2
Soil Transformation of European Catchments (SoilTrEC) Project Fact Sheet (www.soiltec.eu) Soil Biodiversity Soil ecosystems are habitat for extreme species rich communities. By far the most important groups of organisms are the microbes (bacteria, fungi, archaea) both in terms of biomass as in (genetic) diversity. In addition, soil communities harbor a range of microbial grazers (protozoa, nematodes, insects, mites), omnivores (enchytraeids, earthworms) and predators (nematodes, insect, mites). Together, these organisms create complex networks of trophic interactions, forming the soil food web (Figure 1). The functionality of Soil Biodiversity The tremendous reservoir of soil biological diversity is pivotal for delivering food, fibre and biofuels, clean air, drinking water and carbon storage. Because of increased intensive land use, it is expected that this soil diversity will be affected with negative impacts on these soil ecosystem services. Considerable efforts by land- owners, policy-makers and scientists are directed towards optimizing land management for maximum functionality in terms of ecosystem services through sustaining the soil food-web governing this functionality. Soil formation, land use and biodiversity Figure 1. Food web diagram of the soil community as observed in Austrian farms near Vienna. Boxes represent groups, arrows represent feeding rates. Colours denote the primary energy source, i.e. brown: soil organic matter, red: bacteria, blue: fungi. Black arrows denote more than one energy source. Grey boxes denote groups that were found over all sites but were not present in the Austrian soils. Labile Soil organic matter Stabile soil organic matter Roots Bacteria Fungi Flagellates Enchytraeids Herbofungivore Collembola Amoebae Omnivore nematodes Nematovore mites Omnivore mites Predaceous mites Diplura Fungivore nematodes Fungivore mites Herbivore Collembola Herbivore nematodes Bacterivore nematodes Bacterivore mites Predaceous nematodes Herbofungivore mites Fungivore collembola Fungi Amoebae Bacteria Fungivore Collembola Bacterivore nematodes Predatory mites Fungivore mites Damma Fuchsenbigl Koiliaris Lysina 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Damma 1: 10 yr 2: 70 yr 3: 110 yr 4: 10.000 yr Fuchsenbigl 5: riverdune 6: wiesenfield 7: riverine forest 8: cropland 9: old forest Koiliaris 10: sea level 11: slope 12: 1000 m Lysina 13: Lysina 14: Pluniv Bor 15: Na Zelenem CO 2 emission (kg/ha/yr) Fauna Microbes 5000 4000 3000 2000 1000 0 6000 Figure 2. Soil can store and emit large amounts of carbon. Carbon storage and CO 2 emissions are the direct result of the trophic activity of the soil organisms. In this way, soil biodiversity plays a major role in the global cycling of carbon. Land use that promotes carbon storage can make a significant contribution to climate change mitigation.

SoilTrEC Factsheet Biodiversity final · Collembola Amoebae Omnivore) Nematovore) mites Omnivore) mites mites Diplura Fungivore Fungivore) mites Herbivore)Collembola Herbivore)nematodes

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: SoilTrEC Factsheet Biodiversity final · Collembola Amoebae Omnivore) Nematovore) mites Omnivore) mites mites Diplura Fungivore Fungivore) mites Herbivore)Collembola Herbivore)nematodes

Soil  Transformation  of  European  Catchments  (SoilTrEC)-­‐  Project  Fact  Sheet    (www.soiltec.eu)  

 

 

 

Soil Biodiversity

Soil ecosystems are habitat for extreme species rich communities. By far the most important groups of organisms are the microbes (bacteria, fungi, archaea) both in terms of biomass as in (genetic) diversity. In addition, soil communities harbor a range of microbial grazers (protozoa, nematodes, insects, mites), omnivores (enchytraeids, earthworms) and predators (nematodes, insect, mites). Together, these organisms create complex networks of trophic interactions, forming the soil food web (Figure 1).

 

 

 

 

 

 

 

 

 

The functionality of Soil Biodiversity

The tremendous reservoir of soil biological diversity is pivotal for delivering food, fibre and biofuels, clean air, drinking water and carbon storage. Because of increased intensive land use, it is expected that this soil diversity will be affected with negative impacts on these soil ecosystem services. Considerable efforts by land-owners, policy-makers and scientists are directed towards optimizing land management for maximum functionality in terms of ecosystem services through sustaining the soil food-web governing this functionality.

 

 

 

 

Soil  formation,  land  use  and  biodiversity  

Figure 1. Food web diagram of the soil community as observed in Austrian farms near Vienna. Boxes represent groups, arrows represent feeding rates. Colours denote the primary energy source, i.e. brown: soil organic matter, red: bacteria, blue: fungi. Black arrows denote more than one energy source. Grey boxes denote groups that were found over all sites but were not present in the Austrian soils.

