Upload
others
View
3
Download
0
Embed Size (px)
SMAPL-bandMicrowaveRadiometer:InstrumentDesignandFirstYearonOrbit
Jeffrey R. Piepmeier, Senior Member, IEEE, Paolo Focardi, Senior Member, IEEE, Kevin Horgan, Member, IEEE, Joseph Knuble, Negar Ehsan, Member, IEEE, Jared Lucey, Clifford
Brambora, Paula R. Brown, Pamela J. Hoffman, Richard T. French, Rebecca L. Mikhaylov, Eug-Yun Kwack, Eric M. Slimko, Douglas E. Dawson, Derek Hudson, Jinzheng Peng, Priscilla
Mohammed, Member, IEEE, Giovanni De Amici, Adam P. Freedman, James Medeiros, Fred Sacks, Robert Estep, Michael W. Spencer, Curtis W. Chen, Kevin B. Wheeler, Wendy N.
Edelstein, Peggy O’Neill, Fellow, IEEE, Eni G. Njoku, Fellow, IEEE
ABSTRACT
Abstract–TheSoilMoistureActivePassive(SMAP)L-bandmicrowaveradiometer
isaconicalscanninginstrumentdesignedtomeasuresoilmoisturewith4%volumetric
accuracyat40-kmspatialresolution.SMAPisNASA’sfirstEarthSystematicMission
developedinresponsetoitsfirstEarthsciencedecadalsurvey.Here,thedesignisreviewed
andtheresultsofitsfirstyearonorbitarepresented.Uniquefeaturesoftheradiometer
includealarge6-meterrotatingreflector,fullypolarimetricradiometerreceiverwith
internalcalibration,andradio-frequencyinterferencedetectionandfilteringhardware.
Theradiometerelectronicsarethermallycontrolledtoachievegoodradiometricstability.
Analysesofon-orbitresultsindicatetheelectricalandthermalcharacteristicsofthe
electronicsandinternalcalibrationsourcesareverystableandpromoteexcellentgain
stability.RadiometerNEDT<1Kfor17-mssamples.Thegainspectrumexhibitslownoise
atfrequencies>1mHzand1/fnoiserisingatlongertimescalesfullycapturedbythe
internalcalibrationscheme.Resultsfromskyobservationsandglobalswathimageryofall
fourStokesantennatemperaturesindicatetheinstrumentisoperatingasexpected.
I. Introduction
NationalAeronauticsandSpaceAdministration’s(NASA’s)SoilMoistureActive
Passive(SMAP)satellitewaslaunchedintoa685-kmnearsun-synchronous6AM/PMorbit
onJanuary31,2015.SMAP’sL-bandmicrowaveradiometerwascommissionedinFebruary
andMarchandhasnowreacheditsmilestoneofoneyearofsuccessfuloperation.Athree-
dimensionalrenderingoftheSMAPobservatoryinitsfullydeployedconfigurationis
showninFig.1.SMAPisthethirdinaseriesofmodernL-bandradiometersafterthe
EuropeanSpaceAgency’s(ESA)SoilMoistureOceanSalinity(SMOS)satellitelaunchedin
2009andNASA’sAquariusinstrumentaboardArgentina’sComisiónNacionalde
ActividadesEspaciales(CONAE)SatelitedeAplicacionesCientificas(SAC)-Dsatellite
launchedin2011[1]-[3].SMAP’sprimaryscienceobjectiveistoprovidesoilmoisture
measurementswithanuncertainty<0.04m3m-3forterrainhavingvegetationwater
contentsupto5kg/m2.Fortheradiometer,thisobjectiverequiresradiometricuncertainty
<1.3K(withforeandaftaveraging)with<40-kmspatialresolution.
SMAPisNASA’sfirstEarthSystematicMissiondevelopedinresponsetoitsfirst
Earthsciencedecadalsurvey[4].TheSMAPmissionhigh-levelsciencerequirementsand
derivedinstrumentrequirementsrelatedtotheradiometerareshowninTable1(adapted
from[5]).Earlyinitsmission,SMAPprovided10-kmresolutionsoilmoistureglobally
everythreedaysusingacombinedactive-passivemicrowaveinstrument.Theinstrument
comprisesaradiometerandasyntheticapertureradar(SAR),whichbothshareasingle
antenna.InJuly,theradarceasedtransmissionsandhasremainedinreceive-onlymode
since[6].Byitselftheradiometerenables40-kmresolutionsoilmoisturewiththesame
three-dayglobalcoverage.Nonetheless,withitsconical-scanning(realaperture)antenna
andadvancedRFImitigationcapabilities,theSMAPradiometerisprovidinghigh-quality
brightnesstemperaturemeasurementsofEarth’sland,iceandoceansurfaces.
