soil mechanic

Embed Size (px)

DESCRIPTION

Lectures, exercise and some answer for practicing. Mr SEANG POV is one of best professor in soil mechanic in cambodia

Citation preview

  • Advance Soil mechanics Present by Mr. Sieng PEOU

    Master science of geotechnical engineering

  • Soils particle size

    19.5mm>d>4.76mm.

    Gravel

    4.76mm>d>0.075mm

    Sand

    Coarse grained soils

    0.075mm>d>0.002mm

    Silt

    d

  • Sieve analysis method

    For coarse grained soils

  • Retained cumulative

    %R= %100

    .

    ..

    weighttotal

    cumulativeretainedweight

    Passing cumulative

    %P = 100-%R

  • Logarithm scale

    Logd

    0.001 0.01 0.1 1 10 100

    a

    If 0.001

  • Hydrometer analysis

    For fine grained soils

  • Hydrometer analysis

    %100*%SW

    RRaP +=

    TLKD =

    P%-passing cumulative

    a- soil factor

    R-hydrometer reading

    R-corrected factor

    Ws-weight of dry soil

    D-soil diameter

    K-hydrometer factor

    L-depth of hydrometer in

    Solution

    time in minute

  • Soil particle size curve Uniformity coefficient UC=D60/D10

    d10 d60

  • Weight and volume relation ship

    V

    Va

    Vw

    Vs

    W

    Wa=0

    Ww

    Ws

  • W=Ws+Ww

    V=Va+Vw+Vs

    Vv =Va+Vw

    V= Vv+Vs

  • Soils sampling Disturbed sample for determine properties

    physics of soils Undisturbed sample for determine

    properties mechanics of soils, we call undisturbed when AR(%)

  • Soils unit weight Natural water content:

    Bulk unit weight:=

    Dry unit weight: d=

    Unit weight of particle solid: s=

    ws

    e

    eSGVW

    +

    +=

    1

    s

    s

    VW

    1001

    +

    =

    VW s

    %100=s

    w

    WW

  • Another parameter Void ratio:

    Degree of saturation:

    Saturated unit weight:

    Effective unit weight:

    d

    ds

    s

    v

    VV

    e

    ==

    w

    s

    v

    w

    eVVS

    == %100

    Ws

    sate

    eG

    +

    +=

    1

    ws

    wsate

    G

    +

    ==

    11

    '

  • Another parameters Specific gravity:

    Relative density:

    Saturated water content:

    ws

    ss V

    WG

    =

    %100minmax

    max

    =

    ee

    eeDR

    %10011

    = w

    sdsat

  • Typical values of unit weight of soils

    Soil type sat(KN/M3) d(KN/M3)

    Gravel 20 to 22 15 to 17

    Sand 18 to 20 13 to 16

    Silt 18 to 20 14 to 18

    Clay 16 to 22 14 to 21

  • Description based on Relative density

    DR(%) Description 0 to 15 Very loose 15 to 35 Loose

    35 to 65 Medium dense 65 to 85 Dense

    85 to 100 Very dense

  • Soil consistence

    ShrinkagelimitWs

    PlasticlimitWp

    LiquidlimitWL

    Atterberglimit

  • State of cohesion soils Plastic index IP=WL-WP

    Liquidity index IL=

    P

    P

    I

  • State of cohesion soils

    If 0

  • CH

    MH CL

    ML

    CL-ML

  • Soil classification USCS:Unified soil classification system

    (ASTM Test Designation D-2487) ASTM: American Society for Testing and Materials Proposed by Casagrande in 1942,this system was revised in 1952 by U.S Bureau of Reclamation.