 

 

Labile Soil  

organic  matter

Stabile   soil  organic  matter

Roots

Bacteria

Fungi

Flagellates

Enchytraeids

Herbofungivore  Collembola

Amoebae

Omnivore  nematodes

Nematovore  mites

Omnivore  mites

Predaceous  mites

Diplura

Fungivore nematodes Fungivore  mites

Herbivore  Collembola Herbivore  nematodes

Bacterivore  nematodes

Bacterivore  mites

Predaceous  nematodes

Herbofungivore  mites

Fungivore  collembola

Fungi Amoebae Bacteria Fungivore Collembola Bacterivore

nematodes Predatory mites Fungivore

mites

 

         

 

 

 

 

         

 

     

 

       

   

 

 

   

 

       Damma                                        Fuchsenbigl                                      Koiliaris                                                  Lysina 1              2            3          4                                5          6              7            8            9                                            10      11        12                                            13        14      15    

Damma                        1:    10  yr                                                    2:    70  yr                                                    3:    110  yr                                                    4:    10.000  yr Fuchsenbigl          5:  riverdune                                                    6:  wiesenfield                                                    7:  riverine  forest                                                    8:  cropland                                                    9:  old  forest Koiliaris                    10:  sea  level                                                11:  slope                                                12:  1000  m Lysina                          13:  Lysina                                                14:  Pluniv  Bor                                                15:  Na  Zelenem

CO2  emission  (kg/ha/yr)

   

Fauna Microbes 5000

4000 3000 2000 1000

           0

6000

Figure 2. Soil can store and emit large amounts of carbon. Carbon storage and CO2 emissions are the direct result of the trophic activity of the soil organisms. In this way, soil biodiversity plays a major role in the global cycling of carbon. Land use that promotes carbon storage can make a significant contribution to climate change mitigation.

Page 2: SoilTrEC Factsheet Biodiversity final · Collembola Amoebae Omnivore) Nematovore) mites Omnivore) mites mites Diplura Fungivore Fungivore) mites Herbivore)Collembola Herbivore)nematodes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Authors:    Jeroen P. van Leeuwen, Daniel Moraetis, Jaap Bloem, Lia Hemerik, Taru Lehtinen, Kristín Vala Ragnarsdóttir, Guðrún Gísladótti, Jeffrey Newton, Georg Lair, Peter C. de Ruiter.  

For  more  information  visit  SoilTrEC  website:  www.soiltrec.eu  

Contact  us:  Prof.  Steven  Banwart,  SoilTrEC  Project  Coordinator,  University  of  Sheffield.  Email:  [email protected]  

Soil  biodiversity  along  soil  formation  To understand the diversity and structure of the soil communities, and how these relate to ecosystem functioning and services, it is important to analyse pathways of development of soil food web structure. SoilTrEC has studied soil food web development along gradients of soil formation created by retracting glaciers in Switzerland and Iceland.

 

The  indicative  value  of  soil  biodiversity  Because of its high functionality, soil biological properties have been studied for their indicative value for soil quality. Soil quality can refer to agricultural soil fertility, soil habitat suitability for species rich natural vegetation, land degradation and soil pollution.

 

Roots

Omnivorous nematodes

Flagellates Amoebae Bacterial Feeding

nematodes Fungi feeding

nematodes Root  

Feeding nematodes Fungi Bacteria

Labile SOM Recalcitrant

SOM

Flagellates Amoebae

Fungi Bacteria

Labile SOM Recalcitrant

SOM

Flagellates Amoebae

Bacteria

Labile SOM Recalcitrant

SOM Roots

Omnivorous nematodes

Flagellates Amoebae Bacterial Feeding

nematodes

Fungi feeding

nematodes Root  

Feeding nematodes Fungi Bacteria

Labile SOM Recalcitrant

SOM

Predatory nematodes

Stage  1                                                                              2                                                                                                  3                                                                                                                                        4

   

Figure 3. Retracting glaciers, like that of Skaftafell (Iceland), form excellent chronosequences to study the development of soil ecology during soil formation. This figure shows soil food web development for a period of 120 years.  

Figure 4. The SoilTrEC sites with gradients of land degradation and the different agricultural farming confirmed micro-arthropod diversity as soil quality indicator.

 

 

 

 

 

   

 

   

   

Micro-­‐arthropod Shannon  diversity  index

Micro-­‐arthropod Taxa  richness

Micro-­‐arthropod Taxa  richness

Degraded          Intermediate          Not  degraded Coventional      Organic    Conventional  Organic Koiliaris  (Crete)                                                                Austria                  Iceland                                                    Austria                    Iceland

10

     0

20

2

1

     0

3

20

10

     0

30

Coventional      Organic    Conventional  Organic