TABLE1.SMAPRADIOMETERSCIENCEANDINSTRUMENTREQUIREMENTS.
ScientificMeasurementRequirements InstrumentFunctionalRequirementsSoilMoisture:0.04m3m-3volumetricuncertainty(1-σ)inthetop5cmforvegetationwatercontent≤5kgm-2;Hydroclimatologyat40-kmresolution
L-BandRadiometer(1.41GHz):Polarization:V,H,T3andT4Project3-dBbeamwidth≤40kmRadiometricUncertainty≤1.3KConstant40°incidenceangle
Samplediurnalcycleatconsistenttimeofday(6am/6pmEquatorcrossing);Global,3-day(orbetter)revisit
SwathWidth:1000kmMinimizeFaradayrotation
Observationoverminimumofthreeannualcycles
Baselinethree-yearmissionlife
Thetwokeytechnologyinnovations–thelargescanning6-meterreflectorandthe
totalpowerradiometerreceiverwithadvancedRFIdetectionandfilteringcapabilities–
combinedmaketheSMAPradiometerunique.On-orbitresultsofSMAP’sRFImitigation
capabilitiesarediscussedin[7].Inotherways,theSMAPradiometerderivesits
requirementsand/ordesignfrompastradiometersystems.Thefront-endarchitecture
witha6-meterantennasharedwiththeradarwasinheritedfromthepreliminarydesignof
theHydrosphereState(Hydros)EarthSystemSciencePathfinder(ESSP)mission,which
wasselectedasanalternateESSPbyNASAbutdidnotproceedwithdevelopmentin2005
[5].SMAP’santennaisconicalscanningwithafull360-degreefieldofregard.However,
thereareseveralkeydifferences(someunique)frompreviouslow-frequencyconical
scanningradiometerslikeWindSatorAdvancedMicrowaveScanningRadiometerforthe
EarthObservingSystem(AMSR-E)[8][9].Mostobviousisthelackofexternalwarm-load
andcold-spacereflector,whichnormallyprovidesradiometriccalibrationthroughthefeed
horn.Rather,SMAP’sinternalcalibrationschemeisbasedontheJasonMicrowave
Radiometer,theAquariuspushbroomradiometersandtheSMOSradiometerusing
referenceloadswitchesandcouplednoisediodes[9]-[11].Switchingoftheinternal
calibrationssourcesissynchronizedwiththeradaroperation,asitisonAquarius,sothe
radiometeroversamplesthefootprint.BothSMAPandAquariusutilizethisoversampling
techniquefortime-domaindetectionandfilteringofradio-frequencyinterference[12][13].
LikeWindSat,SMAPmeasuresallfourStokesparameterswithforeandaftviewing;unlike
WindSat,SMAPusescoherentdetectionforthethirdandfourthStokesparameters
implementedinadigitalreceiverbackend[14].ThefirsttwomodifiedStokesparameters,
TVandTH,aretheprimarysciencechannelsusedbythesoilmoistureretrievalalgorithm
[15].TheT3channelmeasurementprovidescorrectionofFaradayrotationcausedbythe
ionosphere[16].TheT4channelismeasuredasaconsequenceofthereceiverdesignand
thedataareusedtodetectRFI.ThemostsignificantdifferenceSMAPhasfromallpast
spaceborneradiometersystemsisitsaggressivehardwareandalgorithmapproachtoRFI
detectionandfiltering[13][7].TherequirementtodetectandfilterRFIdrivesandexploits
featuresoftheSMAPdesign.
Here,themainfeaturesoftheSMAPradiometerdesign,resultsofearlyorbit
operations,andobservationsforthefirstyearupthroughMarch2016arepresented.
SectionIIcoverstheobservatory,swathandantennadesign.SectionIIIdescribesthe
radiometerelectronicsandtheircalibrationbeforelaunch.Activitiesandresultsofpre-
launchcalibrationandearlyoperationson-orbitarediscussedinSectionsIVandV.A
reviewofoneyearofdataisdiscussedinSectionsVI&VII.
II. ObservatoryandAntennaDesign
SMAPorbitsEarthat685-kmaltitudewiththespacecraftpointingtogeodeticnadir.
Theinstrumentantennapoints35.5°awayfromnadirandgeneratesa2.4°3-dB
beamwidthfortheradiometer.Thisgeometrycreatesaninstantaneousfield-of-view
(IFOV)of36-by-47kmwithanEarthincidenceangle(EIA)of40°.Thedistanceacrossthe
swathis1000kmfromIFOVcenter-to-center.Thisswathwidth,combinedwiththeorbit
parameters,allowsthewholeofEarth’ssurfacetobecoveredinthreedays(exceptfor
typicalpoleholes)withnogapsattheequator.
