135
SOLUTIONS MANUAL FOR SELECTED SOLUTIONS MANUAL FOR SELECTED SOLUTIONS MANUAL FOR SELECTED SOLUTIONS MANUAL FOR SELECTED PROBLEMS IN PROBLEMS IN PROBLEMS IN PROBLEMS IN PROCESS SYSTEMS ANALYSIS AND CONTROL DONALD R. COUGHANOWR COMPILED BY M.N. GOPINATH BTech.,(Chem) M.N. GOPINATH BTech.,(Chem) M.N. GOPINATH BTech.,(Chem) M.N. GOPINATH BTech.,(Chem) CATCH ME AT [email protected] Disclaimer: This work is just a compilation from various sources believed to be reliable and I am not responsible for any errors.

solution manual_COUGHANOWR.pdf

  • Upload
    dangthu

  • View
    267

  • Download
    7

Embed Size (px)

Citation preview

Page 1: solution manual_COUGHANOWR.pdf

SOLUTIONS MANUAL FOR SELECTEDSOLUTIONS MANUAL FOR SELECTEDSOLUTIONS MANUAL FOR SELECTEDSOLUTIONS MANUAL FOR SELECTED

PROBLEMS INPROBLEMS INPROBLEMS INPROBLEMS IN

PROCESS SYSTEMS ANALYSIS AND

CONTROL

DONALD R. COUGHANOWR

COMPILED BY

M.N. GOPINATH BTech.,(Chem)M.N. GOPINATH BTech.,(Chem)M.N. GOPINATH BTech.,(Chem)M.N. GOPINATH BTech.,(Chem)

CATCH ME AT [email protected]

Disclaimer: This work is just a compilation from various sources believed to be reliable and I am not responsible for any errors.

Page 2: solution manual_COUGHANOWR.pdf

CONTENTS

PART 1: SOLUTIONS FOR SELECTED PROBLEMS

PART2: LIST OF USEFUL BOOKS

PART3: USEFUL WEBSITES

Page 3: solution manual_COUGHANOWR.pdf

PART 1

1.1 Draw a block diagram for the control system generated when a human

being steers an automobile.

1.2 From the given figure specify the devices

Page 4: solution manual_COUGHANOWR.pdf

Solution:

Page 5: solution manual_COUGHANOWR.pdf

Inversion by partial fractions:

3.1(a) 0)0()0(1 '

2

2

===++ xxxdt

dx

dt

dx

)0()0()( '2

2

2

xsxsXsdt

dxL −−=

)0()( xsXsdt

dxL −=

L(x) = X(s)

Page 6: solution manual_COUGHANOWR.pdf

L{1} = 1/s

+−− )0()0()( '2 xsxsXss

sXxsXs1

)()0()( =+−

ssXss

1)()1( 2 =++=

)1(

1)(

2 ++=

ssssX

Now, applying partial fractions splitting, we get

)1(

11)(

2 +++

−=ss

s

ssX

2222

2

3

2

1

2

3

3

2

2

1

2

3

2

1

11)(

+

+

+

+

+−=

ss

s

ssX

tetCosesXLtt

2

3sin

3

1

2

31))(( 2

1

2

1

1−−− −−=

+

−=

−tSintCosetX

t

2

3

3

1

2

31)( 2

1

b) 0)0()0(12 '

2

2

===++ xxxdt

dx

dt

dx

when the initial conditions are zero, the transformed equation is

s

sXss1

)()1( 2 =++

Page 7: solution manual_COUGHANOWR.pdf

)1(

1)(

2 ++=

ssssX

12)1(

122 ++

++=

++ ss

CBs

s

A

sss

CsBsssA ++++= 22 )12(1

)(20

)(0 2

sofeffecientscotheequatingbyCA

sofeffecientcotheequatingbyBA

−+=

−+=

2,1,1

2

1

0

)(1

−=−==

−=

−=

=+

−=

CBA

AC

B

BA

constofeffecientscotheequatingbyA

12

21)(

2 +++

−=ss

s

ssX

( )( )

+

++−= −−

2

11

1

111)}({

s

s

sLsXL

( )

++

+−= −

2

1

1

1

1

11)}({

ssLtX

)1(1)}({ tetX t +−= −

3.1 C 0)0()0(13 '

2

2

===++ xxxdt

dx

dt

dx

by Applying laplace transforms, we get

ssXss

1)()13( 2 =++=

)13(

1)(

2 ++=

ssssX

Page 8: solution manual_COUGHANOWR.pdf

13

)(2 ++

++=

ss

CBs

s

AsX

CsBsssA ++++= 22 )13(1

)(30

)(0 2

sofeffecientscotheequatingbyCA

sofeffecientcotheequatingbyBA

−+=

−+=

3,1,1

33

1

0

)(1

−=−==

−=−=

−=

=+

−=

CBA

AC

B

BA

constofeffecientscotheequatingbyA

+++

−= −−

13

31)}({

2

11

ss

s

sLsXL

+

+−= −−

22

11

2

5

2

3

31)}({

s

s

sLsXL

+

+

+−= −−

2222

11

2

5

2

3

2

5

5

2.

2

3

2

5

2

3

2

3

1)}({

ss

s

sLsXL

tt

CosetX

t

2

5sinh

5

3

2

5(1)( 2

3

+−=−

3.2(a)

1)0(

0)0()0()0(;

11

''''

3

3

4

4

=

====+

x

xxxtCosdt

xd

dt

dx

Page 9: solution manual_COUGHANOWR.pdf

Applying Laplace transforms, we get

1)0()0()0()()0()0()0()0()(

2

'''23'''''1234

+=−−−+−−−−s

sxsxxssXsxsxxsxssXs

1)1()()(

2

34

+=+−+s

sssssX

34

2)1()1

1()( ssss

ssX +

+++

+=

= )1)(1(

12

)1)(1(

123

23

23

23

+++++

=++++++

sss

sss

sss

ssss

11)1)(1(

1223223

23

++

++

+++=+++++

s

FEs

s

D

s

C

s

B

s

A

sss

sss

)1()()1()1)(1()1)(1()1)(1(12 323222223 +++++++++++++=+++ ssFEssDssscssBsssAssss

A+B+E=0 equating the co-efficient of s5.

A+B+E+F=0 equating the co-efficient of s4.

A+B+C+D+F=0 equating the co-efficient of s3.

A+B+C=0 equating the co-efficient of s2.

B+C=2 equating the co-efficient of s.

A+B+E=0 equating the co-efficient of s2.

C=1equating the co-efficient constant.

C=1

-B=-C+2=1

A=1-B-C=-1

D+F=0

E+F=0D+E=1

D-E=0

2D=1

A=-1; B=1; C=1

D=1/2; E=1/2; F =-1/2

Page 10: solution manual_COUGHANOWR.pdf

{ }

+−

++

+++−

= −−

1

)1(2/1

1

2/1111)(

232

11

s

s

ssssLsL

{ }

+−

++

+++−

= −−

1

)1(2/1

1

2/1111)(

232

11

s

s

ssssLsXL

{ } int2

1

2

1

2

1

21)(

2

StCoset

ttX t −++++−= −

2)0(;4)0(2 12

2

2

−==+=+ qqttdt

dq

dt

qd

applying laplace transforms,we get

23

'2 22)0()(()0()0()(

ssqssQqsqsQs +=−+−−

+=−+−+ 112

424))((2

2

ssssssQ

)(

)24()1(2

)(2

3

ss

ss

s

sQ+

+++

=

= )1(

24224

34

++++

ss

sss

)1(

3*2

)1(

2

1

14)(

4 ++

++

+

=sssss

sQ

31

3

1)1(24)())(( teetqsQL tt +−+== −−−

therefore tet

tq −++= 23

2)(3

Page 11: solution manual_COUGHANOWR.pdf

3.3 a)

+−

+=

++ 4

1

1

1

3

3

)4)(1(

32222 ss

s

ss

s

+−

+=

2222 2

1

1

1

ss

tCosCostss

L 22

1

1

12222

1 −=

+

−+

b) [ ] 522)1(

1

)52(

12222 +−

++=

+−=

+− ss

CB

s

A

sssss

A+B=0

-2A+C=0

5A=1

A=1/5 ;B=-1/5;C=2/5

We get

+−

−+=

52

21

5

1)(

2 ss

s

ssX

Inverting,we get

=

−+ tCosetSine tt 222

11

5

1

=

−+ tCostSinet 222

11

5

1

c) 2222

22

)1(1)1(

233

−+

−++=

−+−−

s

D

s

C

s

B

s

A

ss

sss

Page 12: solution manual_COUGHANOWR.pdf

233)1()1()1( 232222 +−−=+−+−+− sssDssCssBsAs

233)()12()2( 2322323 +−−=+−++−++− sssDsssCssBsssA

A+C=3

-2A+B-C+D=-1

A-2B=-3

B=2;

A=2(2)-3=1

C=3-1=2

D=2(1)-2+2-1=1

We get 22 )1(

1

1

221)(

−+

+++=

sssssX

By inverse L.T

[ ] tt teettXL +++=− 221)(1

[ ] )2(21)(1 tettXL t +++=−

3.4 Expand the following function by partial fraction expansion. Do not evaluate

co-efficient or invert expressions

)3()1)(1(

2)(

22 +++=

ssssX

3)1(11)(

222 ++

++

+++

++

=s

F

s

EDs

s

CBs

s

AsX

22222 )1)(1()3)(1)(()1)(3)(1)(()3()1( ++++++++++++++= ssFssEDssssCBsssA

)14)(1()34)(()1)(34)(()3)(12( 222224 ++++++++++++++++= sssFssEDssssCBssssA

Page 13: solution manual_COUGHANOWR.pdf

2333)4

34()346()342()43()( 2345

=++++++

+++++++++++++++++=

FEACAFE

BCAsCBCAsBCBAsFBCAsFBAs

A+B+F=0

-3A+C+4B+F=0

2A+B+4C+3B=0

6A+C+4B+3C=0

A+4C+3B+3D+4E+F=0

3A+3C+3E+F=2

by solving above 6 equations, we can get the values of A,B,C,D,E and

33 )3()1)(1(

1)(

+++=

sssssX .

3232 )3()3(321)(

++

++

++

++

++++=

s

H

s

G

s

F

s

E

s

D

s

C

s

B

s

AsX

by comparing powers of s we can evaluate A,B,C,D,E,F,G and H.

c))4()3)(2(

1)(

+++=

sssssX

4321)(

++

++

++

+=

s

D

s

C

s

B

s

AsX

by comparing powers of s we can evaluate A,B,C,D

3.5 a) )15.0)(1(

1)(

++=

ssssX

)15.0(1)15.0)(1(

1

++

++=

++ s

C

s

B

s

A

sssLet

1)(2

12

3

2

222

=++

++

++= ssCs

sB

ssA

A=1

2

1

20

22−=+==++ C

BC

BA

2

30

2

3−=+==++ CBCB

A

Page 14: solution manual_COUGHANOWR.pdf

B/2=1/2 *-3/2=-1;

B=-2;

C= -3/2+2=1/2

+

++

−=15.0

1

2

1

1

21)(

ssssX

tt eetxsXL 21 21)())(( −−− +−===

b) 0)0(;22 ==+ xxdt

dx

Applying laplace trafsorms

ssXxssX /2)(2)0()( =+−

)2(

2))((1

+=−

sssXL

+

= −−

)2(

22))(( 11

ssLsXL

=

+

−= −−

2

2/12/12))(( 11

ssLsXL

=te 21 −−

3.6 a) 52

1)(

2 +++

=ss

ssY

Page 15: solution manual_COUGHANOWR.pdf

= 52

1)(

2 +++

=ss

ssY

4)1(

12 ++

+=

s

s

=

++

+= −−

4)1(

1))((

2

11

s

sLsYL

using the table,we get

tCosetY t 2)( −=

b) 4

2 2)(

s

sssY

+=

32

21)(

sssY +=

Y(t)= 21 ))(( ttsYL +=−

c) 3)1(

2)(

−=

s

ssY

= 3)1(

222

−+−

s

s

32 )1(

2

)1(

2

−+

−=

ss

+

= −−3

1

2

1

)1(

2

)1(

2)(

sL

sLtY

= )2(2

(2 22

tteet

te ttt +=+

Page 16: solution manual_COUGHANOWR.pdf

3.7a) )1()1()1(

1)(

222 ++

+++

=+

=s

DCs

s

BAs

ssY

1)1)(()( 2 =++++ sDCsBAsthus

= 1)()(23 =+++++ DBsCADsCs

C=0,D=0

Also A=0;B=1

222222 )()()()()()(

1

)1(

1)(

is

D

is

C

is

B

is

A

isisssY

−+

−+

++

+=

−+=

+=

1)())(()())(( 2222 =+++−+−+−+ isDisisCisBisisA

1)()22()()( 23 =−+−−+++−++++−++ DCiBAiDiCBiAsDCiBAisCA

Thus,A+C=0

-Ai+B+Ci+2Di=0 ; B=D

A-2Bi+C+2Di=0

-Ai-B+Ci-D=1 Also D=-Ci;B=-Ci,

A=-C,C=-i/4

A=i/4 ; B=-1/4; D=-1/4

22 )(

4/1

)(

4/

)(

4/1

)(

4/)(

isis

i

isis

isY

−−

+−

−+

+−

++

=

22 )(

4/1

)(

4/

)(

4/1

)(

4/)(

isis

i

isis

itY

−−

+−

−+

+−

++

=

22 )(

4/1

)(

4/

)(

4/1

)(

4/)(

isis

i

isis

itY

−−

+−

−+

+−

++

=

Page 17: solution manual_COUGHANOWR.pdf

itititit teeeeitY 4/14/14/14/)( −−−= −−

)(4/1)( itititit teieteietY −−−= −−

)()()()((4/1)( tSinitCosttiSintCositSiniCostttiSinCostitY +−+−−−−= )

