation, welding machines, transformers, overhead power lines, office equipment, and domestic equipment. Consider AC, DC, current, single and three phase.

H-9.002 Electrostatic Energy Contact between storage vessels and piping, product transfer hoses, wiping rags, unearthed equipment, high velocity gas discharges, offimce carpets, door handles.

H-10 Physical

H-10.001 X rays <10nm (ionising) Medical scanners, inspection.

Page 58: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 58 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Ref. No Hazard Name Possible Source

H-10.002 Ultra Violet Light (UV) - Wavelength 100 - 400 nm (Non Ionising)

Sunlight, arc welding.

H-10.003 Visible Light - Wavelength 400 - 780 nm (Non Ionising)

Arc welding, sunshine, flood lighting, night lights.

H-10.004 Infra Red (IR) - Wavelength 400 - 1400 nm (Non Ionising) Flares, laser pointers.

H-10.005 Microwaves (750 - 2500nm) Domestic, industrial catering equipment.

H-10.006 Lasers - Wavelength: 100 - 1000 nm (Non Ionising) Instrumentation, surveying, metal cutting.

H-10.007 Radio Wave / Microwave Radiation - Wavelength: 1 mm - 30 km (Non ionising)

Telecoms, mobile phones.

H-10.008 Extremely Low Frequency Magnetic Radiation (ELF) - Wavelength: > 30 km

Transformers, power cables.

H-10.009 Alpha, Beta Particles Well logging, radiography, densitometers, interface instruments.

H-10.010 Gamma Rays Well logging, radiography.

H-10.011 Neutron Radiation Nuclear reactors, well logging.

H-10.012 Naturally Occurring Ionising Radiation (NORM)

Scales in tubulars, vessels and process plant fluids (especially in C3 reflux streams), cosmic radiation (international air travel), radon gas (granites), mining activity oil/gas/coal/mineral sands, phosphates, recycled scrap steel.

H-10.013 Noise Both impact (acute) and background (chronic), releases from relief valves, pressure control valves, engine rooms, compressor rooms, drilling brake, air tools.

H-10.014 Vibration Hand / whole body vibration, hand power tools, maintenance and construction worker, boating, motion sickness.

H-10.015 Cold Temperature Differentials Process piping, storage vessels, tankers, vapour lines, crogenic plants, cold stores / walk in refrigerators, arctic climates, seas < 10oC.

H-10.016 Hot Temperature Differentials

Near flare, on the monkey board, in open exposed areas, summer heat, process piping, steam outlets, exhausts, confined closed spaces, glycol regeneration, steam generators, hot oil heating systems, regeneration gases.

H-10.017 Humidity Climates where sweat evaporation rates are too low to cool the human body, personal protective clothing, lack of moisture (cold dry climates).

H-10.018 Cellulosic Materials Packing materials, wood planks, paper rubbish

H-10.019 Pyrophoric Materials Metal scale from vessels in sour service, scale on filters in sour service, iron sponge sweetening units

H-11 Toxic Atmosphere/Medium

H-11.001 Oxygen concentration in air (in balance)

Breach of oxygen / nitrogen balance. Confined spaces, tanks, nitrogen deluge systems, Oxygen depleting deluge systems

Page 59: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 59 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Ref. No Hazard Name Possible Source

H-11.002 Toxics in air (CO, H2S, heavy metals etc)

Welding/burning operations, blanking systems that are toxic, exhaust pipes, faulty heating devices, poorly vented workshops, condensate vapours, sour gas gantries, fuelling points, aluminium oxides.

H-11.003 Particulates in Air / Dusts

Smoke, soot, diesel fumes, cutting brickwork and concrete, driving on unpaved roads, carpenter shops, grit blasting, sand blasting, catalyst (dumping, screening, removal, drumming), mineral fibres, powdered mud additives, sulphure recovery plants.

H-11.004 Water Risk of drowning in rivers, creeks, swimming pools.

H-12 Chemical Substances Note: If required a detailed Level 3 Hazard listing is provided in EP Guideline ‘Explanatory Text to the Hazard Inventory’ [2].

H-12.010 Additives

H-12.011 Asbestos all Forms CAS# 1332-21-4, CAS# 12001-28-4.

H-12.012 Brines Hydrocarbon production, well kill fluid, packer fluids.

H-12.013 Butanes Bottled gases.

H-12.014 Degreasers Maintenance shops (halogenated & non-halogenated).

H-12.015 Glycols MEG, TEG used for dehydration of natural gases. Used as antifreeze.

H-12.016 Halons Fire fighting equipment, refrigerants

H-12.017 Nickel Catalysts CAS# 7440-02-0.

H-12.018 Paints & Thinners Two-pack paint systems (isocyanates).

H-12.019 Polychlorinated Biphenyls (PCBs)

Transformer oils (NB, approx. 50 congeners each with a separate CAS number.).

H-12.104 Ammonia CAS# 7664-41-7.

H-12.105 Ammonium Bifluoride CAS# 1341-49-7.

H-12.108 Benzene CAS# 71-43-2.

H-12.115 Calcium Bromide CAS# 7789-41-5.

H-12.116 Calcium Chloride CAS# 10043-53-4.

H-12.119 Chlorine CAS# 7782-50-5.

H-12.130 Diisopropanolamine LFG90 Hand cleaning gel. CAS# 110-97-4.

H-12.132 Ethane CAS# 74-84-0.

H-12.133 Ethanol CAS# 64-17-5.

H-12.136 Ethylene CAS# 74-85-1.

H-12.141 Gluteraldehyde Cleaning agent. CAS# 111-30-8

H-12.142 Hexane CAS# 110-54-3 (Chem-SBP containing n-hexane >5%).

H-12.143 Hydrogen CAS# 1333-74-0.

H-12.144 Hydrogen Chloride (Hydrochloric Acid) CAS# 7647-01-0.

H-12.145 Hydrogen Fluoride (Hydroflouric Acid) CAS# 7664-39-3.

H-12.146 Hydrogen Sulphide CAS# 7783-06-4.

H-12.153 Mercury CAS# 7439-97-6.

Page 60: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 60 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Ref. No Hazard Name Possible Source

H-12.154 Methanol CAS# 67-56-1.

H-12.163 Nitric Acid CAS# 7697-37-2.

H-12.170 Phosphoric Acid CAS# 7664-38-2.

H-12-176 Propane CAS# 74-98-6.

H-12.180 Sodium Hydroxide CAS# 1310-73-2.

H-12.182 Sodium Hypochlorite Disinfecting agent (e.g. bleach), CAS# 7681-52-9.

H-12.183 Sulphur 7704-34-9.

H-12.184 Sulphuric acid CAS# 7664-93-9.

H-13 Biological Note: If required a detailed Level 3 Hazard listing is provided in EP Guideline ‘Explanatory Text to the Hazard Inventory’ [2].

H-13.001 Plants Ivy, deadly nightshade, fungi.

H-13.002 Animals & Reptiles Dogs, cats, wild animals, snakes, rats.

H-13.003 Insects, Spiders, Scorpions, Bees

Arthropods insects, spiders, scorpions, stinging bees.

H-13.004 Bacteria Contaminated food, water. Includes WHO A15-A19; A20-28; A30-49; A50-A64; A65-69; A70-74.

H-13.005 Protozoa, Mycoses and other Parasitical Diseases (includes 'other')

Includes WHO Classification A00 to A09; A75-79; B35-49; B50-64; B65-83; B85-89; B90-94; B99.

H-13.006 Virus Contaminated blood, blood products and other body fluids.

H-13.007 Fungal Growths Metal working fluids containing fungal growth.