Imagingisaccomplishedbyconicalscanningtheantennabeamwithafull360°field
ofregard.Theantennarotatesat14.6rpmcompletingascanwith3200-kmcircumference
every4.1seconds.Along-scanaveragingoccursover14-ms,whichsmearsthebeamalong
scantocreatea39-by-47kmeffectivefield-of-view(EFOV).Along-scansamplingoccurs
every11km,whichisfasterthanthe20-kmNyquistcriterion.Withthespacecraftmoving
at6.8km/sspeedoverground,thealongtrack(oracrossscan)samplingatcenterofswath
is28km–slightlyslowerthanthe24-kmNyquistcriterion.Thespatialsamplinggeometry
nearcenterofswathisshowninFig.2.
Theinstrumentantenna,sharedbetweentheradiometerandtheSAR,iscomposed
ofa6-moffsetreflectorfedbyadualpolarized,dualbandfeed-horn.Withafocallengthof
4.2mandaprojecteddiameterof6m,aKevlarnetshapesthedeployablemeshreflector
intoatriangularlyfacetedsurfacewithanRMSerrorcomparedtoaperfectparaboloidless
than2mmorabout1%wavelength.Optimizedforboththeradiometer(1.4015-1.4255
GHz)andtheSAR(1.2168-1.2982GHz)frequencybands,thefeed-hornincludesanOrtho-
Mode-Transducer(OMT)toseparatehorizontalandverticalpolarizations.TheOMTis
partlymadeoftitaniumtothermallyisolatethehorn,whichisexposedtothethermal
radiationenvironment,fromtheradiometerelectronics.
Fig.3showsacomparisonbetweentheCADmodeloftheSMAPobservatorywith
thereflectorfullydeployedanditsRFmodelusedtopredicttheantennaperformance.All
significantdetailsrelativeto21-cmwavelengthwereincludedintothemodeltogetthe
bestpossibleaccuracyintheradiationpattern.Thereflectorantennaradiationpatternwas
notmeasuredbeforelaunch;therefore,averyaccurateantennapatternknowledgewas
requiredtoverifyperformancerequirements(e.g.,beamefficiency)andfortheinitial
radiometercalibration.A1/10thscalemodelreplicatingallmajoraspectsoftheflight
hardwarewasalsodesigned,builtandtestedtovalidatetheRFmodel.Finalrequirement
verificationwasthendonewithacombinationofflightfeedassemblymeasurements,scale
modelpredictionsandmeasurementsandflightmodelpredictions.Ahorizontal
polarizationpatterncutalongthealong-scandirection(horizontaldirection)isplottedin
Fig.4.Themainlobehasahalf-powerbeamwidthof2.4degrees.Thebacklobes,primarily
duetofeedpatternspilloverandedgediffraction,fallintothespaceregion.Thebeam
efficiencyforverticalandhorizontalpolarizationsis88%,withmostofthenon-mainlobe
contributiondirectedtowardsspace.
III. RadiometerElectronicsDesign
Theradiometerelectronicsconsistofantennafeednetwork,radiometerfrontend
(RFE),radiometerbackend(RBE),andradiometerdigitalelectronics(RDE).These
subsystemsareshowninFig.5withsignalflowfromrighttoleft.Theantennafeed
networkincludesanexternalnoisesourceanddiplexerstoseparateradarfrequencies
fromtheradiometerpath.Theexternalnoisesourcesignalisaddedtotheantennasignal,
butisnotusedasaprimarycalibrationsourceandispresentforredundancy.The
diplexersincludeadditionalfilteringtolimittheamountofRFIenteringtheRFE.TheRFE
containstheprimaryinternalcalibrationswitchesandnoisesource,RFamplificationand
additionalfiltering.Theinternalnoisesourcesignalisaddedtothereferencesignalsto
provideRFI-freegaincalibration.TheRBEdown-convertstheRFsignalstoalowerIF
frequencyusingacommonphase-lockedlocaloscillator(PLO).Thereferenceclockforthe
PLOalsoclockstheanalog-to-digitalconverters(ADCs)intheRDE.TheADCssampleand
quantizetheIFsignalsforprocessingbyaFieldProgrammableGateArray(FPGA)-based
DigitalSignalProcessor(DSP).TheDSPgeneratesdetectedpowerforthefullpassband
(fullbanddata)andfor16channelsspacedevenlyacrossthepassband(subbanddata).The
RDEgeneratestimingsignalsneededtocontroltheinternalcalibrationsourcesand
synchronizesradiometerintegrationwiththeradartiming.Finally,dataarepacketizedby
theRDEandsenttospacecraftmassstorageforlaterdownlinktotheground.
