33
Solid-State Diffusion and NMR P. Heitjans, S. Indris, M. Wilkening University of Hannover Germany Diffusion Fundamentals, Leipzig, 23 Sept. 2005

Solid-State Diffusion and NMR

  • Upload
    lamthuy

  • View
    232

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Solid-State Diffusion and NMR

© Heitjans et al.

Solid-State Diffusion and NMR

P. Heitjans, S. Indris, M. Wilkening

University of Hannover Germany

Diffusion Fundamentals, Leipzig, 23 Sept. 2005

Page 2: Solid-State Diffusion and NMR

© Heitjans et al.

Introduction

• Diffusivity in Solids as Compared to Liquids and Gases

D / m2 s-1 time for 1 cm

• Gases 10-4 1 s

• Liquids 10-9 1 d

• Solids < 10-13 > 30 a • Interfaces/ < 10-9 > 1 d

Surfaces

RT

< Tm

Page 3: Solid-State Diffusion and NMR

© Heitjans et al.

• Reason for Slow Diffusion in Solids:Formation of Defects is needed

after Philibert: „Diffusion et Transportde Matière dans les Solides“ (1985)

D ~ e- (EF+EM) / kBT

Activation Energy

EF > 0 for Solids

EF ≈ 0 for Liquids,Gases

Page 4: Solid-State Diffusion and NMR

© Heitjans et al.

• Overview: Defective Solids

singlecrystalline

amorphous nano-crystalline

(see Talk: Chadwick)

Page 5: Solid-State Diffusion and NMR

© Heitjans et al.

• Microscopic and Macroscopic Aspects of Diffusion

elementary jumps macroscopic transport

Page 6: Solid-State Diffusion and NMR

© Heitjans et al.

• Microscopic and Macroscopic Diffusion Quantities

Jump rater 2

6τ τ τ τ -1 ⋅ ⋅ f = DT

⇒Temperature dep. EA (depends on time window)

Tracer diffusivity

Correlation factor f ≤ 1 ⇒ Diff.mechanism (see Talk: Murch)

τ –1 ≈ 106 s-1 at RT

Page 7: Solid-State Diffusion and NMR

© Heitjans et al.

Experimental Methods

Microscopic Macroscopic

NMR Field gradient NMRRelaxation / Lineshape Pulsed / StaticSpin alignment echo

β-radiation detected NMR Radioactive tracer

Quasielastic neutron scattering Ion beam analysis

AC conductivity DC conductivity

Page 8: Solid-State Diffusion and NMR

© Heitjans et al.

• Ranges of Diffusivities and Correlation Times

1010 1010 τ [s]

QENS

MS

NMR Relaxation

Conductivity

Solid Liquid

D [m /s]

5

-20 -10-15

-10-50

-2510 101010 2T

Tracer Diffusion

FG-NMR

c

β-NMR

DC AC

mac

rosc

opic

mic

rosc

opic SAE

numerousposters

e.g. 60, 68

e.g. 126

e.g. 62

e.g. 71

e.g. 67

P. Heitjans, S. Indris, J. Phys.: Condens. Matter 15 (2003) R1257

Page 9: Solid-State Diffusion and NMR

© Heitjans et al.

• OverviewNMR

e.g. 7Li in Li0.7TiS2

M. Wilkening, PhD thesis, University of Hannover, 2005.

Spin-Lattice Relaxation, Spin-Spin Relaxation;Spin-Alignment Echo

Page 10: Solid-State Diffusion and NMR

© Heitjans et al.

• Motional Correlation Rates

Li0.7TiS2

sub-Hz.

..Hz

kH

z

MH

z ...

GHz

Nano-sec

Deka-sec

Dynamics

Page 11: Solid-State Diffusion and NMR

© Heitjans et al.

Beta-NMR: Principle (1)

Page 12: Solid-State Diffusion and NMR

© Heitjans et al.

Beta-NMR: Principle (2)

Page 13: Solid-State Diffusion and NMR

© Heitjans et al.

Beta-NMR: Setup

Page 14: Solid-State Diffusion and NMR

© Heitjans et al.

Beta-NMR: Operating Modes

Page 15: Solid-State Diffusion and NMR

© Heitjans et al.

Beta-NMR: Some Features and Implications (1)

• P (≈ 10%) independent of Boltzmann factor

→ low B, high T accessible

• SLR measurements do not require rf fields

→ B easily variable

→ no skin effect: metallic samples/containers

• SLR time window: 0.01 τ < T1 < 100 τβ β

Page 16: Solid-State Diffusion and NMR

© Heitjans et al.

Beta-NMR: Some Features and Implications (2)

• Concentration of probes extremely small (1:1018)

→ probes surrounded only by unlike nuclei

→ no spin diffusion

• no SLR by distant paramagnetic impurities

• inequivalent sites: inhomogeneous SLR

• Complementary probes

e.g. Q=0 for NMR Q≠0 for β-NMR probe19F (100%) 20F107Ag,109Ag (52%+48%) 108Ag, 110Ag

Page 17: Solid-State Diffusion and NMR

© Heitjans et al.

Multiple Time NMR: Spin-Alignment Echo (SAE)

Page 18: Solid-State Diffusion and NMR

© Heitjans et al.

Macroscopic Diffusion Measurem. in a Field Gradient

SFG

PFG

−−⋅

−−−

=+

3exp

2exp

2/)0()(

12

21

22T

2

1

1

12

21

τττγ

τττ

ττ

gD

TT

MM

−∆−⋅

−−−

=+

3exp

2exp

2/)0()(

222T

2

1

1

12

21

δδγ

τττ

ττ

gD

TT

MM

Page 19: Solid-State Diffusion and NMR

© Heitjans et al.