H-13.008 Lifestyle Factors Choices relating to smoking, alcohol / drug use, diet, physical exercise, sexual behaviours.

H-14 Ergonomic

H-14.001 Workspace Awkward, difficult or uncomfortable working conditions, inadequate lighting, noise, etc.

H-14.002 Physically Demanding Task

Lack of knowledge or unrealistic expectations about the physical abilities of the workforce (e.g. differences between males and females in reach, strength, endurance), medical unfitness.

H-14.003 Human Machine Interface

Inability of the workforce to detect and comprehend the feedback (visual and auditory) provided about machine/equipment identification and status during normal and abnormal situations, thus leading to human error.

H-15 Psychological

H-15.001 Organisation, Systems and Culture

Poor leadership, lack of clarity about organisational objectives and structure, bureaucratic procedures; formality of hierarchy, inability to talk openly to manager; lack of support by colleagues, complex, new or unreliable systems e.g. IT, inadequate tools to perform job, information overload or under-communication, career stagnation and uncertainty, under-promotion / over-promotion, limited opportunities for learning or development.

Page 61: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 61 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Ref. No Hazard Name Possible Source

H-15.002 Job Demands

Work overload/under load (boredom); lack of control over work content or process; frequent deadlines; unclear or conflicting roles and responsibilities; poor work/life balance; Lack of training; travel requirements; badly designed shift patterns and rosters; long or unpredictable hours.

H-15.003 Experience of Change

Frequent changes to organization and/or job; tele-working, virtual teams; outsourcing and globalisation; introduction of new systems; poor management and communication; not understanding changing priorities; job insecurity; expatriation and repatriation.

H-15.004 Reward and Recognition

Poorly understood reward policies; perceived inequity; mismatch of individual expectations; lack of transparency/communication in assessment and reward process; poorly managed performance management process; poor status, pay and conditions.

H-15.005 Diversity & Inclusiveness

Discrimination, bullying and harassment; lack of inclusiveness and isolation; problems working with people from different cultures and backgrounds; interpersonal issues with manager and/or colleagues.

H-15.006 Litigation & Liability

Concern about personal liability resulting from actions; difficulties in delivering due to legal constraints; fear of prosecution; unpredictability of legal process; length of legal processes involving the individual e.g. as witness in a tribunal or court case.

H-15.007 Critical Incidents at Work Witnessing or being involved in a serious incident; natural disasters and terrorist attacks; travel fears and incidents.

H-15.008 Personal Issues External to Work

Physical and mental health issues; substance abuse and recovery; conflicting demands of work and home; domestic issues involving family; lack of social support; care of dependants; financial issues; housing and travel.

H-16 Security

H-16.001 Armed Conflict War, Armed Insurrection, Insurgent Groups against legal governments.

H-16.002 Terrorism Unprovoked violent attacks against general public, authorities.

H-16.003 Violent Crime Assault, violence against an individual.

H-16.004 Organised Crime Large scale criminal manipulation of Company operations, extortion, kidnap, piracy, Mafia, white collar, cyber hacker.

H-16.005 Militant Activism Pressure Groups, Single Issue Zealots, violet or threatening protests against Company, people, assets.

H-16.006 Civil Unrest Breakdown of social order, riots, lawlessness, absence of government authority.

H-16.007 Theft of Sensitive Information

Deliberate, targeted espionage and loss of commercially sensitive information, documents, plans, financials, telephone conversations, email loss, senior management itineries.

H-17 Environmental Aspects1 Note: If required an example of a more detailed Level 3 Hazard listing is provided in EP Guideline ‘Explanatory Text to the Hazard Inventory’ [2].

Page 62: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 62 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Ref. No Hazard Name Possible Source

H-17.001 Resource Use Consumption of materials, water, land, raw materials, air, energy, steam, process chemicals, Habitat removal, ecological degradation.

H-17.002 Discharge to Water

Produced Water. Regular drainage of liquids including sewage systems (grey/black water), water outfalls, & overflows to surface waters; seepage of liquids to groundwater.

H-17.003 Discharge to Land Waste disposal including domestic, industrial (inc. Pig trash, oil based tank sludges, medical & hazardous chemicals, used engine oils etc).

H-17.004 Emissions to Air Discharge of chemicals to air (deluge systems), venting, fugitive emissions, flare stacks, exhaust, dusts, particulates, smoke (normal and abnormal operations).

H-18 Social Performance

H-18.001 Procurement Philosophy Supply chain management, local purchasing, employment and labour.

H-18.002 Revenue Streams Revenue transparency and revenue streams, equity, socio-economic changes, corruption.

H-18.003 Land Take Land right entitlement, resettlement, loss/change of livelihood.

H-18.004 Temporary Project (e.g. construction)

Change in make up of population, boom-bust, social services, large workforces, disturbance impacts, archaeological sites or artefacts, cultural and sacred sites.

H-18.005 (Lack of) Engagement

Changes in power relations, community decision-making structures and skills, high expectations, vulnerable groups, conflict, human rights, perceived health and environmental impacts.

H-18.006 Conflicting Use for Resources High prices paid for local commodities, use of local labour and talent, use of local accommodation, transportation, and infrastructure.

H-99 Emergency response

H-99.000 Emergency Response Response to any emergency

Page 63: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 63 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Appendix 4 Example Hazard and Effects Register

Hazard ID

Hazard Activity Threats Controls Top

Event Consequence

Risk Ranking Recovery Measures

P E A R

H-01.01 Crude oil under pressure

Loading Crude at the SBM

Integrity Failure: hose, flange, piping.

Programme of equipment inspections: Floating Hose – daily Underwater hose- 6 mths SBM topsides- daily Submarine pipeline- 5 yearly Pipeline pigging -5 yearly

Corrosion protection: Impressed current Anodes

Replacement: Change-out equipment on a time & condition basis

Oil Spill Localised environmental impact

- C3 C2 C2 1. Oil spill contingency

2. Pollution control capability

3. Radio controlled ESD from vessel

4. 3 yearly MOSAG oil spill audit

Anchor Handling

Ship’s Anchors lashed & checked

Restricted area defined

Pipeline route area under observation

Damaged Pipeline

Localised environmental impact

- C3 B3 C2 1. SBM/ PL redundancy

2. OSR capability

3. Continuous diving capability

Vessel collision with SBM

1. Engine use procedure

2. Foc’sle watchkeeper

3. Tug assistance available

Damaged SBM

Localised environmental impact

- C3 B3 C2 1. Spare SBM

2. SBM Redundancy

3. Critical SBM spares available

Page 64: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 64 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Appendix 5 Safety Critical Elements Categories

Those SCEs in the SCE Management Manual relevant only to offshore facilities have been omitted.