TheRFsystemisdesignedtomakelinearradiometricmeasurementsinthe
presenceofRFIuptoanInterference-to-NoiseRatio(INR)of6dBoraneffectiveadded
noisetemperatureof2000KduetoRFIoutofatypical500Ksystemtemperature.Above
2000K,theaccumulatorsintheintegratorlogicsaturate.Cascadedfilteringand
amplificationsufficienttooperateeachstageatamaximumpowerof24-dBbelow1-dB
compressionkeepstheerrorcontributionfromnonlinearityduetoRFIsignalsnegligible
overthisrange.ThetotalsystemfrequencyresponseisshowninFig.6.Note,theresponse
is30dBbelowpeakattheallocationedgesat1400MHzand1427MHz.Theroll-offto
>100dBismuchfasteronthelowsidebecauseofthepresenceofairsearchradarsand
lessstringentonthehighsidebecauseoffewerknownRFIsources.
Thedigitalbackendreplacesconventionaldiodedetectorswithmoment
accumulatorsandcomplexcross-correlators.ThefirstfourmomentsoftheADCoutputs
areestimatedbytheRDE.Thescience-processingalgorithmcomputesthesecondcentral
momentusingthefirstandsecondmomentstoestimatethetotalpower[17].Thesedata
areusedtoestimateantennatemperature.Thekurtosis(usedbytheRFIdetectors)is
computedinasimilarmannerusingrawmoments.Thecomplexcross-correlation
coefficientisalsomeasuredbytheRDEandisusedinthescience-processingalgorithmto
estimatethirdandfourthStokesparameters.
ThirdandfourthStokesparametersaremeasuredbytheradiometertocompensate
forFaradaypolarizationbasisrotationcausedbytheionosphereandtobeusedasRFI
detectors.Thedrivingrequirementonthereceiverwastominimize(relativeto24-MHz
bandwidth)differentialgroupdelaybetweentheverticalandhorizontalchannels.Because
thecomplexcorrelationismeasured,anymeanphasedifferencebetweenverticaland
horizontalpolarizationscanbecompensatedbyacomplexcoefficientmultiplicationinthe
science-processingalgorithm.Phaseslopedifference,however,wouldattenuatethe
correlationbetweensignals,andisminimizedinthedesignbyusingsymmetryand
avoidingunnecessarilylongcablesofdifferentlengths.
Theradiometerintegratorlogicoperatessynchronouslywiththeradarwherebythe
radiometerintegratesreceivedpowerduringtheradarreceivewindowandblanksduring
thetransmitwindow.TimingisshowninFig.7.Thefundamentalunitofintegrationis300
μscontainedwithinapulse-repetitioninterval(PRI).Fullbanddataareintegratedatthis
rate.Subbanddata,however,areintegrated1.2msoverapacketdefinedasfourPRI’s.
Duringafootprint,eight(8)packetsareutilizedtoviewearthfor9.6msandfour(4)
packetstoviewtheinternalreferenceloadandnoisesourceorcalibrationfor4.8ms.
Becauseofasmallamountofblankingduringradartransmitandcalibrationswitching
setuptime,thiscycleoccursona17msperiod.
Theradiometertiming,antennabeamwidthandscanrate,andgroundsoftware
averagingarecoordinatedsotheequivalentlow-passprocessesworktogethertoproduce
Nyquistsampledfootprintsalongthescandirection.Thefrequencyresponsesofthe
processesareshowninFig.8.Theon-boardintegratorsarerepresentedbythetwo
rightmosttraces(dash-dotanddash)for1and4PRI’s,respectively.The8-packet(32-PRI)
integrationdoneingroundsoftwaretoformafootprinthasalow-passresponseindicated
bysolidtracelabeledL1B_TB.TheLevel1productfootprintprocesshasa3-dBpointat30
Hz,whichfullysamplesthelow-passprocesscreatedbytheantennapatternsweeping
acrosstheearth.Thebumpinthefootprintresponsenear100Hziscausedbythe
interleavingofantennalookswithcalibrationlooks,whichrobsintegrationtimefromthe
scene.AbalanceisstruckinthealgorithmdesignbetweenincreasedNEDTandvs.
decreased∆G/Gnoise.Thehigh-frequencyenergyat100Hzintheantennaaveraging
responseismerelywhitenoisealiasedintothefootprintsandequivalenttotheincreasein
NEDTduetolimitingantennaintegrationtime.Finally,thedottedlinemarked“antenna”
showstheequivalentlow-passresponseoftheantennaapproximatedbyaGaussianbeam
(sweepingalong-scaninazimuthat770km/secspeedoverground)tonaturallyoccurring
thermalradiation.