)22(4/1)( tCosttSintY −=

)(2/1)( tCosttSintY −=

3.8 )1(

1)(

2 +=

sssf

= 1

)(2 +

++=s

C

s

B

s

Asf

1)1()1( 2 =++++= CssBssA

Let s=0 ; A=1

s=1; 2A+B+C=1

s=-1: C=1

B=-1

1

111)(

2 +++=sss

sf

tettf −+−= )1()(

PROPERTIES OF TRANSFORMS

4.1 If a forcing function f(t) has the laplace transforms

s

e

s

ee

ssf

sss 3

2

21)(

−−−

−−

+=

2

231

s

ee

s

e sss −−− −+

−=

Page 18: solution manual_COUGHANOWR.pdf

)]2()2()1()1[()]3()([)}({)( 1 −−−−−+−−== − tuttuttutusfLtf

)3()2()2()1()1()( −−−−−−−+= tututtuttu

graph the function f(t)

4.2 Solve the following equation for y(t):

1)0()(

)(0

==∫ ydt

tdydy

t

ττ

Taking Laplace transforms on both sides

=∫ dt

tdyLdtyL

t)(

})({0

τ

)0()(.)(.1

ysyssys

−=

Page 19: solution manual_COUGHANOWR.pdf

1)(.)(.1

−= syssys

1)(

2 −=s

ssy

)cosh(1

)}({)(2

11 ts

sLsyLty

−== −−

4.3 Express the function given in figure given below the t – domain and the

s-

domain

This graph can be expressed as

)}6()6()5()5()5({)}3()3()2()2({)}5()1({ −−+−−−−+−−−−−+−−−= tuttuttututtuttutu

)6()6()5()5()3()2()2()2()1()( −−+−−−−−−−−+−= tuttuttuttuttutf

2

6

2

53

2

3

2

2

)}({)(s

e

s

e

s

e

s

e

s

e

s

etfLsf

ssssss −−−−−−

+−−−+==

2

53623

s

eeee

s

ee ssssss −−−−−− −−++

−=

Page 20: solution manual_COUGHANOWR.pdf

4.4 Sketch the following functions:

)3()1(2)()( −+−−= tutututf

)2()1(3)(3)( −+−−= tututtutf

Page 21: solution manual_COUGHANOWR.pdf

4.5 The function f(t) has the Laplace transform

22 /)21()( seeSf ss −− +−=

obtain the function f(t) and graph f(t)

2

221)(

s

eesf

ss −− +−=

2

2

2

1

s

ee

s

e sss −−− −−

−=

)]2()2()1()1{()()1()1()}({)( 1 −−−−−−+−−−== − tuttutttututsfLtf

)2()2()1()1(2)( −−+−−−= tuttutttu

4.6 Determine f(t) at t = 1.5 and at t = 3 for following function:

)2()3()1(5.0)(5.0)( −−+−−= tuttututf

Page 22: solution manual_COUGHANOWR.pdf

At t = 1.5

)2()3()1(5.0)(5.0)( −−+−−= tuttututf

)1(5.0)(5.0)5.1( −−= tutuf

05.05.0)5.1( =−=f

At t = 3

0)33(5.05.0)3( =−+−=f

RESPONSE OF A FIRST ORDER SYSTEMS

5.1 A thermometer having a time constant of 0.2 min is placed in a

temperature bath and after the thermometer comes to equilibrium with

the bath, the temperature of the bath is increased linearly with time at the

rate of I deg C / min what is the difference between the indicated

temperature and bath temperature

(a) 0.1 min

(b) 10. min

after the change in temperature begins.

© what is the maximum deviation between the indicated temperaturew

and bath temperature and when does it occurs.

(d) plot the forcing function and the response on the same graph. After the

long enough time buy how many minutes does the response lag the input.

Consider thermometer to be in equilibrium with temperature bath at

temperature Xs

0,)/1()( >°+= ttmXtX S

as it is given that the temperture varies linearly

X(t)-Xs = t

Let X(t) = X(t) - Xs = t

Page 23: solution manual_COUGHANOWR.pdf

Y(s) = G(s).X(s)

22 1

1

1

1)(

s

C

s

B

s

A

sssY ++

+=

+=

ττ

A = 12 =−= CB ττ

2

2 1

1)(

ssssY +−

+=

ττ

τ

tetY t +−= − ττ τ/)(

(a) the difference between the indicated temperature and bath temperature

at t = 0.1 min = X(0.1)_ Y(0.1)

= 0.1 - (0.2e-0.1/0.2 - 0.2+0.1) since T = 0.2 given

= 0.0787 deg C

(b) t = 1.0 min

X(1) - Y(1) = 1- (0.2e-1/0.

2 - 0.2 +1) = 0.1986

(c) Deviation D = -Y(t) +X(t)

= -τe-t/T+T =τ (-e-t/T+1)

For maximum value dD/dT = τ (-e-t/T+(_-1/T) = 0

-e-t/ = 0

as t tend to infinitive

D = τ (-e-t/T+(_-1/T) = τ =0.2 deg C

5.2 A mercury thermometer bulb in ½ in . long by 1/8 in diameter. The

glass envelope is very thin. Calculate the time constant in water flowing

at 10 ft / sec at a temperature of 100 deg F. In your solution , give a

summary which includes

(a) Assumptions used.

(b) Source of data

(c) Results

Page 24: solution manual_COUGHANOWR.pdf

T = mCp/hA = )(

)(

DLAh

CAL p

π

ρ

+

Calculation of

nm

ed CRK

hDNU (Pr)==

4.967710

10)3048.0*10)(10*54.2*8/1(Re

3

32

=== −

µρDv

d

KgKKJK

C p/2.4Pr ==

µ

Source data: Recently, Z hukauskas has given c,m ,ξ,n values.

For Re = 967704

C = 0.26 & m = 0.6

NuD = hD/K = 0.193 (9677.4)*(6.774X10-3) = 130

.h = 25380

5.3 Given a system with the transfer function Y(s)/X(s) = (T1s+1)/(T2s+1).

Find Y(t) if X(t) is a unit step function. If T1/T2 = s. Sktech Y(t) Versus

t/T2. Show the numerical values of minimum, maximum and ultimate values

that may occur during the transient. Check these using the initial value

and final value theorems of chapter 4.

1

1)(

2

1

++

=sT

sTsY

X(s) =unit step function = 1 X(s) = 1/s

Page 25: solution manual_COUGHANOWR.pdf

siT

B

s

A

sTs

sTsY

22

1

)1(

1)( +=

++

=

A = 1 B = T1 - T2

sT

TT

ssY

2

21

1

1)(

+−

+=

2/

2

211)( TteT

TTtY −−

+=

If T1/T2 = s then

2/41)( TtetY −+=

Let t/T2 = x then x

etY−+= 41)(

Using the initial value theorem and final value theorem

)()(0

ssYLimTYLimST ∞→→

=

= 51

1

1

1

2

1

2

1

2

1 ==+

+=

++

∞→∞→ T

T

sT

sT

LimsT

sTLim

SS

)()(0

ssYLimTYLimST ∞→→

= = 11

1

2

1

0=

++

→ sT

sTLimS

Figure:

Page 26: solution manual_COUGHANOWR.pdf

5.4 A thermometer having first order dynamics with a time constant of 1

min is placed in a temperature bath at 100 deg F. After the thermometer

reaches steady state, it is suddenly placed in bath at 100 deg F at t = 0 and

left there for 1 min after which it is immediately returned to the bath at

100 deg F.

(a) draw a sketch showing the variation of the thermometer reading with

time.

(b) calculate the thermometer reading at t = 0.5 min and at t = 2.0 min

min)1(1

1

)(

)(=

+= τ

ssX

sY

−=

s

e

ss

s110)(

Page 27: solution manual_COUGHANOWR.pdf

−=

s

esY

s110)(

+−

+=

)1()1(

110)(

ss

e

sssY

s

1)1(10)( <−= − tetY t

( ) 1)1()1(10)( )1( ≥−−−= −−− teetY tt

At t = 0.5 T = 103.93

At = 2 T =102.325

5.5 Repeat problem 5.4 if the thermometer is in 110 deg F for only 10 sec.

If thermometer is in 110 deg F bath for only 10 sec

60/10110 teT −−=

Page 28: solution manual_COUGHANOWR.pdf

sec60&sec100 =<< Tt

535.101sec)10( ==tT

sec10535.1100 60/)10( >+= −− teT t

T(t=30sec) = 101.099 deg F

T(t=120sec) = 100.245 deg F

5.6 A mercury thermometer which has been on a table for some time,is

registering the room temperature ,758 deg F. Suddenly, it is placed in a 400

deg F oil bath. The following data are obtained for response of the

thermometer

Time (sec) Temperature, Deg F

0 75

1 107

2.5 140

5 205

8 244

10 282

15 328

30 385

Give two independent estimates of the thermometer time constant.

Page 29: solution manual_COUGHANOWR.pdf

=

T

t

400

325ln

τ

From the data , average of 9.647,11.2,9.788,10.9,9.87,9.95, and 9.75 is 10.16 sec.

5.7 Rewrite the sinusoidal response of first order system (eq 5.24) in

terms of a cosine wave. Re express the forcing function equation (eq 5.19)

as a cosine wave and compute the phase difference between input and

output cosine waves.

τ

τωω

τ 1

1

)(1

1)(

22

+

+=

+=

ss

As

ssY

splitting into partial fractions then converting to laplace transforms

)sin(11

)(22

/

22φω

ωτωταωτ τ +

++

+= − t

Ae

AtY t

where φ = tan-1 (ωτ)

As t →∝

)

−−+

=++

= φπ

ωωτ

φωωτ 2

cos(1

)sin(1

)(2222

tA

tA

stY

−=+= tAtAtY ωπ

φω2

cos)sin()(

−=2

cos)(π

ωtAtY

The phase difference = φππ

φ =

−−−22

Page 30: solution manual_COUGHANOWR.pdf

5.8 The mercury thermometer of problem 5.6 is allowed to come to

equilibrium in the room temp at 75 deg F.Then it is immersed in a oil

bath for a length of time less than 1 sec and quickly removed from the

bath and re exposed to 75 deg F ambient condition. It may be estimated

that the heat transfer coefficient to the thermometer in air is 1/ 5th that in

oil bath.If 10 sec after the thermometer is removed from the bath it reads

98 Deg F. Estimate the length of time that the thermometer was in the bath.

t < 1 sec τ/1

1325400 teT −−=

Next it is removed and kept in 75 Deg F atmosphere

Heat transfer co-efficient in air = 1/5 heat transfer co-efficient in oil

hair = 1/5 hoil

hA

mC=τ sec10=oilτ

sec50=airτ

50/

12)75(75 t

F eTT −−+=

CTempFinalTF deg98==

50/1010/)325325(7598 1 −−−+= ee

t

91356.010/ =−te

t 1 = 0.904 sec.

5.9 A thermometer having a time constant of 1 min is initially at 50 deg C.

it is immersed in a bath maintained at 100 deg C at t = 0 . Determine the

temperature reading at 1.2 min.

τ = 1 min for a thermometer initially at 50 deg C.

Next it is immersed in bath maintained at 100 deg C at t = 0

At t = 1.2

Page 31: solution manual_COUGHANOWR.pdf

)1()( /τteAtY −−=

50)1(50)2.1( 1/2.1 +−= −eY

Y(1.2) = 84.9 deg C

5.10 In Problem No 5.9 if at, t = 1.5 min thermometer having a time

constant of 1 minute is initially at 50 deg C.It is immersed in a bath

maintained at 100 deg C at t = 0.Determine the temperature reading at t =

1.2 min.

At t = 1.5

CY °= 843.88)5.1(

Max temperature indicated = 88.843 deg C

AT t = 20 min

)1(843.13843.88 1/8.18−−−= eT

T = 75 Deg C.

5.11 A process of unknown transfer function is subjected to a unit impulse

input. The output of the process is measured accurately and is found to be

represented by the function Y(t) = t e-t. Determine the unit step response in

this process.

X(s) = 1 Y(t) = te-t

2)1(

1)(

+=

ssY

2)1(

1

)(

)()(

+==

ssX

sYsG

For determining unit step response

2)1(

1)(

+=

ssY

Page 32: solution manual_COUGHANOWR.pdf

22 )1(1)1(

1)(

++

++=

+=

s

C

s

B

s

A

ssY

A = 1 B = -1 C = -1

2)1(

1

1

11)(

+−

+−=

ssssY

tt teetY −− −−= 1)(

Response of first order system in series

7.1 Determine the transfer function H(s)/Q(s) for the liquid level shown in

figure P7-7. Resistance R1 and R2 are linear. The flow rate from tank 3 is

maintained constant at b by means of a pump ; the flow rate from tank

3 is independent of head h. The tanks are non interacting.