  • Coarse grained soils

    %R(4.76mm)>0.5%R(0.075mm)Gravel

    %R(4.76mm)50%Coarse grained soils

  • Gravel

    UC4Well graded Gravel

    GW

    Clean Gravel%P(0.075mm)

  • Gravel

    Located CL or CHPoorly gradedclayey Gravel

    GC-GP

    Located ML or MHPoorly graded silty Gravel

    GM-GP

    Located CL-MLPoorly graded clayey

    silty GravelGC-GM-GP

    UC4On plastic Chart Casagrande

    Mixed Gravel5%

  • Gravel

    Located CL or CHclayey Gravel

    GC

    Located ML or MH silty Gravel

    GM

    Located CL-ML clayey silty Gravel

    GC-GM

    Mixed Gravel%P(0.075mm)>12%

  • Sand

    UC6Well graded Sand

    SW

    Clean Sand%P(0.075mm)

  • Sand

    Located CL or CHPoorly gradedclayey Sand

    SC-SP

    Located ML or MHPoorly graded

    silty SandSM-SP

    Located CL-MLPoorly graded clayey

    silty SandSC-SM-SP

    UC6On plastic Chart Casagrande

    Mixed Sand5%

  • Sand

    Located CL or CHclayey Sand

    SC

    Located ML or MH silty Sand

    SM

    Located CL-ML clayey silty Sand

    SC-SM

    Mixed Sand%P(0.075mm)>12%

  • Fine grained soils

    CL CH

    For Clay

    ML MH

    For Silt

    CL-ML

    For Silty clay

    %R(0.075mm)

  • Lean Clay(CL)

    %S>%GLean ClayWith sand

    %S

  • Fat Clay(CH)

    %S>%GFat Clay

    With sand

    %S

  • Silt (ML)

    %S>%GSilt

    With sand

    %S

  • Elastic Silt (MH)

    %S>%GElastic SiltWith sand

    %S

  • Silty clay (CL-ML)

    %S>%GSilty clay

    With sand

    %S

  • Soil classification AASHTO:Association American for

    State Highway and Transportation official, was developed 1929 and proposed by the committee on Materials for sub grades and Granularity Type Boards of the Highway Research Road in 1945(ASTM Test designation D-3282;AASHTO method M145)

  • Granular Materials %P(0.075mm)
  • Silty - clay material %P(0.075mm)>35% Group classification A-4 A-5

    A-6

    A-7 A-7-5 A-7-6

    %P(2mm) %P(0.425mm) %P(0.075mm) >35% >35% >35%

    >35%

    WL 40 40 IP 10 Usual type of materials

    Silty soils Clayey soils

    General subgrade rating

    Fair to poor

    For A-7-5: IPWL-30

  • Group index GI

    GI=(%P(0.075)-35)[0.2+0.005(WL-40)]+0.01(%P(0.075)-15)(IP-10)

  • Soil compaction Standard Proctor test

    Modified Proctor test

  • Specification for standard Proctor test(based on ASTM test designation 698-91)

    Item Method A Method B Method C Diameter of mold 101.6mm 101.6mm 152.4mm

    Volume of mold 943.3cm3 943.3cm3 2124cm3 Weight of hammer 24.4 N 24.4 N 24.4 N Height of hammer drop 304.8mm 304.8mm 304.8mm Number of hammer blows per layer

    25 25 56

    Number of layer of compaction

    3 3 3

    Energy of compaction 591.3KNm/m3 591.3KNm/m3 591.3KNm/m3 Soil to be used %R(4.75)20% %R(9.5)20% %R(19)

  • Specification for modified Proctor test(based on ASTM test designation 1557-91)

    Item Method A Method B Method C Diameter of mold 101.6mm 101.6mm 152.4mm

    Volume of mold 943.3cm3 943.3cm3 2124cm3 Weight of hammer 44.5 N 44.5 N 44.5 N Height of hammer drop 457.2mm 457.2mm 457.2mm Number of hammer blows per layer

    25 25 56

    Number of layer of compaction

    5 5 5

    Energy of compaction 2696KNm/m3 2696KNm/m3 2696KNm/m3 Soil to be used %R(4.75)20% %R(9.5)20% %R(19)