SCE CODE

SCE DESCRIPTION SCE

CODE SCE DESCRIPTION

SI001 Foundation Structures PS004 Firewater Pumps

SI002 Topsides & Surface Structures PS005 Firewater Ringmain

SI003 Mechanical Handling Equipment

PS006 Passive Fire Protection

SI005 Road Vehicles PS007 Gaseous Fire Protection Systems

SI008 Drilling Systems PS008 Fine Water Spray Systems

PC001 Pressure Vessels PS009 Sprinkler Systems

PC002 Heat Exchangers PS010 Power Management Systems

PC003 Rotating Equipment PS011 Fixed Foam Systems

PC004 Onshore Tanks PS012 Sand Filters

PC005 Piping Systems PS013 Chemical Injection Systems

PC006 Pipelines SD001 ESD Systems

PC007 Relief Systems SD002 Depressurisation Systems

PC008 Well Containment SD003 HIPPS Systems

PC009 Fired Heaters SD004 Operational Well Isolation

IC001 Hazardous Area Ventilation SD005 Pipeline Isolation Valves

IC002 Non-Hazardous Area Ventilation

SD006 Process ESDVs

IC003 Certified Electrical Equipment SD008 Drilling Well Control

IC005 Earth Bonding SD009 Utility Air

IC006 Fuel Gas Purge Systems ER001 Temporary Refuge/Muster Areas

IC007 Inert Gas Blanket Systems ER002 Escape & Evacuation Routes

IC008 Miscellaneous Ignition Control Components

ER003 Emergency/ Escape Lighting

IC009 Flare Tip Ignition Systems ER004 Communications Systems

DS001 Fire & Gas Detection Systems ER005 Uninterruptible Power Supply

DS002 Security Systems ER007 Emergency Power

DS003 Water in Condensate (gas dew point) Measurement

ER010 Drain Systems

PS001 Deluge Systems LS001 Personal Survival Equipment (PSE) Drain Systems

PS002 Fire and Explosion Protection -

Page 65: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 65 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Appendix 6 Example Safety Critical Elements Register

SCE GROUP SAFETY CRITICAL

ELEMENT H-0

1.00

3a

Hyd

roca

rbon

Gas

- o

n pl

ot

H-0

1.00

3b

Hyd

roca

rbon

Gas

- o

ff pl

ot

H-0

1.00

3c

Hyd

roca

rbon

G

as

-un

cont

rolle

d fla

ring/

vent

ing

H-0

1.00

3d

Hyd

roca

rbon

G

as

- F

ired

Hea

ter

H-0

1.00

5a

Oil

Pro

duce

rs

(Pro

duct

ion

Pha

se)

H-0

1.00

5b

Cru

de O

il U

nder

Pre

ssur

e -

onpl

ot

H-0

1.00

5c

Cru

de O

il U

nder

Pre

ssur

e -

off

plot

H-0

1.00

5d

Cru

de

Oil

at

Am

bien

tC

ondi

tions

-

FW

KO

, C

WT

&

Sto

rage

Tan

ks

H-0

4.00

2

Wat

er U

nder

Pre

ssur

e

H-1

0.01

6

Hig

h P

ress

ure

Ste

am -

Ste

amG

ener

atio

n &

Ste

am In

ject

ion

H-9

9.00

1

MA

H

Em

erge

ncy

Pre

pare

dnes

s M

easu

res

Process Containment

PC001 Pressure Vessels - - - - - -

PC002 Heat Exchangers - - - - - - - -

PC003 Rotating Equipment

- - - - - - -

PC004 Tanks - - - - - - - - - -

PC005 Piping Systems - - - - - - -

PC006 Pipelines - - - - - - - -

PC007 Relief System - - - - -

PC008 Well Containment - - - - - - - - - -

Page 66: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 66 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Appendix 7 Example Design Performance Standard

BARRIER REFERENCE PROCESS CONTAINMENT Assigned TA Mechanical Static

SCE GROUP PC001 Pressure Vessels Review #

SCE GOAL To maintain integrity of the pressure envelope Date

Function No.

Functional Criteria

Performance criteria Assurance Verification

1

To maintain the pressure envelope for conditions within design basis

1.1 Pressure Vessel External Inspection

There shall be no unacceptable flaws in the Pressure Vessel as defined within the Inspection Management Process. * There shall be no unacceptable cracks in the vessel or supports. * There shall be no unacceptable corrosion in the vessel, flanges, bolting and supports * There shall be no unacceptable visible damage (gouges, dents, deformations, arc strikes) to vessel or supports.

These should be tasks/activities in a scheduled assurance event specified in a Company process/procedure.**

Approved Flare Relief and blowdown Study.

Approved/checked calculations for relief devices.

Approved specification and data sheets.

HAZOP review.

PCAP/DCAF Driven

TIVP/AIPSM Driven

OE/Flawless Driven

Review flare relief and blowdown study and 10% sample review of relief device calculations, specifications, vendor data sheets and supplier quality field inspection reports to check that performance criteria has been achieved.

1.2 Pressure Vessel Internal Inspection There shall be no unacceptable internal flaws in the Pressure Vessel as defined within the Inspection Management Process. * There shall be no unacceptable cracks in the vessel. * There shall be no unacceptable corrosion inside the vessel. * There shall be no unacceptable visible damage (gouges, dents, deformations, arc strikes) to vessel.

These should be tasks/activities in a scheduled assurance event specified in a Company process/procedure.**

PCAP/DCAF Driven

TIVP/AIPSM Driven

OE/Flawless Driven

Page 67: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 67 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

1.3 Key Documents The latest piping and instrument drawing(s) on which the pressure vessel appears shall accurately represent the vessel configuration and design conditions.

These should be tasks/activities in a scheduled assurance event specified in a Company process/procedure.**

PCAP/DCAF Driven

TIVP/AIPSM Driven

OE/Flawless Driven

1.4 Wall Thickness There shall be no Pressure Vessel with a wall thickness less than its design.

These should be tasks/activities in a scheduled assurance event specified in a Company process/procedure.**

PCAP/DCAF Driven

TIVP/AIPSM Driven

OE/Flawless Driven

1.5 Attachments No bolting is missing or loose. No valves or instruments are loose or damaged.

These should be tasks/activities in a scheduled assurance event specified in a Company process/procedure.**

PCAP/DCAF Driven

TIVP/AIPSM Driven

OE/Flawless Driven

2

To prevent a release of hazardous materials

2.1 Loss of containment There shall be no unacceptable leaks, weeps or seeps from the main body of the vessel nozzles, or mechanical connectors onto the vessel.

These should be tasks/activities in a scheduled assurance event specified in a Company process/procedure.**

PCAP/DCAF Driven

TIVP/AIPSM Driven

OE/Flawless Driven

RELIABILITY / AVAILABILITY

Function No.

System /Sub System Performance criteria Basis and Assurance Verification

Page 68: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 68 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

These should be tasks/activities in a scheduled assurance event specified in a Company process/procedure.**

PCAP/DCAF Driven

TIVP/AIPSM Driven

OE/Flawless Driven

SURVIVABILITY

Function No.

Hazardous Event Performance criteria Basis and Assurance Verification

These should be tasks/activities in a scheduled assurance event specified in a Company process/procedure.**

PCAP/DCAF Driven

TIVP/AIPSM Driven

OE/Flawless Driven

Page 69: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 69 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Appendix 8 Example Operations Performance Standard (EP 2009-9009, Ref. 10)

Page 70: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 70 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Appendix 9 Example of Implementation Table

The table below provides guidance on interpreting the HSE Critical Task implementation tables. This framework has been developed to set out the HSE Critical Task implementation tables in a consistent and user-friendly format.

Table 16-1: Implementation Table Guidance

TITLE DESCRIPTION

Task ref. HSE Critical Task reference number as developed in BowTieXP software in accordance with PDO activity model:

Project Engineering (e.g. 1.01) Technical Integrity Management (e.g. 2.01) Occupational Health (e.g. 3.01) Operate Surface Assets (e.g. 4.01) Communication (e.g. 5.01) Organisation (e.g. 6.01) Competence Assurance (e.g. 7.01)

Bow-Ties Bow-Tie diagram/s on which activity appears e.g. H-01.001.

Threats/Consequences Threat or consequence line/s on which HSE Critical Task appears e.g. internal corrosion, ignited release

HSE Critical Activities HSE Critical Activity (yellow barriers) for which HSE Critical Task is carried out to ensure barrier is in place and functional.

Task Description Brief description of HSE Critical Task

Documentation Supporting documentation for HSE Critical Task

Verification Document/audit control to provide assurance HSE Critical Task has been carried out.