Page 33: solution manual_COUGHANOWR.pdf

Solution :

A balance on tank 1 gives

dt

dhAqq 111 =−

where h1 = height of the liquid level in tank 1

similarly balance on the tank 2 gives

dt

dhAqq 2221 =−

and balance on tank 3 gives

Page 34: solution manual_COUGHANOWR.pdf

dt

dhAqq 302 =−

here 1

11

R

hq =

2

22

R

hq = bq =0

So we get

dt

dhA

R

hq 1

1

1

1 =−

dt

dhA

R

h

R

h 22

2

2

1

1 =−

dt

dhAb

R

h3

2

2 =−

writing the steady state equation

011

1

1 ==−dt

dhA

R

hq SsS

dt

dhA

R

h

R

h SSS 22

2

2

1

1 =−

02

2 =−bR

h S

Subtracting and writing in terms of deviation

dt

dHA

R

HQ 1

1

1

=−

Page 35: solution manual_COUGHANOWR.pdf

dt

dHA

R

H

R

H 21

2

2

1

1 =−

dt

dHA

R

H3

2

2 =

where Q = q –qS

H1= h1-h1S

H1= h2-h2S

H = h - hS

Taking Laplace transforms

)()(

)( 11

1

1 sHsAR

sHsQ =− ---------(1)

)()()(

22

2

2

1

1 sHsAR

sH

R

sH=− --------(2)

)()(

3

2

2 sHsAR

sH= ----------(3)

We have three equations and 4 unknowns(Q(s),H(s),H1(s) and H2(s). So we

can express one in terms of other.

From (3)

sAR

sHsH

31

22

)()( = -------------(4)

Page 36: solution manual_COUGHANOWR.pdf

)1(

)()(

21

122 +

=sR

sHRsH

τ where 222 AR=τ ------------(5)

From (1)

)1(

)()(

1

11 +

=s

sQRsH

τ, 111 AR=τ ---------(6)

Combining equation 4,5,6

)1)(1)((

)()(

213 ++=

sssA

sQsH

ττ

)1)(1)((

1

)(

)(

213 ++=

sssAsQ

sH

ττ

Above equation can be written as

i.e, if non interacting first order system are there in series then there overall

transfer function is equal to the product of the individual transfer function in

series.

7.2 The mercury thermometer in chapter 5 was considered to have all its

resistance in the convective film surrounding the bulb and all its

capacitance in the mercury. A more detailed analysis would consider both

the convective resistance surrounding the bulb and that between the bulb

and mercury. In addition , the capacitance of the glass bulb would be

included.

Let

Ai = inside area of bulb for heat transfer to mercury.

Ao = outside area of bulb, for heat transfer from surrounding fluid.

.m = mass of the mercury in bulb.

mb = mass of glass bulb.

C = heat capacitance of mercury.

Page 37: solution manual_COUGHANOWR.pdf

Cb = heat capacity of glass bulb.

.hi = convective co-efficient between the bulb and the surrounding fluid.

.ho = convective co-efficient between bulb and surrounding fluid.

T = temperature of mercury.

Tb = temperature of glass bulb.

Tf = temperature of surrounding fluid.

Determine the transfer function between Tf and T. what is the effect of bulb

resistance and capacitance on the thermometer response? Note that the

inclusion of the bulb results in a pair of interacting systems, which give an

overall transfer function different from that of Eq (7.24)

Writing the energy balance for change in term of a bulb and mercury

respectively

Input - output = accumulation

dt

dTCmTTAhTTAh b

bbbiibf =−−− )()(00

dt

dTCmTTAh bii =−− 0)(

Writing the steady state equation

0)()(00 ==−−−dt

dTCmTTAhTTAh bs

bbsbsiibsfs

0)( =− sbsii TTAh

Page 38: solution manual_COUGHANOWR.pdf

Where subscript s denoted values at steady subtracting and writing these

equations in terms of deviation variables.

dt

dTCmTTAhTTAh b

bbmbiibf =−−− )()(00

dt

dTCmTTAh m

mbii =−− 0)(

Here TF = Tf - TfS

TB = Tb - TbS

Tm = T - TS

Taking laplace transforms

)()())()((00 sTCmTTAhsTsTAh BbbmBiiBF =−−− ----(1)

And )())()(( ssTmCsTsTAh BmBii =− ------(2)

= )()())()((00 ssTCmsmCSTsTsTAh BbbmBF =−−

From (2) we get

)1()(1)()( +=

+= ssTs

Ah

mCsTsT im

ii

mB τ

Where ii

iAh

mC=τ

Putting it into (1)

0)1))(1()()(00

0 =

+++− s

Ah

mCsssTsT imF ττ

Page 39: solution manual_COUGHANOWR.pdf

=

+++= s

Ah

mCsssTsT imF

00

0 )1))(1()()( ττ

=

1)(

1

)(

)(

00

0

2

0 ++++=

sAh

mCs

sT

sT

iiF

m

ττττ

=

1)(

1

)(

)(

00

0

2

0 ++++=

sAh

mCs

sT

sT

iiF

m

ττττ

Or we can write

1)(

1

)(

)(

00

0

2

0 ++++=

sAh

mCs

sT

sT

iif ττττ

ii

iAh

mC=τ and

00

0Ah

Cm bb=τ

We see that a loading term mC/ hoAo is appearing in the transfer function.

The bulb resistance and capacitance is appear in 0τ and it increases the

delay i.e Transfer lag and response is slow down.

7.3 There are N storage tank of volume V Arranged so that when

water is fed into the first tank into the second tank and so on. Each tank

initially contains component A at some concentration Co and is equipped

with a perfect stirrer. A time zero, a stream of zero concentration is

fed into the first tank at volumetric rate q. Find the resulting

concentration in each tank as a function of time.

Solution:

Page 40: solution manual_COUGHANOWR.pdf

. ith tank balance

dt

dCVqCqC i

ii =−−1

0)1( =−− issi qCqC

=

=−−

q

V

dt

dC

q

VCC i

ii

τ

)1(

Taking lapalce transformation

)()()()1( ssCisCsC ii τ=−−

)()1()()1( sCissC i τ+=−

ssC

sC

i

i

τ+=

− 1

1

)(

)(

1

Similarly

issC

sC

sC

sC

sC

sC

sC

sC

sCo

sC

i

i

i

ii

)1(

1

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

2

1

1

2

0

1

τ+=×−−−−−−−−−××=

Page 41: solution manual_COUGHANOWR.pdf

Or

N

N

ssCo

sC

)1(

1

)(

)(

τ+=

NNss

CsC

)1()( 0

τ+

−=

+−−−−−−−

+−

+−−=

− ssssCsC

NNN ττ

ττ

ττ

1)1()1(

1)(

10

−−−−−

−−

−−−=

−−

−−

τττ

ττ

tN

N

t

N

N

t

N eN

te

N

teCtC

)!2(.

)!1(.1)(

2

2

1

10

+−−−−−−

+−

−−=

−−

−1

)!2(.

)!1(.1)(

21

0N

t

N

t

eCtC

NN

t

N

τττ

7.4 (a) Find the transfer functions H2/Q and H3/Q for the three tank system

shown in Fig P7-4 where H1,H3 and Q are deviation variables. Tank 1 and

Tank 2 are interacting.

7.4(b) For a unit step change in q (i.e Q = 1/s); determine H3(0) , H3(∞)

and sketch H3(t) vs t.

Solution :

Writing heat balance equation for tank 1 and tank 2

Page 42: solution manual_COUGHANOWR.pdf

dt

dhAqq 111 =−

dt

dhAqq 2221 =−

1

211

R

hhq

−=

2

22

R

hq =

Writing the steady state equation

01 =− ss qq

021 =− ss qq

Writing the equations in terms of deviation variables

dt

dHAQQ 111 =−

dt

dHAQQ 2

221 =−

Page 43: solution manual_COUGHANOWR.pdf

1

211

R

HHQ

−=

2

22

R

HQ =

Taking laplace transforms

)()()( 111 ssHAsQsQ =−

)()()( 2121 ssHAsQsQ =−

)()()( 2111 sHsHsQR −=

)()( 222 sHsQR =

Solving the above equations we get

( )[ ]1)(

)(

2121

2

21

22

++++=

sRAs

R

sQ

sH

ττττ

Here 111 AR=τ

222 AR=τ

Now writing the balance for third tank

dt

dhAqq 3332 =−

Steady state equation

032 =− SS qq

3

3

3R

hq =

dt

dhA

R

HQ 3

3

3

3

2 =−

Page 44: solution manual_COUGHANOWR.pdf

Taking laplace transforms

)()(

)( 3

3

3

2 ssHAR

sHsQ =−

( )1)()( 3

3

3

2 += sR

sHsQ τ where 333 AR=τ

From equation 1,2,3,4 and 5 we got

[ ]1)(

1

)(

)(

2121

2

21 ++++=

sRAssQ

sQs

ττττ

Putting it in equation 6

[ ]( )11)()(

)(

32121

2

21

33

+++++=

ssRAs

R

sQ

sH

τττττ

Putting the numerical values of R1,R2 and R3 and A1,A2,A3

[ ]( )12164

4

)(

)(

2

3

+++=

ssssQ

sH

[ ]164

2

)(

)(2

2

++=

sssQ

sH

Solution (b)

ssQ

1)( =

Page 45: solution manual_COUGHANOWR.pdf

[ ]( )12164

41)(

23 +++=

sssssH

From initial value theorem

)()0( 33 ssHLimHS ∞→

=

= )164)(12(

42 +++∞→ sss

LimS

=

)164()12(

4

23

ssss

LimS

+++∞→

H3 (0) = 0

From final value theorem

)()( 30

3 ssHLimHS→

=∞

= )164)(12(

420 +++→ sss

LimS

H3 (∞) = 4

Page 46: solution manual_COUGHANOWR.pdf

7.5 Three identical tanks are operated in series in a non-interacting fashion

as shown in fig P7.5 . For each tank R=1, ττττ = 1. If the deviation in

flow rate to the first tank in an impulse function of magnitude 2,

determine

(a) an expression for H(s) where H is the deviation in level in the third

tank.

(b) sketch the response H(t)

(c) obtain an expression for H(t)

solution :

writing energy balance equation for all tanks

dt

dhAqq 1

1 =−

dt

dhAqq 2

21 =−

Page 47: solution manual_COUGHANOWR.pdf

dt

dhAqq =− 32

R

hq 11 =

R

hq 22 =

R

hq =3

So we get

01 =− SS qq

021 =− SS qq

032 =− SS qq

writing in terms of deviation variables and taking laplace transforms

)()(

)( 11 sHAR

sHsQ S=−

)()()(

221 sHAR

sH

R

sQS=−

)()()(2 sHA

R

sH

R

sHS=−

solving we get

33 )1(

1

)1()(

)(

+=

+=

ss

R

sQ

sH

τ

33 )1(

2

)1(

)()(

+=

+=

ss

sQsH

τ

Page 48: solution manual_COUGHANOWR.pdf

{ } tet

sHLtH −− ==2

2)()(2

1

tettH −= 2)(

02)(

=−= −− tt tetedt

tdH

22 tt ==

at t = 2 max will occur.

7.6 In the two- tank mixing process shown in fig P7.6 , x varies from 0 lb

salt/ft3 to 1 lb salt/ft3 according to step function. At what time does the

salt concentration in tank 2 reach 0.6 lb/ ft3 ? The hold up volume of each

tank is 6

ft3.

Solution

Writing heat balance equation for tank 1 and tank 2

dt

dyVqq yx =−

Page 49: solution manual_COUGHANOWR.pdf

dt

dlVqq cy =−

steady state equation

0=− ysxs qq

0=− csys qq

writing in terms of deviation variables and taking laplace transforms

)()()( sYsq

VsYsX =−

q

V

ss

q

VsX

sY=

+=

+

= ττ

;1

1

1

1

)(

)(

2)1(

)(

)1(

)()(

+=

+=

s

sX

s

sYsC

ττ

2)1(

1

)(

)(

+=

ssX

sC

τ

ssX

1)( =

23

6===

q

2)12(

)()(

+=

ss

sXsC

Page 50: solution manual_COUGHANOWR.pdf

2)2

1(

)4/1()(

+=

ss

sC

+

=

2)2

1(

11

4

1)(

ss

sC

+−

+

−=

2

1

1

2

11

2

1

1)(

2

ss

sC

22

2

11)(

tt

etetC−−

−−=

3/61.0)( ftsaltlbtC =

t = 4.04 min

7.7 Starting from first principles, derive the transfer functions H1(s)/Q(s)

and H2(s)/Q(s) for the liquid level system shown in figure P7.7. The

resistance are linear and R1= R2 = 1. Note that two streams are flowing

from tank 1, one of which flows into tank 2. You are expected to give

numerical values of the parameters and in the transfer functions and to

show clearly how you derived the transfer functions.

Page 51: solution manual_COUGHANOWR.pdf

Writing heat balance equation for tank 1

dt

dhAqqq a

111 =−−

1

11

R

hq =

a

aR

hq 1=

dt

dhA

R

h

R

hq

a

11

1

11 =−−=

writing the balance equation for tank 2

dt

dhAqq 2221 =−

dt

dhA

R

h

R

h 22

2

2

1

1 =−

writing steady state equations

01

1 =−−R

sh

R

hq

a

ss

Page 52: solution manual_COUGHANOWR.pdf

02

2

1

1 =−R

sh

R

sh

writing the equation in terms of deviation variables

dt

dHA

RRHQ

a

11

1

1

11=

+−

dt

dHA

R

H

R

H 22

2

2

1

1 =−

taking laplace transforms

sHARR

RRsHsQ S

a

11

1

211 )()( =

+− -----------(1)

and )()()(

22

2

2

1

1 sHsAR

sH

R

sH=− -----------(2)

from (1) we get

++

=

a

a

RR

RRsA

sQ

sH

1

11

1 1

)(

)(

+

+

+=

1)(

)(

1

11

1

1

1

sRR

ARR

RR

RR

sQ

sH

a

a

a

a

Page 53: solution manual_COUGHANOWR.pdf

[ ]1)(

)(

1

1

1

1

+

+=

s

RR

RR

sQ

sH a

a

τ ;

a

a

RR

ARR

+=

1

111τ

and from (2 ) we get

[ ]( )11)(

)(

21

1

2

1

2

1

++

+=

ss

R

R

RR

RR

sQ

sH a

a

ττ 222 AR=τ

putting the numerical values of parameters

+

=1

3

4

3

2

)(

)(1

ssQ

sH

( )113

4

3

2

)(

)(2

+

+

=ss

sQ

sH

8.1 A step change of magnitude 4 is introduced into a system having the

transfer

46.1

10

)(

)(2 ++

=sssX

sY

Determine (a) % overshoot

(b)Rise time

(c)Max value of Y(t)

(d)Ultimate value of Y(t)

(e) Period of Oscillation.