  • Compaction equipment

  • Compaction curve MOISTURE DENSITY RELATIONSHIP CURVE

    1.900

    2.000

    2.100

    2.200

    0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00

    Moisture content %

    D

    r

    y

    D

    e

    n

    s

    i

    t

    y

    g

    /

    m

    3

    Wopt

    dmax

  • California Bearing Ratio(CBR) For study the strength of soils after

    compacting in optimum state. 1-Recompaction the soil in optimum

    state 2-Determine CBR in dry condition 3-Saturated the soil under water 4 days 4-Determine CBR in soaked condition CBR=

    %100..standard

    ..

    loadunit

    loadunitTest

  • BEARING RATIO TEST (CBR)

    Project: Pochentong Airport Job No.Location of Project: Pochentong Airport Boring No 2 Sample No.2Description of Soil: Tested by: Mr. Men Tharith Date of Testing. 16/05/2002

    CBR Test Load Data (soaked)Mold

    Surrcharge Piston load Load.

    Penetration. dial reading kgf/cm2

    mm ( unit )0.000 0 01.00 0.045 2.30772.00 0.075 3.84623.00 0.11 5.6414.00 0.145 7.43595.00 0.175 8.97446.00 0.21 10.7697.00 0.25 12.8218.00 0.28 14.3599.00 0.31 15.89710.00 0.34 17.436

    CBR(2.54)= 7.1429

    Acceppted CBR= 7.14

    Final water Top 7.9conten, w% Midle 7.8

    (soaked) Bottom 7.99sample Averagee 7.8967

    Wet unit wt. = 2.2952 g/cm3 Dry unit wt. = 2.13444 g/cm3

    Wet unit wt.(soaked) = 2.303 g/cm3

    Curve CBR Test

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

    Renetration (mm)

    L

    o

    a

    d

    (

    k

    g

    f

    /

    c

    m

    2

    )

    P2.54

  • Penetration(mm) Standard unit load(Mpa)

    2.5 6.9

    5 10.3

    7.5 13

    10 16

    12.7 18

  • CBR equipment

  • CBR equipment

  • CBR special for field control Compaction the soils in optimum state

    with different energy 1-Compaction 10 blows per layer and

    saturated the soil under water during 4 days

    2-Compaction 25 blows per layer and saturated the soil under water during 4 days

    3-Compaction 55 blows per layer and saturated the soil under water during 4 days

    4-Determine CBR in soaked condition for

  • CBR chart

  • CBR General rating

    Uses Classification system

    USCS AASHTO

    0-3 Very poor

    Subgrade

    OH,CH,MH,OL

    A5,A6,A7

    3-7 Poor to fair

    Subgrade

    OH,CH,MH,OL

    A4,A5,A6,A7

    7-20 Fair Subbase OL,CL,ML,SC,SM,SP

    A2,A4,A6,A7

    20-50 Good Base subbase

    GM,GC,SW, SM,SP,GP

    A1b,A2-5, A3,A2-6

    >50 Excellent

    Base GW,GM A1-a,A2-4 A3

  • Control soils compaction

    %Compaction=

    Determine field density by using:

    1-Undisturbed sampling 2-Sand cone method 3-Balloon density equipment 4-Nuclear method

    max

    .

    %100

    d

    fieldd

  • Sand cone method

  • Control CBR Field CBR By using Dynamic cone penetration test DCP

    1-Kleyn and Van Heerden(600cone) : Lg.(CBR)=2.632-1.28Lg.(mm/blow)

    2-Smith and Pratt (300cone) : Lg.(CBR)=2.555-1.145Lg.(mm/blow)

    3-VanVuuren (300 cone) : Lg.(CBR)=2.503-1.15Lg.(mm/blow)

    4-TRRL Road Note 8(600cone) : Lg.(CBR)=2.48-1.057Lg(mm/blow)

  • CBR control

  • Shear strength of soils Total Stress Analysis (TSA) -for clayey soils with permeability very low,

    so for short term loading soils and water work together.