Thefourpacketsofcalibrationobservationsarepartitionedintotwopacketsfor
referenceloadandtwopacketsforreferenceplusnoisediode.Conventionally,noiseis
injectedpriortoareferenceswitch;however,onSMAPasonAquarius,RFIissucha
concernthatthenoiseinjectionisdonebehindtheswitchtoensuretheradiometercanbe
calibratedregardlessofRFIenteringtheantenna.ThenoisesourceonSMAP,unlike
Aquarius,isasinglenoisesourcesplitcoherentlybetweentheverticalandhorizontal
receiverchannels.Thismethodwaschosenbecausethedigitalreceiverhasnegligible
cross-polarizationcouplingandthetotalpowerandcross-correlationdetectorscanbe
calibratedessentiallyindependently.Thephaseofthecorrelatednoisesourcewassetat
40otoenablecalibrationoftherealandimaginaryoutputsofthecorrelatorusingthesame
calibrationstate.
Theradiometerscience-processingalgorithmusesthesepairsofreferenceand
noisediodecountstocomputegainandoffsetcoefficients,whicharethenfurtheraveraged
overalongertimeperiod(multiplefootprints)toreduceestimationnoise.Thegainand
offsetarecomputedtwiceperfootprintinthescience-processingalgorithmandthen
averagedwitha5000-tap,uniform,centerednon-causalfilter.Thefrequencyresponsesof
thesefiltersarediscussedintheon-orbitdatasectionbelow.Carefulattentionwaspaidto
thermalcontroltoallowgainandoffsetcoefficientaveragingover10’sofsecondsandto
helpmaintainradiometerstabilityonorbitalandseasonaltime-scales.Thecombinationof
passivethermaldesignwithanactiveproportionalcontrollerachieves0.1oC/orbitwithin
theRFE[22][23].Worst-caseorbitalresultsarealsodiscussedintheon-orbitresults
sectionbelow.
IV. Pre-LaunchCalibration
Thepre-launchcalibrationoftheradiometerincludesbotharadiometricanda
polarimetricexercisetocharacterizetemperaturedependenceofthereferenceandnoise
sourcelooksandreceiverphaseimbalancerelativetothefeedhorninput.Theradiometric
calibrationwasaccomplishedusingtechniquessimilarto[18]andpolarimetriccalibration
[19].Thegoaloftheradiometriccalibrationistocharacterizethelosses(orequivalent)
andnoisediodeaddednoisetemperature,representedbythesimplifiedlossmodelshown
inFig.9,foruseinthescience-processingalgorithm.Likewise,thegoalofthepolarimetric
calibrationistodeterminethepolarimetricefficiencyandphasedifferencesofthereceiver
channels.
Inthescience-processingalgorithm,theantennatemperaturereferencedtothe
feedhornoutput/OMTinputiscomputedfromradiometeroutputcountsusingatwo-point
calibrationmodel:
𝑇%& = 𝑇%()* −,-./0,1
,23,50,-./𝑇%67 (1)
where𝑇′,()*istheinternalreferenceloadnoisetemperatureand𝑇′,67thecouplednoise
sourcetemperaturereferredtothefeedhornoutput/OMTinput.Theradiometeroutput
countsarerepresentedby𝑐: ,wherexindicatesreference(ref),antenna(A),andnoise
diode+reference(ND,R)states.Theintermediateantennatemperature(1)isinput-
referredtothefeedhornaperturebycorrectingforfeedandradomelossesandphysical
temperatures:
𝑇& = 𝐿(<=>?)𝐿*))=𝑇′& − 𝐿(<=>?) 𝐿*))= − 1 𝑇*))= − 𝐿(<=>?) − 1 𝑇(<=>?) (2)
whereLxandTxarethelossfactorsandphysicaltemperaturesforxequaltotheradome
andfeed.Theinternalcalibrationtemperaturescanbeexpressedasfunctionsofthe
lumpedlossesandphysicaltemperaturesshowninthelossmodelFig.9:
𝑇%()* = 𝐿ABC𝐿,>DE𝐿=FE𝑇GHI − 𝐿ABC𝐿,>DE 𝐿=FE − 1 𝑇=FE (3a)
−𝐿ABC 𝐿,>DE − 1 𝑇,>DE − 𝐿ABC − 1 𝑇ABC
𝑇%67 = 𝐿ABC𝐿,>DE𝐿=FE𝐿JKFL,M𝑇67 (3b)
Alternately,(3a)and(3b)canbeapproximatedusingalinearmodel:
𝑇()*% = 𝑇NOP + 𝑐NOP,RS*∆𝑇NOP + 𝑐TUV,()*∆𝑇TUV + 𝑐WXYZ,()*∆𝑇WXYZ + 𝑐[\Z,()*∆𝑇[\Z + 𝑇>**J)L(4a)
𝑇]7% = 𝑇,67 + 𝑐NOP,67∆𝑇NOP + 𝑐TUV,67∆𝑇TUV + 𝑐WXYZ,67∆𝑇WXYZ + 𝑐[\Z,67∆𝑇[\Z (4b)
wherecoefficients𝑐:arederivedfrompre-launchthermalvacuum(TVAC)testingand∆𝑇:
indicatesphysicaltemperaturedeviationawayfromthereferencetemperatureusedinthe
linearmodelfitting.