Page 54: solution manual_COUGHANOWR.pdf

Given s

sX4

)( = )46.1(

40)(

2 ++=

ssssY

The transfer function is

)1)4

6.1()(2.0

25.010

)(

)(

2 ++

×=

sssX

sY =

)14.025.0

5.22 ++ ss

5.0;25.02 == ττ

4.02 =τξand )1(4.0)5.0(2

4.0dunderdampeissystem=<==ξ

we find ultimate value of Y(t)

104

40

)46.1(

40)()(

200

==++

==→→∞→ ss

sLtssYLttYLtSSt

thus B= 10

now, from laplace transform tables

+

−−=

−)sin(

1

1110)(

2φα

ξτξt

etY

where ξξ

φτξ

α22 1

tan,1 −

=−

= −

Page 55: solution manual_COUGHANOWR.pdf

(a) Over shoot =

×−=

−=

84.0

4.0exp

1exp

2

π

ξ

πξB

A = 0.254

thus % overshoot = 25.4

c)thus, max value of Y(t) = A+B = B(0.254)+B

= 2.54+10 = 12.54

e) Period of oscillation = 21

2

ξ

πτ

−= 3.427

b) For rise time, we need to solve

r

t

ttforte ==

+

−−

−10)sin(

1

1110

2φα

ξτξ

= )sin( φατξτ

+−

rter

= 0

= 0)1589.1833.1sin(5.0

4.0

=+−

rterτ

solving we get tr = 1.082

thus

SOLUTION: % Overshoot = 25.4

Rise time = 1.0842

Max Y(t) = 12.54

U(t) Y(t) = 10

Period of oscillation = 3.427

Comment : we see that the Oscillation period is small and the decay ratio

also small = system is efficiently under damped.

Page 56: solution manual_COUGHANOWR.pdf

8.2 The tank system operates at steady state. At t = 0, 10 ft3 of wateris

added to tank 1. Determine the maximum deviation in level in both tanks

from the ultimate steady state values, and the time at which each

maximum occurs.

A1 = A2 = 10 ft3

R1 = 0.1ft/cfm R2 = 0.35ft/cfm.

As the tanks are non interacting the transfer functions are

)1(

1.0

1)(

)(

1

1

+=

+=

ss

K

sQ

sH

τ

)15.3)(1(

35.0

)1)(1()(

)(

21

22

++=

++=

ssss

R

sQ

sH

ττ

Now, an impulse of providedisftt 310)( =∂

tes

sHsQ −=+

===1

1)(10)( 1

and 15.45.3

5.3

)15.3)(1(

5.3)(

22 ++=

++=

sssssH

Now 871.15.32 === ττ

202.12

5.45.42 ====

τξξτ

thus, this is an ovedamped system

Page 57: solution manual_COUGHANOWR.pdf

Using fig8.5, for 2.1=ξ , we see that maximum is attained at

min776.1,95.0 == tt

τ

And the maximum value is around 325.02 =τ Y2 (t) = 0.174

= H2(t) = 0.174x3.5 = 0.16ft

thus max deviation is H1 will be at t = 0 = H1 = 1 ft

max deviation is H2 will be at t = 1.776 min = H2Max = 0.61 ft.

comment : the first tank gets the impulse and hence it max deviation turns out

to be higher than the deviations for the second tank. The second tank exhibits an

increase response ie the deviation increases, reaches the H2Max falls off to zero.

8.3 The tank liquid level shown operates at steady state when a step

change is made in the flow to tank 1.the transaient response in critically

damped, and it takes 1 min for level in second tank to reach 50 % of total

change. If A1/A2 = 2 ,find R1/R2 . calculate ττττ for each tank. How long does it take for level in first tank to reach 90% of total change?

For the first tank, transfer function 1

11

1)(

)(

+=

s

R

sQ

sH

τ

For the second tank )1)(1()(

)(

21

2

++=

ss

R

sQ

sH

ττ

Page 58: solution manual_COUGHANOWR.pdf

= 1)()(

)(

21

2

21

22

+++=

ss

R

sQ

sH

ττττ

1)(

1)(;

1)(

21

2

21

22 +++

==ss

R

ssH

ssQ

ττττ

21)( τττ =parameter

For 21)( τττ =parameter

+−==

−21

21

22 11)(,1ττ

ττξ

t

et

RtHfor

given, t = 1 for 21)( τττ =parameter

( ) 222 )0(1)( RRtH =−=∞→

IR

eR −=

+−=

2

111 2

1

21

221ττ

ττ

also 212 ττξτ +=

5.02

11

2

2

12211

21 ======+

==A

A

R

RRARAτ

ττξ

from I

τ

τ

11

15.01−

+=− e

Page 59: solution manual_COUGHANOWR.pdf

min372.1

min596.0

5.0

min372.1;1.0

)1(9.0

)1()(94.0

)1()(;)1(

)()3.8

%90

21

2

1

596.0

596.011

1

11

1

11

1

1

=

==

=

==

−=

−=∞→

−=+

=

t

R

R

thus

te

eRR

eRt

eRtHss

RsH

t

t

t

t

ττ

τ

τ

τ

Comment :

.tan

tansec,., 2121

kfirstthanchangestoslowlymoreresponds

ondtheRRasAlsoquicklystatesteadytheregainssystemtheindicateofvaluesSmall >ττ

8.4 Assuming the flow in the manometer to be laminar function between

applied pressure P1 and the manometer reading h. Calculate a) steady sate

gain ,b) τ ,c) ξ . Comment on the parameters and their relation to the physical nature of this problem.

Page 60: solution manual_COUGHANOWR.pdf

Assumptions:

Cross-sectional area =a

Length of mercury in column = L

Friction factor = 16/Re (laminar flow)

Mass of mercury = mrg

Writing a force balance on the mercury

Mass X acceleration = pressure force - drag force - gravitational force

)(2

)(2

12

2

ghAu

AfApdt

hdAL ρ

ρρ −−=

g

ph

dt

dh

gDdt

hd

g

L

ρρµ 1

2

2 8=++

At Steady state, g

ph ss ρ

1=

= g

pH

dt

dH

gDdt

Hd

g

L

ρρµ 1

2

2 8=++

= [ ]g

spsHssH

gDsHs

g

L

ρρµ )(

)()(8

)( 12 =++

= [ ] )()(1 132

2

1 spksHsksk =++

Page 61: solution manual_COUGHANOWR.pdf

= )1()(

)(

2

2

1

3

1

1

++=

sksk

k

sp

sH

Where ;1g

Lk = ;

82

gDk

ρµ

= ;1

3g

=

Thus )12()(

)(22

1

1

++=

ss

R

sp

sH

ξττ

Where ;1

gR

ρ= ;2

g

L=τ ;

82

gDρµ

ξτ =

Now ;)g

Lb =τ

1

4

2

1.

8)

==

g

L

gDgDc

ρµ

τρµ

ξ

Steady state gain

;1

)(0 g

RsGLtS ρ

==→

Comment : a) τ is the time period of a simple pendulum of Length L.

b) ξ is inversely proportional to τ , smaller the τ ,the system will

tend to move from under damped to over damped characteristics.

8.5 Design a mercury manometer that will measure pressure of upto 2

atm, and give responses that are slightly under damped with ξ = 0.7

Parameter to be decide upon :

.a) Length of column of mercury

.b) diameter of tube.

Page 62: solution manual_COUGHANOWR.pdf

Considering hmax to be the maximum height difference to be used

;13600*81.9

10*01325.1*2 5

maxmax1 === hghp ρ

;51.1max mh =

Assuming the separation between the tubes to be 30 cm,

We get an additional length of 0.47 m;

Which gives us the total length L= 1.5176.47

L = 2 M

Now, ξ = 0.7 = 7.04

=

L

g

gDρµ

00015.0

10*5.181.9*13600*74.0

2

81.9*10*6.1*4

7.0

47

3

=

=== −

g

L

g

µ

As can be seen, the values yielded are not proper, with too small a diameter

and too large a length. A smaller ξ value and lower measuring range of

pressure might be better.

Page 63: solution manual_COUGHANOWR.pdf

8.6 verify that for a second order system subjected to a step response,

[ ]ξξ

τξ

ξτξ 2

12

2

1tan1sin

1

11)(

−+−

−−= −

− tetY

t

With ξ <1

)12(

11)(

22 ++=

ssssY

ξττ

baswhere

ssssss

+−=−

+−

=

−−=++

τξ

τξ

ξττ

1

))((12

2

1

21

22

bas −−=−

+−

ξτξ 12

2

))((

1

)(21

2

ssssssY

−−

−+

−+=

)()(

1)(

21

2 ss

C

ss

B

s

AsY

τ

−+

−+=

)()(

1)(

21

2 ss

C

ss

B

s

AsY

τ

0

1)()())(( 12211

2

=++

=−+−+++−

CBA

ssCsssBsssssssA s

Page 64: solution manual_COUGHANOWR.pdf

1)( 121 =−−+− CsBsssA s

2121

1

11;1

ssCB

ssAsAs s −=+===

1

22

1

sCsBs −=+=

2121

2121

11

ssss

ssCsCs =−

+=+=

)(

11

)(

1

)(

1

12121122122 ssssssssB

sssC

−−=−

−−==

−==

( ) ( ) ( )

−−+

−=−

=

2122112121

2

1.)(

11.

11.

11)(

ssssssssssssssY

τ

8.6

−+

−−= tstS

esss

esssss

tY 21

)(

1

)(

111)(

12212121

21

2

1

ssτ= 1

−−= tStS e

se

ssstY 21

2112

2

11

)(

11)(

τ

[ ]tStS esesss

tY 21

12

12 )(

11)( −

−−=

[ ]tStSesestY 21

122 12

1)( −−

+=ξ

τ

Page 65: solution manual_COUGHANOWR.pdf

[ ]btjbtjbabtjbtjbaje

tY

t

sin)(cos()sin)(cos(12

1)(2

−+−−+−−−

−=−

ξ

τ τξ

[ ])sincos(212

1)(2

btabtbjbje

tY

t

+−−

−=−

ξ

τ τξ

[ ])sin()cos(11

1)( 2

2tt

etY

t

αξαξξ

τξ

+−−

−=−

[ ]ξξ

α21−

=

[ ]

−= −

ξξ

φ2

1 1tan

verified

8.14 From the figure in your text Y(4) for the system response is

expressed

b) verify that for ,1=ξ and a step input

τ

τ

t

et

tY−

+−= 11)(

Page 66: solution manual_COUGHANOWR.pdf

1

11)(

22 ++=

ssssY

ττ

22 )1()1(

1)(

++

+=+ ττ

CBs

B

A

sssY

1)12(222 =+++ CsBsssA ττ

02 =+ BAτ

02 =+CAτ

A=1; 2τ=B ; τ2=C

( )21

)1(1)(

+

++−=

s

s

ssY

ττττ

( ) 2)1(1

1)(

+−

+−=

ssssY

ττ

ττ

ττ

τ

tt

teetY−−

−−=1

1)(

τ

τ

t

tet

tY−

+−= )1(1)(

proved

c) for ,1>ξ prove that the step response is

[ ])sinh()cosh(1)( ttetY

t

αβατξ

+−=−

Page 67: solution manual_COUGHANOWR.pdf

1

1

2

2

−=

−=

ξ

ξβ

τξ

α

Now ))((

/1)(

21

2

ssBsssY

−−=

τ

Where

τξ

τξ 12

1

−+−=s

τξ

τξ 12

2

−−−=s

from 8.6(a)

−−+

−−−=

)(

1

)(

1

)(

1

)(

1111)(

2122112121

2 ssssssssssssstY

τ

[ ]tStSeses

sstY 21

12

12 )(

11)( −

−−=

−+−−

−−−

−+=

−−−

−teeeetY

ttt

τξ

τξτ

ξ

τξ

τξξ

τξξ

ξ

τ 12

1

1

2

2

2

2

11

121)(

−−−−+−−

+=−

−−

−−

−−

tttt

t

eeeeee

tY τξ

τξ

τξτ

ξ

τξ

ξξξξξ

1

2

1

2

1

2

22

2

1112

1)(

Page 68: solution manual_COUGHANOWR.pdf

+−

−−+=

−−−

2211)(

2

ttttteeee

etYαααα

τξ

ξ

ξ

[ ])sinh()cosh(1)( ttetY

t

αβατξ

+−=−

8.7 Verify that for a unit step-input

(1) overshoot =

−21

expξ

πξ

(2) Decay ratio =

−21

2exp

ξ

πξ

For a unit step input the response (ξξξξ<1):