Page 71: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 71 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Table 16-2: Example Implementation Table

3.1.1. South Operations Manager (OSO)

Task Ref.

Bow-Ties Threats/

Consequences HSE Critical Activities (Bow-

Tie Barriers) Task Description Documentation Verification

4.29 H-01.003a H-01.003b H-01.003c H-01.003d H-01.005a H-01.005b H-01.005c H-01.005d H-04.002 H-10.016

Human error Consequence management (disciplinary procedures) for non-compliance

Implement company consequence management procedure for non compliance

• Plant Operations Manual

• PR-1029 Competence Assurance and Assessment

Disciplinary reports

4.49 H-01.003a H-01.003b H-01.003c H-01.005a H-01.005b H-01.005c H-01.005d H-10.016

Sabotage/ 3rd party interference

Asset Security Plan ROP presence

Ensure asset security plan appropriate for location risks is established and implemented. This should include dialogue and interface with the ROP.

• CP-126 Personnel and Asset Security

• PL-10 Security & Emergency Response Policy

Asset Security Plan

6.03 H-01.003a H-01.003b H-01.003c H-01.003d H-01.005b H-01.005c H-01.005d H-10.016

Lack of manpower/ resources

Man Power Model/ERROS - Estimated Resources Required on Site

Ensure the Manpower model is implemented for Nimr operations

• GU-4884 Planning andScheduling Guidelines

Manpower report

Page 72: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 72 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Appendix 10 MOPO

The team to develop or review the MOPO shall consist of operations, maintenance, HSE and management personnel who are familiar with the operation of, and the activities required, at the facility/asset.

The team shall be lead by an experienced facilitator and shall:

Identify Threats and Escalation Factors in the Bow-ties that could compromise safe operating limits.

Identify other operations and activities that could compromise safe operating limits. Develop the MOPO under the appropriate headings of SIMOPs, External Influences and

Inactive SCE Identify the ‘stops’ and ‘proceed with cautions’ using the red/amber traffic light system. Provide supporting guidance notes for the ‘proceed with cautions’ that will assist Supervisors

etc if/when the situation arises. Collectively review the matrices and ensure they reflect current practise and give clear

guidance for action to be taken under the specific circumstances.

A number of assumptions are used in the template MOPO:

The SIMOPs MOPO shall assume that two or more major activities, e.g. production, drilling, are simultaneously being performed in the same location/area.

The Impaired SCE MOPO shall assume that the operation is in the vicinity of, or within the area affected by, the impaired SCE.

The Impaired SCE MOPO shall define the minimum level failure mode assessed as having an impact on one or more of the high level activities/operations. Failure modes below this level shall be subject to risk assessment and remedial action in accordance with EP2009-9009.

When SCEs are in test mode, alternative controls shall be put in place to ensure that their functionality is provided. Testing of these systems is not generally considered ‘impairment’ for purposes of this MOPO.

In case multiple barriers are unavailable/impaired, the combined effect of the simultaneous failure on the activities shall be subject to risk assessment.

Additional controls required as indicated in the MOPOs (coloured amber) shall be listed. Wok shall only be carried out under the formal control of the Permit to Work (PTW) system, including component elements such as plant isolation certificates, vessel entry certificates, hot work permits, etc. All applicable procedures and work instructions relating to the work to be undertaken shall be complied with.

In certain cases, the specific operation is not directly impacted by the barrier that is impaired, but consideration shall be given to proceeding with non-essential work that could increase the risk.

Where necessary, the requirement for undertaking risk assessment shall be noted. Measures shall be taken to maintains risks at ALARP and the effectiveness of the measures shall be verified. All actions involving bypassing the safeguarding systems shall be authorised by the Production Delivery Team Leader who shallprepare individual procedures for all tasks not covered by existing procedures and consult relevant discipline technical authority.

Examples of the three MOPOs (Adverse Weather, SIMOPs, and SCE Impairment) follow. These shall be used as guidance for construction of a new MOPO or for review of an existing MOPO. The notes within the MOPO are intended to support rather than supersede the specific risk assessments required, particularly for SCE Impairment where FSR and CMPT processes shall be applied. For a MOPO to be effective it must provide clear concise information to the Operator of immediate action to be taken under the specified conditions, e.g. if working at height is ongoing and wind speed increases, he needs to be able to quickly see when to stop the activity in question.

Page 73: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 73 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

MOPO – NOTES TO ACCOMPANY THE EXAMPLE MOPOs

NO. REQUIREMENT

1 Operation specific. Subject to well engineering procedures; refer to WECO HSE case.

2 Loading and unloading pigs not permitted in adverse weather conditions.

3 Subject to task-based risk assessment.

4 Subject to appropriate risk assessment and PDO Journey Management Procedures.

5 Continued work subject to heat stress evaluation. Schedule work during cooler part of day. Provide forced ventilation, shaded areas and cold water (not iced). Summer working hours and extended lunch breaks apply.

6 Simultaneous drilling and production operations permitted subject to compliance with minimum separation distances between live wells and flowlines and drilling operations in accordance with WECO HSE Case. Simultaneous drilling and production operations not permitted inside separation distances.

7 Permitted subject to pigging procedures (maximum flow rate for pigging operations).

8 Grit blasting/jet washing not permitted on live systems.

9 Venting permitted outside the sterile area only.

10 Permitted subject to risk assessment with specified controls or mitigation in place.

MOPO – ADVERSE WEATHER CONDITIONS

ACTIVITY/OPERATION

ADVERSE WEATHER CONDITION

WIN

D >

20 K

TS

HE

AV

Y S

HA

MA

L

NIG

HT

TIM

E

WO

RK

ING

HE

AV

Y M

IST

-

SE

VE

RE

LY

R

ED

UC

ED

V

ISIB

ILIT

Y

HE

AV

Y R

AIN

-

SE

VE

RE

LY

R

ED

UC

ED

V

ISIB

ILIT

Y

& W

AD

I F

LO

OD

ING

LIG

HT

NIN

G

HIG

H A

MB

IEN

T

TE

MP

>50

C

Drilling 1 1 1 1 1 1 1Well Services 1 1 1 1 1 1 1Operate Wells/Flowlines Y Y Y Y Y Y YOperate Pipelines Y Y Y Y Y Y YPigging (future) 2 N N 2 2 2 5QA MPS Operation Y Y Y Y Y Y YGT operation Y Y Y Y Y Y YBFW Heater Start-up (Plant Start-up) Y N Y N N N 5HRSG Start-up (Plant Start-up) Y N Y N N N 5Steam Distribution Plant Start-up Y N Y N N N 5Oil & Gas Plant Start-up Y N Y N N N 5PGC/Plant unit Start-up Y N Y N N N 5Operate Steam Plant Y Y Y Y Y Y YOperate Oil & Gas Plant Y Y Y Y Y Y YAPO Operation Y Y Y Y Y Y YN2/He Leak Testing Y N Y N N N 5Working Outdoors 3 N Y 3 N N 5Sampling 3 N Y N N N 5Radiography Y N Y N N N 5Vehicle Movement on-plot 3 N Y N N N YVehicle Movement off-plot 3 N 4 N N N YRoad Maintenance/ Grading 3 N N N N N 5Grit Blasting / HP Water Jet 3 N N N N N 5Lifting/Crane Operations N N N N N N 5Fork Lift Truck Operations 3 N N N N N 5High Noise Generating Activities Y N Y N N N 5Excavation Activities 3 N N N N N 5Work at Height (outside permanent structures) N N N N N N 5Working on Tall Structures 3 N N N N N 5Zone 1 Area Work Y N 3 N N N 5Zone 2 Area Work Y N Y N N N 5Breaching Maintenance 3 N Y N N N 5Non-Breaching Maintenance Y N Y N N N 5Class A Permit Work Y N Y N N N 5Class B Permit Work Y N Y N N N 5HRSG entry Y N Y N N N 5Confined Space Entry Y N Y N N N 5Flaring Y Y Y Y Y Y YLocal Venting 3 N Y N N N 5Draining to open systems Y N Y N N N 5Chemical unloading 3 N N N N N 5Chemical Disposal by Vac Truck 3 N N N N N 5Construction Activities 3 N 3 N N N 5