TheTVACtestsconsistedofaseriesofdatacollectionswiththeradiometerat
differentcombinationsofcontrolledtemperaturesforeachzone.ThefirstTVACtestwas
limitedtotheradiometerelectronicsandthecoaxialcomponentsportionofthefeed
network.Eachmajorcomponentwasinstalledonanindividuallycontrolledheaterplate,
wereconnectedtogetherusingspaceflightcoaxialcables,andtemperatureswerethen
varied±10°Cabout20°Cafter[20].Acoaxialcalibrationsourcecomprisingatemperature
stabilizedmatchedterminationandcoldFETwasusedtoprovidetwo-pointcalibration.
ThecoldFETwascalibratedagainstaliquidnitrogencoaxialstandardload.AsecondTVAC
testwasperformedwiththeOMTandfeedhorninstalledviewingaflatferritetileabsorber
plate.Whiledatatakeninthefirstwereusedtoobtainthesensitivityofthecoupler,
diplexerandtheinternalcalibrationsourcestotheirphysicaltemperature,thesecondtest
yieldedthesensitivityofthecalibrationtoOMTandfeedhorntemperatures.Theresulting
calibrationcoefficientsareshowninTable2.Thereisarelativelackofsensitivityofthe
referenceloadantenna-referredtemperatureduetovariationsinfeednetwork
components;however,thereferenceloadtemperatureisquitesensitivetochangesinthe
RFEtemperatureasindicatedbythe20%valueofcRFE,likelyduetochangesinthermal
gradients.Thenoisesourcehasatemperaturesensitivityof𝑐GHI/𝑇67 =2.5and2.7ppt/oC
duetoRFEtemperaturechangesfortheverticalandhorizontalpolarizationchannels,
respectively.
Table 2 SMAP Radiometer Calibration Coefficients (Full Band)
𝑐GHI 𝑐ABC 𝑐,>DE 𝑐=FE Note
𝑇()*% V-pol 0.205 4.78´10-5 -0.052 -0.073 𝑇>**J)L =0.225 K
H-pol 0.208 5.23´10-5 -0.056 -0.064 𝑇>**J)L =0.741 K
𝑇67% V-pol 1.18 0.015 0.036 0.002 𝑇67 = 465 K
H-pol 1.24 0.012 0.053 0.048 𝑇67 = 452 K
Theradiometer’scomplexcrosscorrelatorisusedtomeasurethirdandfourth
Stokesparameters.Theradiometerhasasymmetricdesign,butthetwopolarization
channelsarenotnecessarilyphasebalancedorspectrallybalanced.Adigitallycontrolled
correlatednoisesourcewithadjustablephasewasusedtodeterminethatthepolarimetric
efficiencyofthesystemwaseffectivelyunity(0.999).Thetwochannelshavethesame
passbandresponseandnegligiblegroupdelaydifference.Nonetheless,asthereceived
signalspropagatealongthereceiverchannels,therelativecorrelationanglewillbe
changed,asthereceiver’schannelphaseimbalanceisnonzero.Scatteringparameter
measurementsversustemperatureindicatephaseimbalanceisquitestable.Forexample,
theRFEinter-channelphaseimbalancevaries0.03°/°C.Thisamountisnegligible
consideringperformanceofthethermalcontrolsystem.Thus,phasesweremeasuredat
roomtemperatureusingdifferenttechniquesduringintegrationandcalibrationofthe
radiometer.
First,networkanalyzermeasurementsshowtheinternalcalibrationnoisediode,
whichisimbeddedinsidetheRFE,hasaphaseimbalance(fromtheRFEinputtooutput)of
1.6°.Positivesignmeansthatthev-polchannelhaslongerequivalentelectricallength.The
pathlengthsbetweentheRFEandRDEareunequal,creatinganadditional-41°phaseshift,
whichwasmeasuredbynetworkanalyzerandverifiedusingtheradiometercorrelator.