−+−

−−= −

ξξ

τξ

ξ

τξ

2

12

2

1tan1

11)(

tSin

etY

t

(1) we have to find time t where the maxima occurs

= dY/dt = 0

−+−

−= −

ξξ

τξ

ξτ

ξ τξ

2

12

2

1tan1

1

) tSin

e

dt

dY

t

01

tan12

12 =

−+−− −

ξξ

τξ

τ

τξ

tCos

e

t

=

−+− −

ξξ

τξ

2

12 1tan1tan

t=

ξξ 21−

πξξ

nt=

− 21

for maxima

= πξξ

nt

21 2

=−

Page 69: solution manual_COUGHANOWR.pdf

= 21 ξ

π

−=

tt

8.8 Verify that for X(t) =A sin ωωωωt, for a second order system,

( ) ( ))sin(

2)(1

)(222

φωξτω

++−

= t

t

AtY

2

1

)(1

2tan

ωτξωτ

φ−

−= −

)12(

1

)()(

2222 +++=

sss

AsY

ξττω

−+

−+

++

−=

)()()()(

2

1

1

111

2 ss

D

ss

C

js

B

js

AAsY

ωωτω

Now as tBtAtYt ωω sincos)(, 1111 +=∞→

Where 1111 BAA +=

)( 1111 BAjB −=

to determine ordertheinjjsputBA ωω −= ,, 11

))((2 21

1

sjsj

jA

−−−

=ωωω ))((2 21

1

sjsj

jB

++=

ωωω

−−−

++=

))((

1

))((

1

2 2121

11

sjsjjsjs

jA

ωωωωω

Page 70: solution manual_COUGHANOWR.pdf

++

+++−−+−−−=

))((

)()(

2 22

2

22

1

2121

2

2121

211

ωωωωωωωω

ω ss

ssjsjsssjsjsjA

++

+=

))((

)(22

2

22

1

2111

ωω ss

ssA similarly

++

−=

))((

)(22

2

22

1

2

2111

ωωωωss

ssB

using 22121

12

ττξ

=−

=+ ssss

=2

2

22

22

2

2

1

)12(224

τξ

ττξ −

=−=+ ss

+−+

−=

42

2

2

4

2

11

)12(21

2

ωξτω

τ

τξ

τωA

A

22

2

2

3

21

2

+

=

τξω

τω

τωξA

= 222 )2())(1(

2

ξωτωτωξτ+−

− A

and

+

−=

22

2

2

2

211

21

1

τξω

ωτ

ω

ωτ

τϖA

B

222

2

)2())(1(

))(1(

ξωτωτωτ+−

−=

A

Page 71: solution manual_COUGHANOWR.pdf

Thus 211

11

)(1

2tan

ωτωτξ

φ−−

==B

A

And,222 )2())(1(( ξωυωτ +−

=A

ANew (using NewABA =+22

1111

Thus, )()2())(1((

)(222

φωξωυωτ

++−

= tSinA

tY

proved

8.9) If a second- order system is over damped, it is more difficult to

determine the parameters τξ & experimentally. One method for determining

the parameters from a step response has been suggested by R.c Olderboung

and H.Sartarius (The dynamics of Automatic controls,ASME,P7.8,1948),as

described below.

(a) Show that the unit step response for the over damped case may

be written in the form.

21

2112

1)(rr

ererts

trtr −−=

Where r1 and r2 are the roots of

01222 =++ ss ξττ

(b) Show that s(t) has an inflection point at

)(

)/ln(

12

12

rr

rrti −

=

© Show that the slope of the step response at the inflection point

)()( 1

ittts

dt

sd

i

=−

Where, itrtr

i ererts 21

21

1 )( −=−=

Page 72: solution manual_COUGHANOWR.pdf

)(

1

21

211 rrr

r

rr

−=

(d) Show that the value of step response at the inflection point is

)(1)( 1

21

211

ii tsrr

rrts += and that hence

21

1

11

)(

)(1

rrts

ts

i

i −−=−

(e) on a typical sketch of a unit step response show distances equal to

)(

1&

)(

)(1

11

ii

i

tsts

ts−

(f) Relate 21 && rrtoτξ

(a) ))((

1

12

1

)12

1)(

21

2

2

2

2

22 rsrsss

sssG

−−=

+

+

=++

= τ

ττξτ

ξττ

= ))((

1

)(21

2

rsrsssY

−−= τ

2121 ))((

1

rs

C

rs

B

s

A

rsrss −+

−+=

−−

)()())((1 1221 rscsrsBsrsrsA −+−+−−=

Put s= 0 = Ar1r2 =1 ; 2τ=A

Put )(

1;1)(

211

2111rrr

BrrBrrs−

==−==

)(

1;1)(

122

1222rrr

CrrCrrs−

==−==

−−+

−−+=

))((

1

))((

11)(

21221211

2

2 rsrrrrsrrrssY

ττ

Page 73: solution manual_COUGHANOWR.pdf

−+

−+=

)()(

1)(

122211

2

2

21

rrr

e

rrr

etY

trtr

ττ

[ ]

−−= trtr erer

rrtY 12

21

21

11)(

)(1)(

21

2112

rr

erertY

trtr

−−=φ

(b) For inflection point , 0&02

3

2

2

==dt

sd

dt

sd

21

21 )( 22

rr

eerr

dt

dstrtr

−−=

0)(

21

1221

2

2 22

=−

−−=

rr

ererrr

dt

sdtrtr

itrrtrtr er

rereu

)(

1

212

2112 −====

21

1

2ln

rr

r

r

ti −

==

(c ) )()( '

ittts

dt

tds

i

==

]

−−=

−− 12

1

21

1

2

1

2

21

21rr

r

rr

r

r

r

r

r

r

rr

rr

Page 74: solution manual_COUGHANOWR.pdf

−−=

− 12

1

21

1

2

21

2

1

1

2

21

21rr

r

rr

r

r

r

r

rr

r

r

r

rr

rr

=

−−

− 12

1

1

2

21

211 )( rr

r

r

r

r

rr

rrr

−=

=

12

1

1

21

)( rr

r

tt

r

i r

rr

dt

tds

Also )(

()(

21

)

2112

rr

eerr

dt

tdstrtr

tt i −

−−=

=

−−=

=1

)(

)(

2

1

21

211

r

r

rr

err

dt

tdstr

tt i

trtr

tterer

dt

tds

i

21

21

)(−=−=

=

(d) 21

1

2

2

11

21

21

)(

11)(12

rr

r

r

r

rts

rr

ererts

irttr

i

ii

+=−

−−=

= 21

1

2

2

11 )(

1)(rr

r

r

r

rts

ts

i

i −

+==

Now

Page 75: solution manual_COUGHANOWR.pdf

+==−

21

1 11)(1)(

rrtsts ii

−−==

21

'

11

)(

)(1

rrts

ts i

21

21221

1;

11

rrrrrr ====+ τ

ττ

;2

21 =−

=+τξ

rr ξ2121 2 rrrr −=+

+−=

1

2

2

1

2

1

r

r

r

proved.

8.10 Y(0),Y(0.6),Y(∞ ) if

)12(

)1(251)(

2 +++

=ss

s

ssY

)125

2

25(

111)(

2

++

+=sss

sY

Y(s) impulse response + step response of G(s)

Where

)125

2

25(

1)(

2

++=

sssG

Page 76: solution manual_COUGHANOWR.pdf

ξξ

τξ

τξτξ 2

12

2

1tan1sin

1

1)(

−+−

−= −− t

etY

t

Y(t) = 1+5.0.3e-t sin (4.899t)-1.02e

-t sin(4.899t+1.369)

Y(0)= 1-1=0

Y(0.6) = 1+0.561+0.515

Y(∞ ) =1

Comment : as we can see ,the system exhibits an inverse response by

increasing from zero to more than 1 and as t tend to ∞ ,will reach the steady state value of 1.

8.11 In the system shown the dev in flow to tank 1 is an impulse of

magnitude 5 . A1 = 1 ft2, A2 = A3 = 2 ft

2 , R1 = 1 ft/cfm R2 = 1.5 ft/cfm .

(a) Determine H1(s), H2(s),

H3(s)

Transfer function for tank 1 )1(

1

)(

)(

1

1

+=

ssQ

sH

τ

)1(

5)(1 +=

ssH

Page 77: solution manual_COUGHANOWR.pdf

from tank 2, )13)(1(

5.1

)1)(1()(

)(

21

22

++=

++=

ssss

R

sQ

sH

ττ

for tank 3, dt

dhAqq c

332 =−

dt

dhAQconstqq c

3323 )( ===

dt

dhA

R

H 33

2

2 =

thus, ssH

sH

R

sHsSHA

3

1

)(

)()()(

2

3

2

233 ===

ssH

sH

R

sHsSHA

3

1

)(

)()()(

2

3

2

233 ===

)13)(1(

5.0

)(

)(3

++=

ssssQ

sH

8.11© )1(

5)(1 +=

ssH

tetH −= 5)(1

AH 155.0)46.3(1 =

143

5.1

)(

)(2

2

++=

sssQ

sH

143

5.7)(5)1(

22 ++===

sssHQ

Page 78: solution manual_COUGHANOWR.pdf

3=τ

42 =ξτ

155.132

4

2

4===

τξ

from fig 8.5

τξ

tand155.1= = 2

3

46.3===

τξ

t

5.7265.0)(2 XtH =τ

147.15.7265.0

)(2 ==τX

tH

)143(

5.0

)(

)(2

3

++=

ssssQ

sH

)143(

5.2)(5)(

23 ++===

ssssHsQ

3=τ3

2=ξ

from fig 8.2 at 155.1,2 == ξτt

Y(t) =0.54

H3(t) =0.54*2.5 = 1.35

Page 79: solution manual_COUGHANOWR.pdf

8.12 sketch the response Y(t) if )12.1(

)(2

2

++=

ss

esY

S

Determine Y(t) for t = 0,1,5,∞

22

2

22

2

2

2

)8.0()6.0(

)8.0(

8.0

1

)8.0()6.0()12.1()(

++=

++=

++=

−−−

s

e

s

e

ss

esY

SSS

0)(,

14.0)5(,5

0)1(,1

0)0(0

2))2(8.0sin(25.1)( )2(6.

=∞∞=

==

==

==

≥−= −−

Yt

Yt

Yt

Ytfor

ttetY t

Problem 8.13 The system shown is at steady state at t = 0, with q = 10

cfm

A1 = 1ft2,A2=1.25ft

2, R1= 1 ft/cfm, R2= 0.8 ft/cfm.

a) If flow changes fro 10 to 11 cfm, find H2(s).

b) Determine H2(1),H2(4),H2(∞ ) c) Determine the initial levels h1(0),h2(0) in the tanks.

d) obtain an expression for H1(s) for unit step change.

Page 80: solution manual_COUGHANOWR.pdf

Writing mass balances,

( ))1tan(1

1

1

21 kfordt

dhA

R

hhq =

−−

At steady state ( )

SS

ss hhR

hhq 21

1

21

2 −=−

Also for tank 2

( )dt

dhA

R

h

R

hh 22

2

2

1

21 =−−

At steady state ( )

810*8.08.01

2

221 ====−

S

Sss hhhh

181 =Sh

C) 181 =Sh ft fth 8)0(2 =

The equations in terms of deviation variables

dt

dHAQQ 111 =− where

1

211

R

HHQ

−=

dt

dHAQQ 2

221 =−2

22

R

HQ =

18.2

8.0

1)()(

)(2

2121

2

21

22

++=

++++=

sssRAs

R

sQ

sH

ττττ

Page 81: solution manual_COUGHANOWR.pdf

))(31.8()18.2(

8.0)(

22 aAnssss

sH++

=

Step response of a second order system

4.12

8.2;8.22

112

===

===

ξξτ

ττ

)(176.0)22.0(8.0)(;11) 2 figfromfttHt

ta =====τ

)(624.0)78.0(8.0)(;44) 2 figfromfttHt

tb =====τ

fttHtc 8.0)() 2 =∞→=∞→

Thus

ftH 176.0)1(2 =

ftH 624.0)4(2 =

ftH 8.0)(2 =∞

8.13(d) we have

)()()()( 111 sHsAsQsQ =

)()()()( 2221 sHsAsQsQ =−

)()()()()()( 22112 sHsAsHsAsQsQ +=−

+=− )()(

1)()()( 22

2

11 sHsAR

sHsAsQ

Page 82: solution manual_COUGHANOWR.pdf

+= )(

12

2

2 sHR

−=

sH

ssHAsQRsH

2

1122

)()(()(

τ

We have Deg

R

sRAs

R

sQ

sH 2

2121

2

21

22

1)()(

)(=

++++=

ττττ

+

−=

)1(

)()(()(

2

11222

s

ssHAsQR

Deg

sHR

τ

−−=

+

)(

)(1

1 11

2

sQ

sHsA

Deg

−−=

−=

Deg

sDeg

sADeg

sH

sAsQ

sH2

1

2

1

11)(1

1

)(

)( ττ

−−++++=

Deg

ssRAs

sAsQ

sH22121

2

21

1

11)(1

)(

)( τττττ

=

++=

Deg

sRAs

sAsQ

sH )1

)(

)(21121

1

τττ

++++

++=

1)(

)1(

)(

)(

2121

2

21

212

sRAs

sRR

sQ

sH

τττττ

Page 83: solution manual_COUGHANOWR.pdf
Page 84: solution manual_COUGHANOWR.pdf

8.14

( ))18.04(

422)(

2 +++

=ss

s

ssY

( )

)18.04(

24)(

2 +++

=ss

s

ssY

)18.04(

1214)(

2 ++

+=sss

sY

)18.04(

8)(

2 ++=

ssssY +

)18.04(

42 ++ ss

= (step response) + (impulse response)

24, ==τNow ; 8.02 =ξτ

2.0=ξ

also, 22

4==

τt

impulse response τY(t) = 4*0.63 = 2.52 (from figure)

step response = 8*1.15 = 9.2 (from figure)

Y(4) = 1.26+9.2

Y(4) =10.46

Page 85: solution manual_COUGHANOWR.pdf

Q 9.1. Two tank heating process shown in fig. consist of two identical,

well stirred tank in series. A flow of heat can enter tank2. At t = 0 , the flow rate of heat

to tank2 suddenly increased according to a step function to 1000 Btu/min. and the temp

of inlet Ti drops from 60oF to 52oF according to a step function. These changes in heat

flow and inlet temp occurs simultaneously.