    Effective Stress Analysis(ESA) -for sandy soils with high permeability,so for

    short term loading soils work yourself only For analyze soils stability

    problems(bearing capacity,slope stability,lateral pressure on earth-retaining structure)

  • Effective stress in soils mass

    Total stress 0= sat.Z Effective stress 0= .Z Pore water pressure U= w.Z = sat- w w unit weight of water

  • Mohr-Coulomb Criteria The shear stress on the failure plan

    as a linear function of the normal stress (Coulomb,1776)

    = c + tg A material fails because of a critical

    combination of normal stress and shear stress, and not from either maximum normal or shear stress alone (Mohr,1900)

  • Failure plan x

    y

    f

    = 45+/2

  • Mohr-Coulomb failure criteria

    C

    Line Coulombs: = .tg+C

  • Unconfined compression test Type TSA test Undisturbed sample with

    h0=2do Speed =2%/min =2%/min=h/h0*100%/min

    For determine undrained cohesion Cu, in this case u=0

  • qu

  • Mohr circle

    0 qu

    Cu

  • Direct shear test Type undrained

    test or drained test

    Undisturbed sample

    For determine cohesion of soils C and internal friction angle of soils

    Build by Casagrande

  • Shear box Porous stone

    Shear force

    Shear box

    Normal force

    Porous stone

    Loading plate

    Soil sample

  • Determine C &

    ( )22)(

    ii

    iiii

    n

    ntg

    =

    n

    tgC ii =

    C

    0

  • Triaxial test

    UU test: Unconsolidated undrained test

    CU test: Consolidated undrained test

    CD test: Consolidated drained test

  • Triaxial equipment

  • UU test

    0 0 qu Cu

  • General relationship of consistency and unconfined compression strength of clay

    Consistency qu(KN/m2) Very soft 0-25

    Soft 25-50 Medium stiff 50-100

    Stiff 100-200 Very stiff 200-400

    hard >400

  • Empirical equation related to Cu and 0 Reference Relationship Remarks

    Skempton (1957)

    Cu=[0.11+0.0037.IP].0 Cu from vane shear test

    For normally consolidated clay

    Chandler(1988)

    Cu=[0.11+0.0037.IP].c

    Cu from vane shear test c preconsolidation pressure

    Can be use for over consolidated clay not valid for sensitive clay

    Jamiolkowski et al (1985)

    Cu=[0.23 0.04].c

    For lightly over consolidated

  • CU & CD test

    0

    C 3 1

  • Typical values of drained Angle of friction for Sand and Silt

    Soil type (degree) Sand : Rounded grains

    Loose 27-30 Medium dense 30-35 Dense 35-38

    Sand : Angular grains Loose 30-35 Medium dense 35-40 Dense 40-45 Gravel with some sand 34-48 Silts 26-35

  • Typical values of drained Angle of friction and Cohesion for Gravel

    USCS (degree) C(KN/m2) GW 40 5 0 GP 38 6 0 GM 36 4 0 GC 34 4 0

    GM-ML 35 5 0 GM-GC 33 3 2 2 GC-CL 29 4 3 3 GC-CH 28 4 4 4

  • Typical values of drained Angle of friction and Cohesion for Sand

    USCS (degree) C(KN/m2) SW 38 5 0 SP 36 6 0 SM 34 3 0 SC 32 4 0

    SM-ML 34 3 0 SM-SC 31 3 5 5 SC-CL 28 4 5 5 SC-CH 27 3 10 10

  • Typical values of drained Angle of friction and Cohesion for Fine grained soils

    USCS (degree) C(KN/m2) ML 33 4 0

    CL-ML 30 4 15 10

    CL 27 4 20 10

    CH 22 4 25 10

    OL 25 4 10 5

    OH 22 4 10 5

    MH 24 6 5 5

  • Stress in soils mass

    O

    M

    Z

    M1

    Z

    Q

    2a=L

    2b=B

  • Determine stress in soils mass 1-Stress at the center of footing vM=4.I2.q = 4.K.q

    BLQq =

    ++

    +++

    ++

    ++

    +++

    ++=

    112

    12

    112

    41

    2222

    22

    22

    22

    2222

    22

    2nmnm

    nmmnarctg

    nm

    nm

    nmnm

    nmmnIpi

    ZB

    m2

    =

    ZL

    n2

    =

    a

    Z=

  • Determine stress in soils mass 2-Stress at the corner of footing vM1=I2.q = K.q