Page 74: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 74 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

MOPO – SIMOPs

ACTIVITY/OPERATION

DR

ILL

ING

WE

LL

SE

RV

ICE

S

OP

ER

AT

E W

EL

LS

/FL

OW

LIN

ES

OP

ER

AT

E P

IPE

LIN

ES

PIG

GIN

G (

FU

TU

RE

)

QA

MP

S O

PE

RA

TIO

N

GT

OP

ER

AT

ION

BF

W

HE

AT

ER

S

TA

RT

UP

(P

LA

NT

ST

AR

TU

P)

HR

SG

S

TA

RT

UP

(P

LA

NT

S

TA

RT

UP

)

ST

EA

M

DIS

TR

IBU

TIO

N

PL

AN

T

ST

AR

T-U

P

OIL

& G

AS

PL

AN

T S

TA

RT

-UP

PG

C/P

LA

NT

UN

IT S

TA

RT

-UP

OP

ER

AT

E S

TE

AM

PL

AN

T

OP

ER

AT

E O

IL &

GA

S P

LA

NT

AP

O O

PE

RA

TIO

N

N2/

HE

LE

AK

TE

ST

ING

WO

RK

ING

OU

TD

OO

RS

SA

MP

LIN

G

RA

DIO

GR

AP

HY

VE

HIC

LE

MO

VE

ME

NT

ON

-PL

OT

VE

HIC

LE

M

OV

EM

EN

T

OF

F-

PL

OT

RO

AD

M

AIN

TE

NA

NC

E/

GR

AD

ING

GR

IT

BL

AS

TIN

G

/ H

P

WA

TE

R

JET

LIF

TIN

G/C

RA

NE

OP

ER

AT

ION

S

FO

RK

L

IFT

T

RU

CK

O

PE

RA

TIO

NS

HIG

H

NO

ISE

G

EN

ER

AT

ING

A

CT

IVIT

IES

EX

CA

VA

TIO

N A

CT

IVIT

IES

WO

RK

AT

HE

IGH

T

WO

RK

ING

O

N

TA

LL

S

TR

UC

TU

RE

S

ZO

NE

1 A

RE

A W

OR

K

ZO

NE

2 A

RE

A W

OR

K

BR

EA

CH

ING

MA

INT

EN

AN

CE

NO

N-B

RE

AC

HIN

G

MA

INT

EN

AN

CE

CL

AS

S A

PE

RM

IT W

OR

K

CL

AS

S B

PE

RM

IT W

OR

K

HR

SG

EN

TR

Y

CO

NF

INE

D S

PA

CE

EN

TR

Y

FL

AR

ING

LO

CA

L V

EN

TIN

G

DR

AIN

ING

TO

OP

EN

SY

ST

EM

S

CH

EM

ICA

L U

NL

OA

DIN

G

CH

EM

ICA

L D

ISP

OS

AL

BY

VA

C

TR

UC

K

CO

NS

TR

UC

TIO

N A

CT

IVIT

IES

Drilling Well Services 6 Operate Wells/Flowlines 6 6 Operate Pipelines Y Y Y Pigging (future) Y Y Y 7 QA MPS Operation Y Y Y Y Y GT operation Y Y Y Y Y Y BFW Heater Startup (plant startup)

Y Y Y Y Y Y Y

HRSG Startup (plant startup)

Y Y Y Y Y Y Y Y

Steam Distribution Plant start-up

Y Y Y Y Y Y Y Y Y

Oil & Gas Plant start-up Y Y Y Y Y Y Y Y Y Y PGC/Plant unit Startup Y Y Y Y Y Y Y Y Y Y Y Operate Steam Plant Y Y Y Y Y Y Y Y Y Y Y Y Operate Oil & Gas Plant Y Y Y Y Y Y Y Y Y Y Y Y Y APO Operation Y Y Y Y Y Y Y Y Y Y Y Y Y Y N2/He Leak Testing Y Y Y N N Y Y N N N N N N N N Working Outdoors Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Sampling Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y Radiography Y Y Y Y Y Y Y N N N N N Y Y Y N N N Vehicle Movement on-plot Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y N N Vehicle Movement off-plot Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y Y Road Maintenance/ Grading Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Grit Blasting / HP Water Jet Y Y 8 8 8 Y Y N N N N N 8 8 8 N N N N N N Y Lifting/Crane Operations Y Y N N Y Y Y N N N N N Y Y Y N N N N N N Y N Fork Lift Truck Operations Y Y Y Y Y Y Y N N N N N Y Y Y N Y Y N Y Y Y N N High Noise Generating Activities

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y Y Y Y Y Y Y Y Y

Excavation Activities Y Y Y Y Y Y Y N N N N N Y Y Y N Y Y N Y Y Y N N N Y Work at Height (outside permanent structures)

Y Y Y Y Y Y Y N N N N N Y Y Y N Y Y N Y Y Y N N Y Y Y

Working on Tall Structures Y Y Y Y Y Y Y N N N N N Y Y Y N Y Y N Y Y Y N N Y Y Y Y Zone 1 Area Work Y Y 3 3 3 Y Y N N N N N 3 3 3 N Y Y N N N N N N N Y N N N Zone 2 Area Work Y Y Y Y Y Y Y N N N N N Y Y Y N Y Y N Y Y Y N N Y Y Y Y Y N Breaching Maintenance Y Y N N N Y Y N N N N N Y Y Y N Y Y N N N N N N N Y N N N N N Non-Breaching Maintenance

Y Y Y Y Y Y Y N N N N N Y Y Y N Y Y N Y Y Y N N Y Y Y Y Y N Y N

Class A Permit Work Y Y 3 3 3 Y Y N N N N N 3 3 3 N Y 3 N Y Y Y N N Y Y Y Y Y N Y N N Class B Permit Work Y Y Y Y 3 Y Y N N N N N Y Y Y N Y Y N Y Y Y N N Y Y Y Y Y N Y N Y Y HRSG entry Y Y Y Y Y Y N N N N N N Y Y Y N Y Y N Y Y Y N N Y N Y Y Y N Y N Y Y Y Confined Space Entry Y Y Y Y Y Y Y N N N N N Y Y Y N Y Y N Y Y Y N N Y N Y Y Y N Y N Y Y Y Y Flaring Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N Y Y Y Y Y Y Y Local Venting Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N Y N N N N N N N Y N N N N N N N N N N N 9 Draining to open systems Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N Y N N N N N N N Y N N N N N N N N N N N Y Y Chemical unloading Y Y Y Y Y Y Y N N N N Y Y Y Y N Y Y N Y Y Y N N Y Y N N N N N N N N N Y N Y N N Chemical Disposal by Vac Truck

Y Y Y Y Y Y Y N N N N Y Y Y Y N Y Y N Y Y Y N N Y Y N Y Y N N N N N N Y N Y N N N

Construction Activities Y Y Y Y Y Y Y N N N N Y Y Y Y N Y Y N Y Y Y N N Y Y Y Y Y N Y N Y N Y Y Y Y N N N N

Page 75: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 75 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