(a) Develop a block diagram that relates the outlet temp of tank2 to inlet

temp of tank1 and flow rate to tank2.

(b) Obtain an expression for T2’(s)

(c) Determine T2(2) and T2(∞)

(d) Sketch the response T2’(t) Vs t.

Initially Ti = T1 = T2 = 60oF and q=0

W = 250 lb/min

Hold up volume of each tank = 5 ft3

Density of the fluid = 50 lb/ft3

Heat Capacity = 1 Btu/lb (oF)

Solution:

(a) For tank 1

w

Ti

T1

T2

w

q

Page 86: solution manual_COUGHANOWR.pdf

Input – output = accumulation

WC(Ti – To) - WC(T1 – To) = ρ C V dt

dT1 -------------------------- (1)

At steady state

WC(Tis – To) - WC(T1s – To) = 0 ------------------------------------(2)

(1) – (2) gives

WC(Ti – Tis) - WC(T1 – T1s) = ρ C V dt

dT 1'

WTi’ - WT1

’ = ρ V

dt

dT 1'

Taking Laplace transform

WTi(s) = WT1(s) + ρ V s T1(s)

ssTi

sT

τ+=1

1

)(

)(1 , where τ = ρ V / W.

From tank 2

q + WC(T1 – To) - WC(T2 – To) = ρ C V dt

dT2 -------------------------- (3)

At steady state

qs + WC(T1s – To) - WC(T2s – To) = 0 ------------------------------------(4)

(3) – (4) gives

Q ‘ + WC(T1 – T1s) - WC(T2 – T2s) = ρ C V dt

dT 2'

Q ‘ + WCT1’ - WCT2

’ = ρ C V dt

dT 2'

Taking Laplace transform

Page 87: solution manual_COUGHANOWR.pdf

Q (s) + WC(T1(s) - T2(s)) = ρ C V s T2(s)

++

= )()(

1

1)( 12 sT

WC

sQ

ssT

τ , where τ = ρ V / W.

(b) τ = 50*5/250 = 1 min

WC = 250*1 = 250

Ti(s) = -8/s and Q(s) = 1000/s

Now by using above two equations we relate T2 and Ti as below and after taking laplace

transform we will get T2(t)

( )

( )

( )4)84()(

1

1

1

118

)1(

114)(

1

8

)1(

4)(

)(1

1

250

)(

1

1)(

2

22

22

22

−+=

+−

+−−

+−=

+−

+=

++

+=

−t

i

ettT

ssssssT

sssT

sTs

sQ

ssT

ττ

(c) T2’(2) = -1.29

T2(2) = T2’(2) + T2s = 60 – 1.29 = 58.71 oF

T2’(∞) = -4

T2(∞) = T2’(∞) + T2s = 60 – 4 = 56 oF

Page 88: solution manual_COUGHANOWR.pdf

Q – 9.2. The two tank heating process shown in fig. consist of two identical , well stirred

tanks in series. At steady state Ta = Tb = 60oF. At t = 0 , temp of each stream changes

according to a step function

Ta’(t) = 10 u(t) Tb’(t) = 20 u(t)

(a) Develop a block diagram that relates T2’ , the deviation in the temp of tank2,

to Ta’ and Tb’.

(b) Obtain an expression for T2’(s)

(c) Determine T2(2)

W1 = W2 = 250 lb/min

V1 = V2 = 10 ft3

ρ1 = ρ2 = 50 lb/ft3

C = 1 Btu/lb (oF)

0.5

0.85

-4

0

T2’(t)

t

Page 89: solution manual_COUGHANOWR.pdf

Solution:

(a) For tank1

ssTa

sT

1

1

1

1

)(

)(

τ+= , where τ1= ρ V / W1.

For tank2

W1C(T1 – To) +W2C(Tb – To) – (W1+W2)C(T2 – To)= ρ C V dt

dT2 ------ (1)

At steady state

W1C(T1s – To) +W2C(Tbs – To) – (W1+W2)C(T2s – To)= 0 -----------------(2)

(1) – (2)

W1T1’ + W2Tb

’- W3T2

’ = ρ V

dt

dT 2'

Taking L.T

W1T1(s) + W2Tb(s)- W3T2(s) = ρVs T2(s)

W1

Ta

T1

T2

W3=W1+W2

Tb

W2

W1

Page 90: solution manual_COUGHANOWR.pdf

[ ])(3

2)(3

11

1)( 12 ST

WWST

WW

ssT b+

+=

τ where τ= ρ V / W3.

(b) τ1 = 50*10/250 = 2 min

τ = 50*5/250 = 1 min

W1/W3 = 1/2 = W2/W3

Ta(s) = 10/s and Tb(s) = 0/s

Now by using above two equations we relate T1 and Ta as below and after taking laplace

transform we will get T2(t)

Page 91: solution manual_COUGHANOWR.pdf

( )

( )

( )

( )2

2

2

2

2

2

1

2

10515)(

21

20

1

515)(

)21)(1(

2015)(

1

10

)21)(1(

5)(

1

)(2

1

)21)(1(

)(2

1

)(

1

)(2

1

)1(

)(2

1

)(

tt

ba

b

eetT

ssssT

sss

ssT

ssssssT

s

sT

ss

sTsT

s

sT

s

sTsT

−− −−=

+−

+−=

+++

=

+−

++=

+−

++=

+−

+=

(c) T2’(2) = 10.64 oF

T2(2) = T2’(2) + T2s = 60 + 10.64 = 70.64 oF

Q – 9.3. Heat transfer equipment shown in fig. consist of tow tanks, one nested inside the

other. Heat is transferred by convection through the wall of inner tank.

1. Hold up volume of each tank is 1 ft3

2. The cross sectional area for heat transfer is 1 ft2

3. The over all heat transfer coefficient for the flow of heat between the tanks is 10

Btu/(hr)(ft2)(oF)

4. Heat capacity of fluid in each tank is 2 Btu/(lb)(oF)

5. Density of each fluid is 50 lb/ft3

Initially the temp of feed stream to the outer tank and the contents of the outer tank are

equal to 100 oF. Contents of inner tank are initially at 100 oF. the flow of heat to the inner

tank (Q) changed according to a step change from 0 to 500 Btu/hr.

(a) Obtain an expression for the laplace transform of the temperature of inner

tank T(s).

(b) Invert T(s) and obtain T for t= 0,5,10, ∞

Page 92: solution manual_COUGHANOWR.pdf

Solution:

(a) For outer tank

WC(Ti – To) + hA (T1 – T2)- WC(T2 – To) = ρ C V2 dt

dT2 -------------------------- (1)

At steady state

WC(Tis – To) + hA (T1s – T2s)- WC(T2s – To) = 0 ------------------------------------ (2)

(1) – (2) gives

WCTi’ + hA (T1’ – T2’)- WCT2’ = ρ C V2 dt

dT '2

Substituting numerical values

10 Ti’ + 10 ( T1’ – T2’) – 10 T2’ = 50dt

dT '2

Taking L.T.

Ti(s) + T1(s) – 2T2(s) = 5 s T2(s)

Now Ti(s) = 0, since there is no change in temp of feed stream to outer tank. Which gives

ssT

sT

52

1

)(

)(

1

2

+=

Q 10 lb/hr

T1

T2

Page 93: solution manual_COUGHANOWR.pdf

For inner tank

Q - hA (T1 – T2) = ρ C V1 dt

dT1 --------------------- (3)

Qs - hA (T1s – T2s) = 0 ------------------------------- (4)

(3) – (4) gives

Q’ - hA (T1’– T2’ ) = ρ C V1 dt

dT '1

Taking L.T and putting numerical values

Q(s) – 10 T1(s) + 10 T2(s) = 50 s T1(s)

Q(s) = 500/s and T2(s) = T1(s) / (2+ 5s)

)(5052

)(10)(10

5001

11 ssT

s

sTsT

s=

++−

++

−= 152

15)(

501

sssT

s

)11525(

)52(50)(

21 +++

=sss

ssT

( )( )50

18.2650

82.3

)52(2)(1

++

+=

sss

ssT

( ) ( )50

18.26

29.5

5082.3

71.94100)(1

+−

+−=

ssssT

5018.26

5082.3'

1 e 5.29 -e 94.71 - 100 (t)Ttt −−

=

and

5018.26

5082.3

1 e 5.29 -e 94.71 - 200 (t)Ttt −−

=

For t=0,5,10 and ∞

T(0) = 100 oF

T(5) = 134.975 oF

T(10) = 155.856 oF

T(∞) = 200 oF

Page 94: solution manual_COUGHANOWR.pdf

Q – 10.1. A pneumatic PI controller has an output pressure of 10 psi,

when the set point and pen point are together. The set point and pen point are suddenly

changed by 0.5 in (i.e. a step change in error is introduced) and the following data are

obtained.

Determine the actual gain (psig per inch displacement) and the integral time.

Soln:

e(s) = -0.5/s

for a PI controller

Y(s)/e(s) = Kc ( 1 + τI-1/s)

Y(s) = -0.5Kc ( 1/s + τI-1/s2)

Y(t) = -0.5Kc ( 1 + τI-1 t )

At t = 0+ y(t) = 8 � Y(t) = 8 – 10 = -2

2=0.5Kc

Kc = 4 psig/in

At t=20 y(t) = 7� Y(t) = 7-10 = -3

3 = 2 ( 1 + τI-1 20 )

τI = 40 sec

Q-10.2. a unit-step change in error is introduced into a PID controller. If KC = 10 , τI = 1

and τD = 0.5. plot the response of the controller P(t)

Soln:

P(s)/e(s) = KC ( 1 + τD s+ 1/ τIs)

For a step change in error

Time,sec Psig

0- 10

0+ 8

20 7

60 5

90 3.5

Page 95: solution manual_COUGHANOWR.pdf

P(s) = (10/s)(1 + 0.5 s + 1/s )

P(s) = 10/s + 5 + 10/s2

P(t) = 10 + 5 δ(t) + 10 t

Q – 10.3. An ideal PD controller has the transfer function

P/e = KC ( τD s + 1)

An actual PD controller has the transfer function

P/e = KC ( τD s + 1) / (( τD/β) s + 1)

Where β is a large constant in an industrial controller

If a unit-step change in error is introduced into a controller having the second

transfer function, show that

P(t) = KC ( 1 + A exp(-βt/ τD))

Where A is a function of β which you are to determine. For β = 5 and KC =0.5,

plot P(t) Vs t/ τD. As show that β � ∞, show that the unit step response approaches that

for the ideal controller.

Soln:

P/e = KC ( τD s + 1) / (( τD/β) s + 1)

For a step change, e(s) = 1/s

P(s) = KC s( τD s + 1) / (( τD/β) s + 1)

10

15

10(1+t)

P(t)

t

Page 96: solution manual_COUGHANOWR.pdf

=

+

+

βτ

βτ

ssK

D

D

C

1

111

P(t) =

+−

D

t

D

D

C eK τβ

βτ

βτ 11

1

=

−+

−D

t

C eK τβ

β )1(1

So, A = β – 1

P(t) = 0.5 ( 1 + 4 exp(-5t/ τD))

As β � ∞ then τD/β � 0 and

P/e = KC ( τD s + 1) / (( τD/β) s + 1) becomes

P/e = KC ( τD s + 1) that of ideal PD controller

Q – 10.4. a PID controller is at steady state with an output pressure of a psig. The set

point and pen point are initially together. At time t=0, the set point is moved away from

2.5

0.5

P(t)

t/τD

Page 97: solution manual_COUGHANOWR.pdf

the pen point at a rate of 0.5 in/min. the motion of the set point is in the direction of lower

readings. If the knob settings are

KC = 2 psig/in of pen travel

τI = 1.25 min

τD = 0.4 min

plot output pressure Vs time

Soln:

Given de/dt = -0.5 in/min

s e(s) = -0.5

Y(s)/e(s) = KC ( 1 + τD s+ 1/ τIs)

Y(s) = -( 1/s + 1/ τIs2 + τD )

Y(t) = -( 1 + t/1.25 + 0.4 δ(t) )

Y(t) = y(t) – 9 = - ( 1 + t/1.25 + 0.4 δ(t) )

y(t) = 8 – 0.8 t – 0.4 δ(t)

Q – 10.5. The input (e) to a PI controller is shown in the fig. Plot the output of the

controller if KC = 2 and τI = 0.5 min

9

8

7.6

10

y(t)

t

Page 98: solution manual_COUGHANOWR.pdf

e(t) = 0.5 ( u(t) - u(t-1) - u(t-2) + u(t-3) )

e(s) = (0.5/s) ( 1 – e-s - e

-2s + e

-3s )

P(s)/e(s) = KC ( 1 + (1 / τI s) ) = 2 ( 1+ 2/s )

P(s) = ( 1/s + 2/s2 ) (1 – e-s - e-2s + e-3s )

P(t) = 1 + 2t 0 ≤ t < 1

= 2 1 ≤ t < 2

= 5 – 2t 2 ≤ t < 3

= 0 3 ≤ t < ∞

Q – 12.1. Determine the transfer function Y(s)/X(s) for the block diagrams shown.

Wxpress the results in terms of Ga, Gb and Gc

0 1

2 3

4

t, min

0.5

e

-0.5

Page 99: solution manual_COUGHANOWR.pdf

Soln.