Case Studies:

4 pairs of Li sites per unit cell (distance of neighbored paires: 4.5Å):

only one site of each pairoccupied (distance only1.3Å)

→→→→ long-range andshort-range jumpsof Li ions ?

• Glassy and Crystalline Spodumene LiAlSi2O6

β-LiAlSi2O6

P43212

a = b = 7.541 Å

c = 9.159 Å

Page 20: Solid-State Diffusion and NMR

© Heitjans et al.

• 7Li Spin-Lattice Relaxationin Glassy and Crystalline Spodumene LiAlSi2O6

high-T peak:

long-rangeLi diffusion

faster in the glass

EA(glass) = 0.34eVEA(cryst.) = 0.50eV

low-T peak:

short-range(local) jumps

39 MHz

F. Qi et al., Phys. Rev. B72 (2005) 104301

Page 21: Solid-State Diffusion and NMR

© Heitjans et al.

8Li β-NMR Spin-Lattice Relaxationin Glassy and Crystalline Spodumene LiAlSi2O6

3 MHz

low-T peak:

localizedLi motionbetween thepair sites inthe crystal

EA ≈ 50 meV

From:„Diffusion in Condensed Matter - Methods, Materials, Models“, P. Heitjans, J. Kärger (Eds.), Springer, Berlin 2005

Page 22: Solid-State Diffusion and NMR

© Heitjans et al.

• Nanocrystalline Composites

Page 23: Solid-State Diffusion and NMR

© Heitjans et al.

• 7Li NMR Lineshapes: (1-x)Li2O:xB2O3

micro:one-componentline

nano:two-componentline

-40 20 0 20 40Frequency (kHz)

-40 20 0 20 40Frequency (kHz)

S. Indris et al.,J. Non-Cryst. Solids307-310 (2002) 555

T = 433 Kmicrox = 0

microx = 0.5

nanox = 0

nanox = 0.5

Page 24: Solid-State Diffusion and NMR

© Heitjans et al.

7Li-NMRLineshapes:

(1-x)Li2O:xAl2O3

x=0.5

M. Wilkening et al.,Phys. Chem. Chem. Phys. 5 (2003) 2225

micro nano

Page 25: Solid-State Diffusion and NMR

© Heitjans et al.

7Li-NMR Lineshape: nanocryst. (1-x)Li2O:xAl2O3

Fraction ofmobile Li+

⇒ fast ions are located in the interfaces betweenionic conductor and insulator

⇒ conductivity increases with insulator content x⇒ possible route to design fast solid electrolytes

Page 26: Solid-State Diffusion and NMR

© Heitjans et al.

DC Conductivity: (1-x) Li2O:xB2O3 x=0...1

433 KS. Indris et al.,Phys. Rev. Lett. 87 (2000) 2889.

Page 27: Solid-State Diffusion and NMR

© Heitjans et al.

Percolation Model

∝σdc

∝Af

Page 28: Solid-State Diffusion and NMR

© Heitjans et al.

Li0.7TiS2

12 0

ω ω

p

mQ p Qm

Qm ps in( ( )t )s in( (t teS )t(t , t ) xp

T)

local Li+hopping

O

t

193 K, 155 MHz, 15 :s

• 7Li Spin-Alignment Echo

M. Wilkening, PhD thesis, University of Hannover, 2005.

Page 29: Solid-State Diffusion and NMR

© Heitjans et al.

Li0.7TiS2

Motional Correlation Rates

sub-

Hz.

..Hz

kH

z

MH

z ...

GH

z

Nano-sec

Deka-sec

Dynamics

Page 30: Solid-State Diffusion and NMR

© Heitjans et al.

• 7Li SFG and PFG NMRon Solid Lithium as Simple Test Case

DT measured down toabout 10-14 m2/s

Comparison with T1:

DT calculated from8Li SLR dataassumingMonovacancy-Divacancy-Mechanism

D. M. Fischer et al.,Solid State NMR, 26 (2004) 74

Page 31: Solid-State Diffusion and NMR

© Heitjans et al.

7Li SFG NMR on Solid Lithium

effective correlation factor feff =DT

r2 / 6τ

DT = f1VD1V + f2VD2V

f1V = 0.727

f2V = 0.347(Mehrer 1973)

consistent with1V-2V mechanism

Page 32: Solid-State Diffusion and NMR

© Heitjans et al.

Conclusion

• NMR provides arsenal of techniques

microscopic: T1, T2, T1ρ, β-NMR, SAE

macroscopic: SFG NMR, PFG NMR

• Used to measure jump rates (109...10-1 s-1) and tracerdiffusion coefficients (10-11...10-14 m2s-1) in

metals, glasses, ceramics, nanocrystals,intercalation compounds, solid electrolytes ...

• Comparison of microscopic and macroscopic diffusionparameters allows determination of diffusion mechanisms

Page 33: Solid-State Diffusion and NMR

© Heitjans et al.

Acknowledgement

P. Duwe A. Bunde

D.M. Fischer R. Böhmer

W. Franke T. Dippel

R. Goldstein W. Heink

W. Küchler J. Kärger

W. Puin J. Maier

A. Schirmer H.E. Roman

E. Schmidtke M. Ulrich

DFG, BMBF, Land Niedersachsen