MOPO – SCE & CRITICAL MANPOWER IMPAIRMENT/UNAVAILABILITY

ACTIVITY/OPERATION

ST

AR

T-U

P

EQ

UIP

ME

NT

/

SY

ST

EM

ST

AR

T-U

P P

LA

NT

OP

ER

AT

E

EQ

UIP

ME

NT

/

SY

ST

EM

OP

ER

AT

E P

LA

NT

OP

ER

AT

E F

AC

ILT

Y

LIF

TIN

G A

ND

HO

IST

ING

OV

ER

H

C E

QU

IPM

EN

T

GE

NE

RA

L

AC

TIV

ITIE

S

(MA

INT

EN

AN

CE

, IN

SP

EC

TIO

N,

PA

INT

ING

, CO

LD

WO

RK

)

PR

ES

SU

RE

/LE

AK

TE

ST

ING

BR

EA

KIN

G H

C-C

ON

TA

INM

EN

T

(SA

MP

LIN

G,V

EN

TIN

G,D

RA

ININ

G)

HO

T W

OR

K

RO

AD

T

RA

NS

PO

RT

, R

OA

D

TA

NK

ER

S,

LO

AD

ING

/ U

NL

OA

DIN

G

CO

NF

INE

D

SA

PC

E

EN

TR

Y

(IN

CL

UD

ING

HR

SG

)

IMPAIRED/UNAVAILABLE SCE

SCE GROUP SCE FAILURE MODE

SI002 Civil Structures / Structural Support

Observed or detected structural defect resulting in increased risk of MAH

N 10 N 10 10 10 10 10 10 10 10 10

SI003 Heavy lift cranes and mechanical handling

Observed or detected structural/mechanical defect resulting in increased risk of MAH due to dropped load

Y Y Y Y Y N Y Y Y Y Y Y

PC001 - PC006 Process Containment

Uncontrolled release of process fluids resulting in increased risk of MAH

N N N 10 10 N N N N N N N

PC007 Relief System

Unavailability of relief at design flow rate resulting in increased risk of MAH due to overpressure

N 10 N 10 Y 10 10 10 10 10 10 10

PC008 Operational Well Containment

Uncontrolled release of well fluid resulting in increased risk of MAH

N Y N Y Y 10 10 10 10 10 10 10

PC009 Fired Heaters (Burner Management System)

Unavailability of BMS/IPS resulting in increased risk of MAH

N Y N Y Y Y Y Y Y Y Y Y

IC003 Certified Electrical Equipment

Certified electrical equipment fails to meet PS requirement resulting in increased risk of ignition

N 10 N 10 Y Y Y Y 10 Y 10 Y

IC005 Earth Bonding

Earth bonding fails to meet PS requirement resulting in increased risk of ignition

N Y 10 Y Y Y Y Y 10 Y N Y

IC006 Fuel Gas Purge

Inability to provide required fuel gas purge flow to flare header resulting in air ingress to flare

N N N 10 Y Y Y Y Y Y Y Y

IC007 Gas Blanket System - Total loss

Total loss of gas blanket system resulting in increased risk of ignition

N N N N Y Y Y Y Y 10 Y Y

IC007 Gas Blanket System - Loss to individual equipment

Inability to provide required gas blanket flow individual equipment resulting in increased risk of ignition

N 10 N 10 Y Y Y Y Y 10 Y Y

IC009 Flare Ignition Control System

Loss of primary & secondary flare ignition systems resulting in flare out

N N 10 10 10 10 10 10 10 10 10 10

DS001 Fire and Gas - Total loss

Total loss of F&G detection system

N N N N 10 10 10 10 N N 10 10

Page 76: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 76 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

ACTIVITY/OPERATION

ST

AR

T-U

P

EQ

UIP

ME

NT

/

SY

ST

EM

ST

AR

T-U

P P

LA

NT

OP

ER

AT

E

EQ

UIP

ME

NT

/

SY

ST

EM

OP

ER

AT

E P

LA

NT

OP

ER

AT

E F

AC

ILT

Y

LIF

TIN

G A

ND

HO

IST

ING

OV

ER

H

C E

QU

IPM

EN

T

GE

NE

RA

L

AC

TIV

ITIE

S

(MA

INT

EN

AN

CE

, IN

SP

EC

TIO

N,

PA

INT

ING

, CO

LD

WO

RK

)

PR

ES

SU

RE

/LE

AK

TE

ST

ING

BR

EA

KIN

G H

C-C

ON

TA

INM

EN

T

(SA

MP

LIN

G,V

EN

TIN

G,D

RA

ININ

G)

HO

T W

OR

K

RO

AD

T

RA

NS

PO

RT

, R

OA

D

TA

NK

ER

S,

LO

AD

ING

/ U

NL

OA

DIN

G

CO

NF

INE

D

SA

PC

E

EN

TR

Y

(IN

CL

UD

ING

HR

SG

)

DS001 Fire and Gas - Local or partial loss

Loss of F&G detection end element resulting in impaired local functionality e.g. 2ooN in voted system & 1ooN in non-voted systems

N 10 10 10 Y 10 10 10 10 10 10 10

DS002 Security Systems

Loss of access control to facilities

10 Y 10 Y Y Y Y Y Y Y Y Y

PS013 Chemical Injection System

Inability to provide required chemical injection flow

10 Y 10 Y Y Y Y Y Y Y Y Y

SD001 ESD System - Total loss

Total loss of ESD system N N N N N 10 10 10 10 10 10 10

SD001 ESD System - Local or partial loss

Local or partial loss of ESD system

N 10 10 10 10 10 10 10 10 10 10 10

SD002 Depressurisation System - Total loss

Total loss of EDP system N N N N N 10 10 10 10 10 10 10

SD002 Depressurisation System - Local or partial loss

Local or partial loss of EDP system

N 10 N 10 10 10 10 10 10 10 10 10

SD004 Operational Well Isolation

Inability to isolate steam injection well or annulus resulting in potential back flow of HC

N Y N Y Y 10 10 10 10 10 10 10

SD006 Process ESDV

Inability of ESD end element valve to adequately isolate processes resulting in potential escalation of MAH

N 10 10 10 10 10 10 10 10 10 10 10

ER001 Temp Refuge/ Muster Areas

Primary muster area impaired

10 10 10 10 10 10 10 10 10 10 10 10

ER002 Escape/ Evacuation Routes

Escape/ evacuation routes impaired

10 10 10 10 10 10 10 10 10 10 10 10

ER003 Emergency/ Escape Lighting

Emergency/ escape Lighting impaired

10 10 10 10 10 10 10 10 10 10 10 10

ER004 Communication Systems - Loss of GA

Loss of GA communication system

N N 10 10 10 10 10 10 10 10 10 10

ER004 Communication Systems - Loss of ER communications

Loss of ER communication system including radios and landlines

N N 10 10 10 10 10 10 10 10 10 10

ER005 Uninterrupted Power Supply (UPS)

Inability to provide emergency power supply to essential systems

N N 10 10 10 Y Y Y Y Y Y Y

Page 77: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 77 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

ACTIVITY/OPERATION

ST

AR

T-U

P

EQ

UIP

ME

NT

/

SY

ST

EM

ST

AR

T-U

P P

LA

NT

OP

ER

AT

E

EQ

UIP

ME

NT

/

SY

ST

EM

OP

ER

AT

E P

LA

NT

OP

ER

AT

E F

AC

ILT

Y

LIF

TIN

G A

ND

HO

IST

ING

OV

ER

H

C E

QU

IPM

EN

T

GE

NE

RA

L

AC

TIV

ITIE

S

(MA

INT

EN

AN

CE

, IN

SP

EC

TIO

N,

PA

INT

ING

, CO

LD

WO

RK

)