(a) Balances at each node

(1) = GaX

(2) = (1) – Y = GaX – Y

(3) = Gb(2) = Gb(GaX – Y)

(4) = (3) + X = Gb(GaX – Y) + X

Y = Gc(4) = Gc (Gb(GaX – Y) + X)

= GaGbGcX – GbGcY + GcX

GbGc

GaGbGc

X

Y

++

=1

)1(

(b) Balances at each node

(1) = X – (4)

(2) = Gb(1) = Gb( X – (4))

(5) = GcX/Ga

(3) = Gc(2) = GbGc( X – (4))

(4) = (3) + (5) --------------------------- 5

= GbGc( X – (4)) + GcX/Ga

Y = Ga(4)

From the fifth equation

(4) = GbGcX – GbGc(4) + GcX/Ga ----------- 6

GaGbGc

XGcGaGbGc

)1(

)()4(

++

=

From the sixth equation

)1(

)1(

GbGc

GcGaGb

X

Y

++

=

Q – 12.2

Find the transfer function y(s)/X(s) of the system shown

Page 100: solution manual_COUGHANOWR.pdf

Soln:

Balance at each node

(1) = X – Y ---------(a)

(2) = (1) + (3) ----------(b)

(3) = G1(2) where G1 = 1/(τ1s + 1) ----------(c)

(4) Y = G2(3) where G2 = 0.5/(τ1s/2 + 1) ----------(d)

From (d) and (c)

Y = (2)G1G2

= G1G2 (X – Y + (3) ) ----------(e)

Also from (b) and (c)

(3) = G1((1) + (3))

(3)(1 – 1/(τ1s + 1)) = 1/(τ1s + 1)

(3) τ1s = 1

(3) = 1/(τ1s ) = (X – Y) / (τ1s)

Substitute this in (e)

( )YXss

s

Y −

+

++=

111

11

)12

)(1(

5.0

τττ

12

1

1

22

1 ++=

ssX

Y

ττ

Q – 12.3. For the control system shown determine the transfer function C(s)/R(s)

Page 101: solution manual_COUGHANOWR.pdf

Soln.

Balances at each node

(1) = R – C ------------------(a)

(2) = 2 (1) = 2(R – C) ------------------(b)

(3) = (2) – (4) = 2(R – C) – (4) -------------------(c)

(4) = (3)/s = (2(R – C) – (4))/s -------------------(d)

(5) = (4) – C -------------------(e)

C = 2(5) -------------------(f)

Solving for (4) using (d)

s (4) = 2(R – C) – (4)

(4) = 2(R – C) / (s +1)

Using (e)

(6) = 2(R – C) / (s +1) – C

( )

−−+

= CCRs

C1

22

( )

73

4

)1(24)1(4

+=

++++=

sR

C

ssCR

Q – 12.4. Derive the transfer function Y/X for the control system shown

Page 102: solution manual_COUGHANOWR.pdf

Soln.

Balance at each node

(1) = (5) + X -----------------(a)

(2) = (1) – (4) -----------------(b)

(3) = (2)/s ------------------(c)

Y = (3)/s ------------------(d)

(5) = 2 (3) ------------------(e)

(4) = 25Y ------------------(f)

From (b)

(4) = (1) – (2)

= (1) – s (3) from (c)

= (1) – s2 Y from (d)

= (5) + X - s2 Y from (a)

= 2 (3) + X - s2 Y from (e)

= 2 s Y + X - s2 Y

From (f)

Y = (2 s Y + X - s2 Y)/25

X = Y( 25 – 2s + s2 )

252

12 +−

=ssX

Y

Page 103: solution manual_COUGHANOWR.pdf

13.1 The set point of the control system in fig P13.1 given a step change

of 0.1 unit. Determine

(a) The maximum value of C and the time at which it occurs.

(b) the offset

(c) the period of oscillation.

Draw a sketch of C(t) as a function of time.

)12)(1(

51

)12)(1(

5

+++

++=

ssK

ss

R

C

932

82 ++

=ssR

C

sR

1.0=

b) 0889.09

8.0

932

8.0)(

20==

++=∞

→ ssLtCS

offset = 0.0111

c) 22

1

3

12;

3

2;

9

8.0=⇒=== ξξττK

Page 104: solution manual_COUGHANOWR.pdf

overshoot = 305.01

exp2

=

−−

ξ

πξ

= Maximum vslue of C = 1.0305*0.0889=0.116

Maximum value of C = 0.116

−+−

−−= −−

ξξ

τξ

ξτξ 2

12

2

1tan1sin

1

11

9

8.0116.0

te

t

6.11

tan1

2

1

2=

−= −

ξξ

ξ

τt

Time at which Cmax occurs = 1.6

(c ) Period of ociullation is 166.31

2

2=

−=

ξ

πτT

T =3.166

Decay ratio = (overshoot)2 = 0.093

Page 105: solution manual_COUGHANOWR.pdf

13.2 The control system shown in fig P 13.2 contains three-mode controller.

(a) For the closed loop, develop formulas for the natural period of oscillation

τ and the damping factor ξ in terms of the parameters K, Dτ , Iτ and 1τ . (b) Calculate ξ when K is 0.5 and when K is 2. (c ) Do ξ & τ approach limiting values as K increases, and if so, what are these values?

(d ) Determine the offset for a unit step change in load if K is 2.

(e ) Sktech the response curve (C vs t) for a unit-step change IN LOAD

WHEN k is 0.5 and when K is 2.

(f) In both cases of part (e) determine the max value of C and the time at

which it occurs.

++

++

++

+=

ss

s

k

ssk

s

R

Ca

I

D

I

D

ττ

τ

ττ

τ

11

11

11

1

1

)

1

1

( )

++

++

+=

ssk

s

s

U

C

I

D ττ

τ

τ

11

1

11

1

1

1

1

=

112 +

++

+ s

k

ks

k

k

s

III

DI

I

τττ

ττ

τ

++++

++

=

ssks

ssk

R

C

I

D

I

D

τττ

ττ

111

11

1

Page 106: solution manual_COUGHANOWR.pdf

( )ksksk

ssk

R

C

IIDI

IID

++++

++=

ττττττττ

)1()(

12

1

2

k

k

k

k IIDI ττξ

ττττ

)1(2;

)(2 +=

+=

k

k

k

k IIDI τξ

τττ )1()(2

+=

+×=

)(2

)1(

1τττ

ξ+

+==

D

I

kk

k

)(2

)1()(4

)(2

1

2

1

2

1

1

2

ττ

τττ

τττπ

ξ

τπ

+

+−+

=−

==

D

DD

DI

kk

kkk

k

k

T

21

1

)1(4

)(4

+−

+

+=

kkk

kT

II

D

D

ττ

ττ

ττπ

B) Dτ = Iτ =1; 1τ .=2

For k = 0.5 ; ξ =0.75 671.0)5.2(5.0

1=

For k = 2 ; ξ =1.5 530.032

1=

×

C)

+

+=

+

+==

k

k

kk

k

ID

I

D

I

ττ

τ

τττ

ξ

2

1

2

11

2

1

)(

)1(

2

1

Page 107: solution manual_COUGHANOWR.pdf

As 3535.02

1,

1

==∞→ττ

ξ Ik

21

1

)1(4

)(4

+−

+

+=

kkk

kT

II

D

D

ττ

ττ

ττπ

k

k IDI τττττ 1+

=

k

I

DI

1τττττ +=

DIK τττ =∞→ =1

2552.7

14

4, =

=∞→

I

D

DTkAs

ττ

πτ

(d)

++

++

+=

ss

s

k

s

U

C

I

D ττ

τ

τ

11

11

1

1

1

1

ksksk

s

U

C

IDI

I

++++=

2

1 )()1( τττττ

sU

1=

kskskC

IDI

I

++++=

2

1 )()1( τττττ

00

)(0

==→ k

ssfLtS

Page 108: solution manual_COUGHANOWR.pdf

K=2

For a unit step change in U

0)( =∞C

Offset = 0

(e) k = 0.5, ξ =0.671 & τ =2.236

95.181

2

2=

−=

ξ

πτT

If k = 0.5

135

22 ++

=ss

s

U

C;

135 2 ++=

ss

sC

If k = 2

15.12

5.02 ++

=ss

s

U

C;

15.12

5.02 ++

=ss

C

In general τ

ξξτ

τξ

tetC

t

2

21sin

1

11)( −

−=

The maximum occurs at ξξ

ξ

τ 2

1

2

1tan

1

−= −t

If k = 0.5 tmax = 2.52 Cmax=0.42

If k = 2 tmax = 1.69 Cmax=0.19

Page 109: solution manual_COUGHANOWR.pdf

13.3 The location of a load change in a control loop may affect the system

response. In the block diagram shown in fig P 13.3, a unit step chsange

in load enters at either location 1 and location 2.

(a) What is the frequency of the transient response when the load enters at

location Z?

(b) What is the offset when the load enters at 1 & when it enters at 2?

(c) Sketch the transient response to a step change in U1 and to a step

change in U2.

0;1

21 == Us

U

Css

UCRS =

+

+

+−12

1

12

2))(( 1

Page 110: solution manual_COUGHANOWR.pdf

R = 0

1144

2

1)12(

25

)12(

2

2

2

2

1 ++=

++×

+=

ss

s

s

U

C

1144

22

1 ++=

ssU

C

11

1

11

42;

11

2;

11

2=⇒=== ξξττK

2516.02

10

2

11

2

112

==−

===πτ

ξπT

fFrequency

C(∞) = 2/11

Offset = 2/11 =0.182

U1=0;U2=1/s

Cs

UCRs

=

+

+−+

×⇒12

1)(

12

25 2

R=0

Page 111: solution manual_COUGHANOWR.pdf

112

1

12

1012

1

2 ++

×+

+=⇒

ss

s

U

C

1144

122

2 +++

=ss

s

U

C

C(∞) = 1/11

Offset = 1/11=0.091

a) if ;1

1s

U = frequency = 0.2516

if ;1

2s

U = frequency = 0.2516

b)if ;1

1s

U = frequency = 0.182

if ;1

2s

U = frequency = 0.091

Page 112: solution manual_COUGHANOWR.pdf

13.5A PD controller is used in a control system having first order process and a

measurement lag as shown in Fig P13.5.

(a) Find the expressions for ξ and τ for the closed –loop response.

(b) If τ1 = 1 min, τm = 10 sec, find KC so that ξ = 0.7 for the two cases: (1)

τD =0,(2) τD =3 sec,

(c) Compare the offset and period realized for both cases, and comment on the

advantage of adding derivative mode.

)1)(1(

)1(1

)1(

)1(

)

1

1

+++

+

++

=

ss

sK

s

sK

R

Ca

m

DC

DC

τττ

ττ

Page 113: solution manual_COUGHANOWR.pdf

)1()(

)1)(1(

1

2

1 +++++

++=

CDCmm

mDC

KsKs

ssK

R

C

τττττττ

= 1

12

+=

C

m

K

τττ

1

1

+=

C

m

K

τττ

)1(2

1

1

1

+

++=

Cm

DCm

k

k

ττ

τττξ

b) 7.0;10min;11 === ξττ sm

1)

)1(600

70

2

17.0

0

+×=⇒

=

C

D

k

τ

kc=3.167

2)

255.5

)1(600

370

2

17.0

3

=

+

+×=⇒

=

C

C

C

D

k

k

k

c)for 1

)(;1

+=∞=

C

C

k

kc

sR

Page 114: solution manual_COUGHANOWR.pdf

periodsperiodsfor

periodperiodfor

offsetCsfor

offsetCFor

D

D

D

D

==−

==

==−

×==

==∞=

==∞=

17.86)7.0(1

255.6

6002

;3

57.1051

167.4

6002

;0

16.0;84.0)(;3

24.0;76.0)(;0

2

2

πτ

ξ

πτ

τ

τ

Comments:

Advantage of adding derivative mode is lesser offset lesser period

13.6The thermal system shown in fig P 13.6 is controlled by PD controller.

Data ; w = 250 lb/min; ρ = 62.5 lb/ft3; V1 = 4 ft

3,V2=5 ft3; V3=6ft

3;

C = 1 Btu/(lb)(°F)

Change of 1 psi from the controller changes the flow rate of heat of by 500

Btu/min. the temperature of the inlet stream may vary. There is no lag in the

measuring element.

(a) Draw a block diagram of the control system with the appropriate transfer

function in each block.Each transfer function should contain a numerical values of

the parameters.

(b) From the block diagram, determine the overall transfer function relating the

temperature in tank 3 to a change in set point.

(c ) Find the offset for a unit steo change in inlet temperature if the controller

gain KC is 3psi/°F of temperature error and the derivative time is 0.5 min.

Page 115: solution manual_COUGHANOWR.pdf

CWTTTCVqCWT 10110 )( +−=+ ρ

CWTTTCVCWT 21221 )( +−= ρ

CWTTTCVCWT 32332 )( +−= ρ

)()( 1110 CVCWTqCVWCT ρρ +=++

1

01CVWC

qTT

ρ++=

T1= T2 = T3

⇒+

+=1

03CVWC

qTT

ρ ( )sCVWC

sqsT

1

3

)()(

ρ+=

13.6 (b)

)15.1)(125.1)(1(

2)1(1

)15.1)(125.1)(1(

2)1(

)(

)('3

+++++

++++

=

ssssk

ssssk

sR

sT

DC

DC

τ

τ

= )1(2)175.2875.1)(1(

)1(2

)(

)(2

'

3

sksss

sk

sR

sT

DC

DC

ττ

+++++

+=

12)275.3(625.4875.1

)1(2

)(

)(23

'

3

+++++

+=

cDC

DC

kskss

sk

sR

sT

ττ

Page 116: solution manual_COUGHANOWR.pdf

c) kC=3;s

soffsetD

1)(?,,5.0 '

0 === ττ

12)275.3(625.4875.1

1

)(

)(230'

'

3

+++++→CDC

si kskss

LtsT

sT

τ

= 143.07

1

12

1==

+Ck

Offset =0.143

13.7 (a) For the control system shown in fig P 13.7, obtain the closed loop

transfer function C/U.