    BLQq =

    ++

    +++

    ++

    ++

    +++

    ++=

    112

    12

    112

    41

    2222

    22

    22

    22

    2222

    22

    2nmnm

    nmmnarctg

    nm

    nm

    nmnm

    nmmnIpi

    ZB

    m =ZL

    n =a

    Z2

    =

  • Determine stress in soil mass by using table b/a

    K

    0

    0.1

    0.2

    1/3

    0.4

    0.5

    2/3

    1

    1.5

    2

    2.5

    3

    5

    10

    0 0.000 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.2 0.000 0.137 0.204 0.234 0.240 0.244 0.247 0.249 0.249 0.249 0.249 0.249 0.249 0.249 0.249 0.4 0.000 0.076 0.136 0.187 0.202 0.218 0.231 0.240 0.243 0.244 0.244 0.244 0.244 0.244 0.244 0.5 0.000 0.061 0.113 0.164 0.181 0.200 0.218 0.232 0.238 0.239 0.240 0.240 0.240 0.240 0.240 0.6 0.000 0.051 0.096 0.143 0.161 0.182 0.204 0.223 0.231 0.233 0.234 0.234 0.234 0.234 0.234 0.8 0.000 0.037 0.071 0.111 0.127 0.148 0.173 0.200 0.214 0.218 0.219 0.220 0.220 0.220 0.220 1 0.000 0.028 0.055 0.087 0.101 0.120 0.145 0.175 0.194 0.200 0.202 0.203 0.204 0.205 0.205

    1.2 0.000 0.022 0.043 0.069 0.081 0.098 0.121 0.152 0.173 0.182 0.185 0.187 0.189 0.189 0.189 1.4 0.000 0.018 0.035 0.056 0.066 0.080 0.101 0.131 0.154 0.164 0.169 0.171 0.174 0.174 0.174 1.5 0.000 0.016 0.031 0.051 0.060 0.073 0.092 0.121 0.145 0.156 0.161 0.164 0.166 0.167 0.167 1.6 0.000 0.014 0.028 0.046 0.055 0.067 0.085 0.112 0.136 0.148 0.154 0.157 0.160 0.160 0.160 1.8 0.000 0.012 0.024 0.039 0.046 0.056 0.072 0.097 0.121 0.133 0.140 0.143 0.147 0.148 0.148 2 0.000 0.010 0.020 0.033 0.039 0.048 0.061 0.084 0.107 0.120 0.127 0.131 0.136 0.137 0.137

    2.5 0.000 0.007 0.013 0.022 0.027 0.033 0.043 0.060 0.080 0.093 0.101 0.106 0.113 0.115 0.115 3 0.000 0.005 0.010 0.016 0.019 0.024 0.031 0.045 0.061 0.073 0.081 0.087 0.096 0.099 0.099 4 0.000 0.003 0.006 0.009 0.011 0.014 0.019 0.027 0.038 0.048 0.055 0.060 0.071 0.076 0.076 5 0.000 0.002 0.004 0.006 0.007 0.009 0.012 0.018 0.026 0.033 0.039 0.043 0.055 0.061 0.062 10 0.000 0.000 0.001 0.002 0.002 0.002 0.003 0.005 0.007 0.009 0.011 0.013 0.020 0.028 0.032 15 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.002 0.003 0.004 0.005 0.006 0.010 0.016 0.021 20 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.002 0.002 0.003 0.004 0.006 0.010 0.016

    50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.006

  • Consolidation

  • Settlement of soils

    hi

    S

    Ho

    S

    ho

    Before loading After loading

  • Consolidation curve

    e

    Log

    p 1 2 3 4

    e1 e2

    e3

    e4

  • Determination parameter of consolidation

    Natural void ratio

    Void ratio after consolidation

    Swell index

    Compression index

    0

    00

    HHh

    e

    =

    0

    00

    HhHh

    e ii

    =

    12

    21

    loglog

    =

    eeCs

    34

    43

    loglog

    =

    eeCc

  • Determination parameter of consolidation

    Modulus of elasticity

    e and located between 100 Kpa to 200KPa

    Compression index

    Swell index

    +=

    e

    emE ks 0

    1.