PR

ES

SU

RE

/LE

AK

TE

ST

ING

BR

EA

KIN

G H

C-C

ON

TA

INM

EN

T

(SA

MP

LIN

G,V

EN

TIN

G,D

RA

ININ

G)

HO

T W

OR

K

RO

AD

T

RA

NS

PO

RT

, R

OA

D

TA

NK

ER

S,

LO

AD

ING

/ U

NL

OA

DIN

G

CO

NF

INE

D

SA

PC

E

EN

TR

Y

(IN

CL

UD

ING

HR

SG

)

ER010 Drains System

Inability to provide secondary containment for HC/chemicals spills resulting in potential escalation of MAH

N 10 10 10 Y Y Y Y Y Y 10 Y

LS001 Personal Survival Equipment - Personal monitors

Personal H2S monitors below minimum level or faulty

N N 10 10 10 N N N N N N N

LS001 Personal Survival Equipment - Escape sets

Portable BA Sets below minimum level or faulty (Escape Sets)

N N 10 10 10 N N N N N N N

LS001 Personal Survival Equipment - Rescue BA sets

Portable BA Sets below minimum level (SCBA & Rescue Sets)

N N 10 10 10 N N N N N N N

LS001 Personal Survival Equipment - Chemical PPE

Insufficient number or inadequate type of Chemical PPE available

10 Y 10 Y Y Y Y Y Y Y N Y

LS001 Personal Survival Equipment - Safety showers/eye wash stations

Safety showers/eye wash stations not available or inoperable

10 Y 10 Y Y Y Y Y Y Y N Y

CRITICAL MANPOWER UNAVAILABILITY

HSE Critical Position

Competent persons not available to fill HSE Critical Position

N N 10 10 10 N N N N N N N

ER - Team Members

Competent persons not available to fill ER team member position

N N 10 10 10 N N N N N N N

ER - QA Fire Brigade

QA fire brigade not available for extended period

10 10 Y Y Y 10 10 10 10 10 10 10

ER - First Aider Insufficient number of first aiders available on-site

10 10 Y Y Y 10 10 10 10 10 10 10

LECC Competent persons not available to fill LECC positions or LECC not available

N N 10 10 10 N N N N N N N

Page 78: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 78 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Appendix 11 Operations HSE Case Change Approval

This appendix details the process for identifying, assessing and implementing changes to Operations HSE Cases to ensure that the hazards and risks associated with Major Accident Hazards (MAHs) are maintained as low as reasonably practicable (ALARP).

This procedure is mandatory for Operations HSE Cases in PDO but may also be used for Design HSE Cases.

It is to be used by all parties who may be responsible for initiating a change that may have an effect on the underlying assumptions or information presented in a HSE Case.

A suitable system to ensure that the Steps described in this procedure are followed is provided by the proforma ‘HSE Case Change Approval Form’ at the end of this Appendix

RACI Matrix

Task

Roles & Responsibilities T

ech

nic

al

Saf

ety

E

ng

ine

er/

HS

E

Cas

e C

ust

od

ian

Tec

hn

ical

A

uth

ori

ties

HS

E

Cas

e

Cu

sto

dia

n

Sta

keh

old

ers

Ori

gin

ato

r

Act

ion

Par

tie

s

1. Identify Change C C A I R -

2. Assess Impact of Change and Develop Workscope

R C C I C I

3. Perform Workscope A C C C C R

4. Prepare HSE Case Changes R I A I I I

5. Review proposed HSE Case Changes

R C A C C I

6. Approve Changes R C A C I I

7. Publish Changes R I A I I I

(R) Responsible: The party responsible for executing the task and obtaining parties involvement

(A) Accountable Party accountable for approval

(C) Consult Party responsible for contributing when consulted

(I) Informed Party informed of outcome

Role Responsibilities

Originator

Individual or group who identifies the need for change(s). This function describes a variety of roles:

- Asset (management, supervision or operations);

- Workforce;

- Technical Authorities (TAs);

- Discipline engineers;

- Contractors.

Identifies and summarises need for change(s)

Discusses potential change with MSE/4 Dept. to determine whether it will affect the HSE Case or its underlying assumptions

Identifies relevant Stakeholders, with advice from MSE/4 Dept.

Contributes to preparing text change(s) as required

Reviewing and approval of proposed change(s)

Page 79: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 79 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Role Responsibilities

Technical Safety Engineer Assesses the impact of the change(s) on the HSE Case and its underlying assumptions

Supports the HSE Case by providing management, technical support, knowledge and authoring

Ensures appropriate description of the change(s) in the HSE Case

Liaises with other TAs as appropriate

Once the change has been agreed, logs the change in the HSE Case MOC register

Maintains an up to date version of the HSE Case MOC register

Action Parties Advise on impact of change(s)

Provide information on actions required

Provide input to HSE Case update

HSE Case Custodian (Delivery Team Leader / Asset Representative)

Propose change(s) resulting from, for example, changes to the operation of the asset or other changes raised by personnel associated with the asset

Review change(s) as a Stakeholder

Contribute to text change(s) in the HSE Case

Check proposed change(s) and co-ordinating workforce involvement

Ensure that the information contained in the HSE Case reflects the current status of the asset and it’s operating practices

Technical Authorities Propose change(s) resulting from, for example, change(s) to the engineering or operation of the Asset or other change(s) raised as a result of issues in their discipline

Review change(s) as a Stakeholder

Contribute to text change(s) in the HSE Case

Check proposed change(s) and co-ordinating involvement of other TAs

Stakeholder

A person or person(s) who may be called upon to contribute to/consult on the assessment of change(s) required, or who may need to be advised of the potential change(s) to the HSE Case. This function describes a variety of roles:

- Asset (management, supervision or operations);

- Workforce;

- Technical Authorities (TAs);

- Discipline engineers;

- Contractors.

Provide specialist knowledge and expertise

Review and approve text change(s) in the HSE Case

Page 80: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 80 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

HSE Case Change Approval Form

HSE Case Change Approval Form Ref.: GD/2008/01

Step 1: Identify Change

Asset/Facility: Yibal Originator: A N Other Date raised: 24/07/2010

Details of proposed change(s) (summary of the change(s) – use continuation sheet if required):

Step 2: Assess Impact of Change(s) and Develop Workscope

Significant Change?

(Yes/No)

Justification:

Details of Stakeholder engagement:

Description of assessment and statement of required work activities:

Step 3: Perform Workscope (record the summary of outcomes for Step 3):

Step 4 & 5: HSE Case Changes (record summary of changes – use continuation sheet if required for detailed changes):

Part: Section: Heading: Comments:

Immediate publication of change required? (Yes/No)

Justification

Step 6: Approve Changes (signatories as required)

a. Originator Name: Signature: Date:

b. Technical Authority

Name: Signature: Date:

c. HSE Case Custodian

Name: Signature: Date:

d. Technical Safety Engineer

Name: Signature: Date:

Step 7: Publish Change

Date Completed:

Rev Number:

Name: Signature

Page 81: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 81 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Step 1: Identify Change(s)

As soon as it is practicable, discuss the potential change(s) with the Asset Technical Safety Engineer to determine whether the proposed change(s) will affect the HSE Case or its underlying assumptions.

Any proposed changes (e.g. engineering, procedural, organisational) that have an impact on the risk profile of the Facility or Activity, shall be managed in accordance with this Procedure (including an ALARP Demonstration) and the HSE Case shall be updated accordingly.

The possible changes that might affect the HSE Case and its underlying assumptions are those listed in Section 13.