(b) Find the value of KC for whgich thre closed loop response has a ξ of 2.3.

(c) find the offset for a unit-step change in U if KC = 4.

Cs

UCRs

sKC =

+−+

1)(

125.0

1

=

125.0

1.1

1

++

+=

s

s

s

Ks

U

C

C

Page 117: solution manual_COUGHANOWR.pdf

)1(25.0

125.02 +++

+=

sKss

s

U

C

C

CC KsKs

s

U

C

4)1(4

42 +++

+=

b) ξ=2.3

C

C

CK

K

K

12;

4

1 +== ξττ

= C

C

CK

K

K

13.22

4

1 +=×

3.21=

+=

C

C

K

K

KC=2.952

C) KC=4,U = 1/s

= 1620

412 ++

+×=

ss

s

sC

4

1)( =∞C

offset = 0.25.

13.8 For control system shown in Fig 13.8

(a) C(s)/R(s)

(b) C(∞∞∞∞) (c) Offset

(d) C(0.5)

(e) Whether the closed loop response is oscillatory.

Page 118: solution manual_COUGHANOWR.pdf

(a)

)1(

41

)1(

4

++

+=

ss

ss

R

C

4

42 ++

=ssR

C

b) C(∞) =2*1=2

C(∞) =2

C) offset = 0

d) 4

1

4

12;

2

1=⇒== ξξττ

+

−= −−15tan

4

15sin

4

11

11

2

)( 12

2 τt

etC

t

=

+−= −−

15tan4

15sin

15

412)5.0( 14

1

eC

C(0.5)=0.786

.e) ξ<1, the response is oscillatory.

13.9 For the control system shown in fig P13.9,determine an expression for

C(t)

Page 119: solution manual_COUGHANOWR.pdf

if a unit step change occurs in R. Sketch the response C(t) and compute

C(2).

1̀2

1

111

11

++

=

++

+=

s

s

R

C

s

s

R

C

2

2

11)(

12

11

)12(

1

1

t

etC

ssss

sC

sR

−−=

+−

+=+

+=

=

C(2) = 0.816

13.10 Compare the responses to a unit-step change in a set point for the

system shown in fig P13.10 for both negative feedback and positive feedback.Do

this for KC of 0.5 and 1.0. compare the responses by sketching C(t).

Page 120: solution manual_COUGHANOWR.pdf

-ve feed back :

))1(( ++

=C

C

Kss

KC

+ve feed back

1

11

1

1

+−

=

sK

sK

R

C

C

C

))1(( C

C

Kss

KC

−+=

For KC = 0.5 , response of -ve feed back is

32

3

2

3

1

)32(

1

+

−+=

+=

ssssC

)1(3

1

3

1

3

1)( 2

3

2

3 tt

eetC−−

−=−=

response of +v feed back is

Page 121: solution manual_COUGHANOWR.pdf

21)(

12

21

)12(

1

t

etC

ssssC

−−=

+−

+=+

=

For KC = 1, response of -ve feed back is

tetC

ssssC

2

2

1

2

1)(

2

2

1

2

1

)2(

1

−−=

+

−+=

+=

response of +ve feed back is

ttC

sC

=

=

)(

12

14.1 Write the characteristics equation and construct Routh array for

the control system shown . it is stable for (1) Kc= 9.5,(ii) KC =11; (iii) Kc=

12

Characteristics equation

Page 122: solution manual_COUGHANOWR.pdf

0)66(116

0)66(116(

06)3)(2)(1(

0)3)(2)(1(

61

23

2

=++++

=++++

=++++

=+++

+

Kcsss

Kcsss

Kcsssor

sss

Kc

Routh array

)1(6

)66(6

111

2

3

Kcs

Kcs

s

+

+

For Kc=9.5

= 10-(Kc)= 10-9.5=0.5>0 therefore stable.

For Kc=11

= 10-(Kc)= 10-11=-1<0 therefore unstable

For Kc=121

= 10-(Kc)= 10-12=--2<0 therefore unstable

14.2 By means of the routh test, determine the stability of the system shown

when KC = 2.

Characteristic equation

01042

102

3121

2=

++

++sss

Page 123: solution manual_COUGHANOWR.pdf

060252

01205042

0120401042

010.2).3(2)1042(

23

23

23

2

=+++

=+++

=++++

=++++

sss

sss

ssss

ssss

Routh Array

1 25

2 60

-10/2

The system is unstable at Kc = 2.

14.4 Prove that if one or more of the co-efficient (a0,a1,….an) of the

characteristic equation are negative or zero, then there is necessarily an

unstable root

Characteristic equation :

0..................................1

10 =+++ −n

nn axaxa

0)/......................./( 0

1

010 =++ −aaxaaxa n

nn

0.............................,

0).(..........).........)((

21

210

<

=−−−

n

n

haveWe

xxxa

ααα

ααα

As we know the second co-efficient a1/a0 is sum of all the roots

2/)1(11

2

0

1

−= ∑∑

==

n

j

ji

n

ia

aαα

Therefore sum of all possible products of two roots will happen twice as

21αα dividing the total by 2.

And

00/

)00(0

202 >⇒>∴

<<>

aaa

jiji αααα

Similarly

Page 124: solution manual_COUGHANOWR.pdf

),.......1(0

0/

00)1()1(

0/01)1(

)()1(

0

0

0

0

njforaso

aacasebothin

againisa

asoissumtheandisoddjif

aasoissumtheandisevenjif

rootsjofproductspossibleaollofsuma

a

j

j

jj

j

j

jj

=>

>

><−−=

>>−=

−=

14.5 Prove that the converse statement of the problem 14.4 that an

unstable root implies that one or more co-efficient will be negative or

zero is untrue for all co-efficient ,n>2.

Let the converse be true, always .Never if we give a counter example we

can contradict.

Routh array

0

2

3

23

01

31

21

32

s

s

s

s

sss

+++

System is unstable even when all the coefficient are greater than 0; hence a

contradiction,

14.6 Deduce an expression for Routh criterion that will detect the

Presence of roots with real parts greater than σ for any rectified σ >0

Characteristic equation

0.................................1

10 =+++ −n

nn axaxa

Routh criteria determines if for any root, real part > 0.

Now if we replace x by X such that

Page 125: solution manual_COUGHANOWR.pdf

.x + σ =X

Characteristic equation becomes

0.................................)()( 1

10 =++−+− −n

nn aXaXa σσ

Hence if we apply Routh criteria,

We will actually be looking for roots with real part >σ rather than >0

0.................................2

2

1

10 =+++ −−n

nnn axaxaxa

Routh criterion detects if any root jα is greater than zero.

Is there any )1(0.,...............,,........., 21 −−−−−>= njx αααα

Now we want to detect any root

)1(

0

From

j

j

>

−>

ασα

Page 126: solution manual_COUGHANOWR.pdf

σα

σασ

σασ

σασ

σασ

σασ

σ

α

α

α

α

αααα

−>

>+

+=

>+=+

>+=+

>+=+

>+=+

>=

>=

>=

>=

>=

j

j

n

j

n

j

nj

or

anyecttocriteriaRouthapplyand

xXLetso

x

x

x

x

anythereis

sidesbothonadd

x

x

x

x

anythereisimplies

x

0det

,

0

.

.

.

0.

.

.

.

0

0

0

.

.

.

0

.

.

.

0

0

0,.................,............................,.........,

2

1

2

1

21

14.7 Show that any complex no S1 satisfying ,1<S yields a value of

s

sZ

−+

=1

1that satisfies Re(Z)>0,

Let S=x+iy, 122 <+ yx

Page 127: solution manual_COUGHANOWR.pdf

s

sZ

−+

=1

1

Page 128: solution manual_COUGHANOWR.pdf

( )

+−

+=

>

<−++<

==

=−=

−++

<+>+−

<<−

<<−

<+

<+

>++−

>+−>

++−+−

=

++−++−

=

+−+

−−+=+−

+−+−

−−++

)5.05.0(

1

)5.05.0(

:

0)Re(

4)2)(1(0

00&1

40&1

2)(1

10)(1

int11

11

1

1

0)(21

0)(10)Re(

)(21

)(1)Re(

)(21

2)(1

21

))11(1(

)1(

)1(

)1(

1

1

22

22

2222

22

22

22

22

22

22

22

22

22

22

isL

partrealthetodueunstableissystemtheisif

example

z

xyx

isitthenyxif

isitthenyxif

xyx

Now

yxthereforetrueisyx

circleunittheinsPoy

xareRanges

yx

yxhavewe

yxx

andyxthenzif

yxx

yxZ

yxx

iyyx

yxx

yiyxxx

iyx

iyx

iyx

iyx

Page 129: solution manual_COUGHANOWR.pdf

)5.05.0()5.05.0(

1 5.01 tSintCoseis

L t +=

+−−

14.8 For the output C to be stable, we analyze the characteristic

equation of the system

0)1()1)(1(

111 3

21

=+×++

+ ssssI

ττττ

01)()(

01)1(

3

2

21

3

21

3212

2

1

=+++++

=+++++

sss

sssss

III

I

ττττττττ

ττττττ

Routh Array

1

0

1)(

0

21

2

321

3

s

s

s

s

I

II

α

τττ

τττττ

+

+

)(

))((

21

21321

τττττττττττ

α+

−++=

I

III

Now

0)1( 12 >τττ I

Since 21 &ττ are process time constant they are definitely +ve

0;0 21 >> ττ

(2) 0)( 21 >+τττ I

(3) 21321 ))((0 ττττττττα III >++⇒>

Page 130: solution manual_COUGHANOWR.pdf

0

)()(

0

3

21

21

2132121

21322311

>

−+

>

+−>+

>−+++

I

I

I

II

also τ

τττ

τττ

ττττττττ

ττττττττττ

14.9 In the control system shown in fig find the value of Kc for which

the system is on the verge of the instability. The controller is replaced by a

PD controller, for which the transfer function is Kc(1+s). if Kc = 10,

determine the range for which the system is stable.

Characteristics equation

0)66(116

06)3)(23(

06)3)(2)(1(

0)3)(2)(1(

61

23

2

=++++

=++++

=++++

=+++

+

Kcsss

Kcsss

Kcsssor

sss

Kc

Routh array

+−

+

)3

13

13

31

2

3

Kcs

Kcs

s

Page 131: solution manual_COUGHANOWR.pdf

For verge of instability

8

)3

13

=

+=

Kc

Kc

Characteristics equation

03)1(

)1(101 =

++

+s

kcs

011)103(3 23 =++++ Kcssss

Routh Array

30/2

230

11)103(3

113

1031

2

3

>

>

>+

+

D

S

s

D

vegefor

s

s

s

τ

τ

τ

τ

14.10 (a) Write the characteristics equation for the central system shown

(b) Use the routh criteria to determine if the system is stable for Kc=4

© Determine the ultimate value of Kc for which the system is unstable

(a) characteristics equation

Page 132: solution manual_COUGHANOWR.pdf

02)1(32

0)2()12)((

0)1(

1

12

1

3

21

23

2

=++++

=++++

=+

=

++

kcskcss

skcsss

ss

skc

0)1(33 23 =++++ kcsss

Kc=4Routh array

3;03

03

4)1(3

3/1

83

52

2

3

==−

=−+

KcKc

kckc

stablenot

s

s

s

For verge of instability

14.11 for the control shown, the characteristics equation is

0)1(464 234 =+++++ kssss

(a) determine value of k above which the system is unstable.

(b) Determine the value of k for which the two of the roots are on

the imaginary axis, and determine the values of these imaginary roots and

remaining roots are real.

0)1(464 234 =+++++ kssss

Page 133: solution manual_COUGHANOWR.pdf

k

ks

ks

s

ks

+

+−

+

+

11

)1(5

44

15

44

)1(61

2

3

4

For the system to be unstable

1

1

01

4

5

11

05

114

−>

−<

<+

>

+<

<

+−

k

k

k

k

k

k

The system is stable at -1<k<4

(b) For two imaginary roots

4);1(5

44 =+= kk

Value of complex roots

is

s

±=

=+ 055 2

5454641 22342 +++++++ sssssss

Page 134: solution manual_COUGHANOWR.pdf

24 0 ss ++

0

55

55

404

54

2

2

3

23

+

+

++

+

s

s

ss

ss

SOLUTION:

ii

s ±−=±−

=−±−

= 22

24

2

20164

PART 2

LIST OF USEFUL BOOKS FOR PROCESS

CONTROL

1. PROCESS CONTROL BY R.P VYAS, CENTRAL TECHNO

PUBLICATIONS, INDIA ( WIDE VARIETY OF SOLVED PROBLEMS ARE

AVAILABLE IN THIS BOOK)

2. ADVANCED CONTROL ENGINEERING BY RONALD.S .BURNS ,

BUTTERWORTH AND HIENEMANN.

3. PROCESS MODELLING SIMULATION AND CONTROL FOR

CHEMICAL ENGINEERS, WILLIAM.L.LUYBEN, MCGRAW HILL.

4. A MATHEMATICAL INTRODUCTION TO CONTROL THEORY BY

SCHOLOMO ENGELBERG, IMPERIAL COLLEGE PRESS

Page 135: solution manual_COUGHANOWR.pdf

LIST OF USEFUL WEBSITES

www.msubbu.com FOR BLOCK DIAGRAM REDUCTION AND

OTHER CHEMICAL ENGG. LEARNING RESOURCES

Readings,Recitations,Assignments,Exams,StudyMaterials,Discussion Group,Video Lectures

now study whatever u want with respect to chemical

engg.

http://ocw.mit.edu/OcwWeb/index.htm

***********************