Finally,tocalibratethechannelphaseimbalancesintheradiometerbeforetheRFEinputs,
apolarizinggridoverLN2calibrationtargetwasused.Theprincipleofthistestistocreate
linearlypolarizationradiationatthefeedhorninput.Rotatingthegridgeneratesathird
Stokesparameterwithacorrelationcoefficientrotatedbythereceiver’stotalphase
imbalanceinthecomplexplane.ExcludingthechannelphaseimbalanceaftertheRFE
inputs,thechannelphaseimbalancefromthefeedhorntotheRFEinputsis39°.These
phasedifferencesareusedinthescience-processingalgorithmtoproducethirdandfourth
Stokesantennatemperatures.
V. EarlyOn-OrbitActivities
ThestowedconfigurationoftheSMAPantennaoffersanunobstructedviewofdeep
spacetothefeedhorn(seeFig.10).TheradiometerwaspoweredonFeb.12,2015totake
advantageofthestowedconfiguration.Usingthiswellknowncalibrationpoint,one
calibrationparameterintheradiometercanbeadjusted.Thenoisesourcewaschosen
becauseithasthelargestuncertaintyremainingfrompre-launchcalibrationtesting.
Estimatedcoldspaceantennatemperatureswereexpectedtobeapproximately4K±9K
(3-σ)basedonpre-launchcalibrationparametersandtheiruncertainties.Thenoisesource
pre-launchuncertaintyof1%islargelyresponsibleforerrorsinthisconfiguration.Other
errorsourcesincludeinternalreferenceloadtemperature,front-endcomponentloss,and
antennafeedpatternuncertainties.Atypicalorbitofantennatemperaturemeasurements
isshowninFig.11.Theresultsbasedonpre-launchcalibrationforV-polare5Ktoolow;
however,afternoisesourcecorrection,themeasuredantennatemperaturematchesthe
expectedcold-spaceantennatemperaturesquitewell.TheH-polresultsshowedonly1K
initialdiscrepancyandsimilaragreementaftercorrection.Theradiometerwaspowered
offonFeb.13toprepareforreflectordeployment.
Afteraccomplishingthespaceview,thereflectorwasdeployedinastatic
configuration.TheradiometerwaspoweredonagainFeb.27-28,2015toprovide
informationtoaidreflectordeploymentverification.Thereflectorwaspointedaftofthe
spacecraftandthenadiranglewaspredictedtobeslightlysmallerthanthatwhenspinning
becauseofboomdeflectionduetocentrifugalforce.Theresultsofthistestwerefavorable.
BothbrightnesstemperatureresponseandNEDTmeasurementsareasexpected.As
showninFig.12,brightnesstemperatureresponseoverland,ice,andoceanarereasonable
(notethecolorscaleislimitedtoemphasizevariationsoverland).Highbrightness
temperaturesareseenoverrainforestinSouthAmericaandWestAfricaanddesertin
NorthAfricaandMiddleEast.NEDTvaluesestimatedbythescience-processingalgorithm
are0.8Kand1.1Koveroceanandland,respectively.Thesevaluesareconsistentwith
instrumentdesignspecifications.
OnMarch31,2015,theradiometerreflectorwasrotatingatoperationalspeedand
theinstrumentelectronicswerepoweredbackon.Afteracheckoutperiod,theradiometer
wasdeclaredoperational.Ithasbeenoperatingsuccessfullysince.
VI. FirstYearonOrbit
TheradiometererrorbudgetisdominatedbyNEDTbecauseofthenarrowtime-
bandwidthproduct(9.6msby24MHz)availabletothesystem.TheorbitaverageNEDTfor
allfourStokesantennatemperaturesisshowninFig.13duringthefirstyearofoperation.
TheorbitaverageNEDTisconsistentwithanaverageoverland,oceanandicescenesand
isstablethroughouttheyearwithmeanvalue0.90Kand0.96Kforhorizontalandvertical
polarization,respectively.TheNEDTforthirdandfourthStokesparametersis1.34K,
whichisapproximatelytheexpectedfactorof√2largerthanNEDTforverticaland
horizontalpolarizations.
Transienttemperatures,particularthosethatcausechangesinthermalgradients
withintheRFE,cancausedriftinsystematiccalibrationbiases(inscaleand/oroffset).
Whilethescience-processingalgorithmcompensatesfortemperatureeffects,themodel
hasresidualuncertainty.Theradiometeristhermallystabilizedbypassivethermaldesign
andactivethermalcontroltominimizetheimpactsofthechangingthermalenvironment.