Step 2: Assess Impact of Change(s) and Develop Workscope

a) Determine whether the proposed changes(s) will affect the Case content or its underlying assumptions. If it is agreed that there is no effect on the Case or its supporting studies, no further action is required.

b) Where it is agreed by there is an effect on the Case, develop workscope with relevant Stakeholders.

c) Ensure that the workscope includes review and update, as required, to:

i. HEMP Studies and ALARP justification;

ii. QRA Studies;

iii. Bow-Tie assessments;

iv. HSE Critical Element and Performance Standards;

v. HSE Critical Task listings.

d) Agree and record actions with originator, action parties and Stakeholders.

e) Summarise details of the HSE Case Change Approval Form

f) Logs the HSE Case change in the HSE Case MOC register. The register should ensure that all changes to the HSE Case are grouped together for review and to allow assessment of cumulative effects or risk.

Step 3: Perform Workscope

a) Perform agreed workscope as identified in 2b above.

b) Representatives from the current operational, engineering and maintenance teams, and workforce involvement representatives shall actively participate in performing the workscope as appropriate.

c) Review outcomes for actions to determine final impact.

d) Consult with Stakeholders on effect on HSE Case (where appropriate).

e) Complete change(s) to relevant supporting studies or other associated documents/processes/drawings etc.

Step 4: Prepare HSE Case Change(s)

a) Prepare change(s) to HSE Case in consultation with action parties and Stakeholders.

Page 82: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 82 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Step 5: Review Proposed HSE Case Change(s)

a) Issue the HSE Case Change Approval Form with proposed change(s) to the HSE Case to relevant action parties and Stakeholders for comment/review.

b) Amend proposed change(s) as required reflect any comments received. On the HSE Case Change Approval Form annotate which sections of the HSE Case have been changed.

c) Determine need for immediate publication of change(s). Consider whether change is significant and needs immediate update. Also consider cumulative effects of changes to date.

Step 6: Approve Change(s)

a) Gain acceptance of proposed change(s) from relevant parties, including sign-off of HSE Case Custodian (obtain signatures).

b) Update status of HSE Case Change Approval Form in the HSE Case MOC Register including ‘Date Agreed’.

c) If applicable, update FIM to record any changes that affect any open items still under review (e.g. Change to HSE Case Remedial Action Plan).

Step 7: Publish Change(s)

a) Make change(s) to HSE Case.

b) Publish HSE Case on Livelink / issue to document copy holders.

c) Update status of Update status of HSE Case Change Approval Form in the Change Register including ‘Date Completed’.

HSE Case MOC Register

Ref. Description Significant change? Yes/No

FCP No. (if applicable)

Date raised

Date agreed

Date completed

GD/2008/01 Revision of Yibal HSE Case to address internal / external audit findings and issues raised at workforce reviews.

Structure and content changed to reflect PDO adoption of EP2005-0310-ST.

Yibal team involved in engagement workshops, bow tie review workshops, ALARP workshops, and roll out sessions

Yes n/a 01/01/2008 01/01/2008 01/10/2008

Page 83: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 83 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

Appendix 12 CCPS RBPS Process Safety Elements

The AI-PSM process within PDO identifies 20 elements from the Centre for Chemical Process Safety Guidelines for Risk Based Process Safety (CCPS RBPS) which describes minimum expected standards and stipulates the requirements for a range of process related activities ranging from organisational culture, workforce involvement, risk management, HEMP and audit through to design.

ELEMENT

NUMBER

AI-PSM ASSURANCE ELEMENT

ELEMENT AIMS AND OBJECTIVES

1 Process Safety Culture

To establish and reinforce high standards of process safety performance through the organisational norms for employee and contractor values and behaviours at all levels in the organisation.

2 Compliance with Standards

To ensure that the facility conforms to the applicable standards, codes and regulations so that the facility operates in a safe and legal fashion.

3 Corporate Process Safety Competency

A key aspect of demonstrating commitment to process safety, the process safety competency element is about developing, sustaining and enhancing organisational competency. This is different to individual competency assurance (which is covered in element 12). The key concern here is the concept of the ‘learning’ or ‘transformational’ organisation

4 Workforce Involvement

Personnel at all levels of the organisation should have roles, responsibilities and opportunities to effectively contribute to process safety programmes. This element ensures that a system is developed for enabling the participation of operators, technicians and contractors in the development and implementation of process safety activities through employee participation

5 Stakeholder Outreach

To ensure that internal and external stakeholders to the organisation are identified, and that their information needs are understood and adequately met.

6 Process Knowledge Management

To enable risk assessment and risk-based process safety. Understanding process risk depends on having accurate process knowledge, and without an understanding of process risk, process safety can never be assured.

7 Hazards and Effects Management Process (HEMP)

To enable risk assessment and risk-based process safety. Understanding process risk depends on correctly and completely identifying the hazards associated with the operation, and accurately assessing the risks posed by those hazards. Without an understanding of process risk, process safety can never be assured.

8 Operating Procedures

A consistent high level of human performance is essential for a successful process safety programme. Up to date clear operating procedures assure that the intended and proven methods and techniques are applied consistently.

9 Permit to Work

To ensure that the risks associated with non-routine work are managed in a systematic way through the application of a permit-to-work system and operations / maintenance procedures (which are described in the previous element)

Page 84: SP-2062 - HSE Specification Specifications for HSE Cases

Petroleum Development Oman LLC Revision: 1.0 Effective: Mar-11

Page 84 SP-2062 Specification for HSE Cases Printed 11/03/13

The controlled version of this CMF Document resides online in Livelink®. Printed copies are UNCONTROLLED.

ELEMENT

NUMBER

AI-PSM ASSURANCE ELEMENT

ELEMENT AIMS AND OBJECTIVES

10 Technical Integrity

To ensure that equipment is properly designed, fabricated, installed and maintained in accordance with recognised standards and codes, and that it fulfils its design intent and remains fit for purpose until removed from operation

11 Contractor Management

To ensure that contracted services do not add to or increase process safety risk by ensuring familiarity with process safety risks and a formalised process to manage contractor activities from a process safety (as well as commercial) point-of-view.

12 Training and Performance Assurance

A consistent high level of human performance is essential for a successful process safety programme. Training and performance assurance provides confidence and demonstration that work tasks will be consistently completed to the required standard, and that personnel have the knowledge and ability to respond appropriately to non-routine situations.

13 Management of Change

To ensure that changes made to plant equipment or technology, or to the Organisation operating the equipment, do not result in the inadvertent introduction of new hazards and risks, or unknowingly increase the risk from existing hazards.

14 Operational Readiness

To ensure that equipment is safe to start-up and operate, and that the activities necessary to ensure continued fitness for service have been put in place. It covers start up of new equipment, modified equipment and existing equipment re-starting after a plant shutdown

15 Conduct of Operations

To create an organisation that demonstrates excellence in the performance of every task, and has zero tolerance for deviations.

16 Emergency Management

To reduce the consequences of a major accident and to save lives, protect property and the environment.

17 Incident Investigation

To learn from incidents and near misses and to prevent them from recurring. Identifying and correcting systemic incident causes will not only help prevent a repeat of that incident but by strengthening the AI-PSM management system can prevent other incidents.

18 Measurement and Metrics

To provide a means for near-real-time monitoring of the performance of the AI-PSM system, and so indicate whether process risk is being managed as low as reasonably practicable and in line with company criteria for tolerable risk.

19 Auditing To reduce risk by systematically and pro-actively identifying strengths and weaknesses in the implementation of AI-PSM.

20

Management Review and Continuous Improvement

To ensure that the defined AI-PSM activities produce the desired results throughout the facility lifecycle.