  • Types of soil

    emKuNsMBaF mk GaRsyeTAnwgemKuNes

  • Soil type RbePTdI

    Sand xSac;/ l,ayxSac; 0.30 0.74

    Silt l,aydI\d 0.35 0.62

    Clay dI\d 0.42 0.40

  • Elastic parameter of various soils Type of soils Modulus of

    elasticity Es(Mpa) Poissons ratio

    s Loose sand 10-25 0.20-0.40 Medium dense sand

    15-30 0.25-0.40

    Dense sand 35-55 0.30-0.45 Silty sand 10-20 0.20-0.40 Sand and gravel 70-170 0.15-0.35 Soft clay 4-20

    0.20-0.50 Medium stiff clay 20-40 Stiff clay 40-100

  • Coefficient of consolidation

    Log t

    h

    t1

    t1/4

    t 100

    100

    0

    50

    t 50 1min

  • Determination coefficient of consolidation Coefficient of consolidation from Casagrande

    method Cv[m2/s]

    h0- initial thickness of sample Permeability coefficient

    Coefficient of compressibility

    Coefficient of volume change

    50

    2

    197.0t

    HC v = 2500

    =

    hH

    e

    aCK wvv+

    =

    1..

    =

    ea v

    01 ea

    m vv +=

  • Typical values of coefficient of consolidation Cv[cm2/s]

    Liquid limit Lower limit of recompressio

    n

    Undisturbed virgin

    compression

    Upper limit remolded

    30 3.5*10-2

    5*10-3

    1.2*10-3

    60 3.5*10-3

    1*10-3

    3*10-4

    100

    4*10-4

    2*10-4

    1*10-4 Source U.S Navy 1962

  • In situ test

    Static cone penetration test Dynamic cone penetration test DCP Standard penetration test Shear vane test Pocked penetration test

  • Static cone penetration test

    K

    c

    NqCu 0=

    +=

    0'log38.01.0

    cqArctg

    E=2.qc

    qc:cone resistance

    Nk=20

  • Dynamic cone penetration test AHM

    MMeMqd

    .

    .)'.( +=

    qd :cone resistance

    M:weight of hammer

    M:weight of rods

    A:cone area

    H:height hammer falling

    e:penetration for one blow

  • Standard penetration test

  • Index SPT N value is amount of blows for penetration split spoon sampler in soils 30 cm

    N=N1+N2

    Ncor= CN.Nfield

    CN = 0.77log D.2000

    Peck1974

    0'

    178.9

    =NC Liao & Whihman 1986

    0'01.012

    +=NC Skempton1986

    =

    6.95'log25.11 0NC Seed 1975

    For fine sand or silt saturated with N >15

    Ncor=15+0.5 (Nfield-15)

  • Relationship of SPT and properties mechanics of soils

    2020 += N Hatanaka & Uchida 1996 200054.03.01.27 NN += Wolff 1989

    1518 += N For road and Bridges design sMrab;f;l;nigs

  • Relationship of SPT and properties mechanics of soils

    Undrained cohesion Cu=K.N Stroud(1974)

    3.5KPa

  • Soils type

    N blows

    DR %

    degree

    KN/m3

    Very loose

    0 4

    0 15

    < 28

    11 16

    Loose

    4 10

    15 35

    28 30

    14 18

    Medium dense

    10 30

    35 65

    30 36

    17 20

    Dense;

    30 50

    65 85

    36 41

    17 22

    Very dense

    > 50

    85 100

    > 41

    20 23

  • Soils type

    N

    qu KPa

    Very soft

    < 2

    < 25

    Soft

    2 4

    25 50

    Medium

    4 8

    50 100

    Stiff

    8 15

    100 200

    Very stiff

    15 30

    200 400

    Hard

    > 30

    > 400

  • Thank you for your attention

    Mr. Sieng PEOU Master science of

    geotechnical engineering