Severalplatinumresistancethermometers(PRTs)areusedtomeasurethetemperatures
andthermalstabilityoftheradiometercomponents.ThePRTmeasurementsofthefront-
endoverthefirstyearareshowninFig.14.EachPRTisreadevery20secondsandhas
0.01°Cresolutionand±0.5°Caccuracy.Duringmostofthepastyearandwhenunder
normaloperatingconditionsthetemperaturesarequitestable.Thediplexers,couplers,
andOMTareseentovary<1°Cseasonallyincludingduringthesouth-polesolareclipse
season(MaythroughJuly)inpanel(a).Evenifleftuncompensated,thevariationin
calibrationbiasduetothesefront-endthermalvariationsis<0.1K.Thefeedhornvariesin
temperaturequiteabitmore,about14°Cpeak-to-peak,butitsohmiclossisnearly
negligibleandvaries2ppm/°C.Thetemperaturesoftheinternalcalibrationsourceshas
0.4°Cpeak-to-peakvariationshowninpanel(b).Theinternalnoisesourcehasa
temperaturecoefficientof3ppt/°C(referredtothefeedhorn),whichresultsina
calibrationdependenceof0.3Kthatiscompensatedinthescience-processingalgorithm.
Thestepsintemperatureearlyintheoperationyearareduetovariousactivitiesduring
thefirsttwoweeksofinstrumentcommissioning.Theoccasional1°Cimpulsesaredueto
instrumentpowercyclingasaconsequenceofsatelliteoperations.Thesepowercyclesdo
interruptthecalibrationtemporarily;however,theinstrumentrecoverswithinafeworbits
andreturnstosteadystatethereafter.
Theshort-termorbitalvariationsintemperatureareshowninFig.15fortheworst-
casepeakoftheeclipseseason.Duringthisorbitthefeedhornvaried2°Candtheother
feednetworkcomponents0.2°C.Theinternalcalibrationsourcesvaried0.1°Coverthe
orbit.Thesevariationshavenegligibleimpactontheintra-orbitalstabilityofthereceiver
calibration.
Noisediodebiascurrentandavalanchebreakdownvoltagearemeasuredevery8
daysduringnormaloperationsandplottedinFig.16.Thebiascurrentisstableto2μA
peak-to-peakandbreakdownvoltage1.4mVpeak-to-peak.Basedonlaboratory
measurementsofdiodecomponents,thecalibrationdependenceontheseDCbias
variationsis250ppm.
Thecombinationofnoisediodebiasstabilityandthermalstabilityleadtoexcellent
radiometergainstabilityonorbitaltimescales.Theradiometerswitchingprovidesnoise
diodeandreferenceloadcountsevery8.4ms.Theseareusedtocomputegainandoffset
coefficientswithsomecorrectionsappliedfortemperature.Thecalibrationcoefficientsare
thenaveragedwitha5000-tapmovingaveragewindowspanning42secondsofelapsed
time.Thus,itisnecessaryforthehardwaregaintobestablewithperiods<84secondsso
theprocessNyquistsamplesthehardwarebehavior.Thegainspectrumandaveraging
filterresponseareshowninFig.17.Thegainisstable(<<10-5)above1mHz(1000-second
period)sothe42-secondfilterisaveragingoversmallfluctuations.Theorbitperiodof
5900secondsismarkedforreference.Thetemperaturecorrectionalgorithmcompensates
fororbital-scaledependenceingain.Below1mHz,thegainspectrumbeginstorisewithf-α
typebehavior;however,thischaracteristicisfullycapturedbythecalibrationscheme.
Noisediodecalibrationsourcesareknowntodriftonlongtimescaleswhileonorbit
(e.g.,[24])andthisbehaviorwasnoexceptiononSMAP’sprecursorAquarius,which
exhibitedanexponentialdriftwith0.5%amplitudeand100-daytimeconstant[25].Noise
sourcedriftof0.5%isequivalentto1Kdriftovertheocean.Thecalibrationdriftoverland
duetonoisesourcedriftislessbecausethelandantennatemperaturesareclosertothe
internalreferenceloadtemperature.SMAPusesthesamebasicdesignasAquariusforthe
noisesources,solong-termdriftisexpectedandisbeingmonitored.Becauseofthe
potentiallylongtimeconstantof100days,itistooearlytodetermineifSMAPisexhibiting
exactlysimilarbehavior.Nonetheless,SMAPstabilityismonitoredagainstaglobally
averagedoceanmodel(basedonthatdescribedin[26])withresultsreportedin[27]-[29].
CalibrationdriftcastasarelativechangeinnoisediodeintensityisplottedinFig.18.The
lowercurveshowstheestimateddriftincludingseveralstepsdownwardandupwarddue
tointentionalandunintentionalpowercyclesoftheradartransmitter.Theuppercurveis
anestimateofthedriftduetochangesinradiometerhardwareovertheyearwiththesteps
removed.Theverticaldashedlinesindicatethestartandfinishofsolareclipseseasonfor
thespacecraftduringthesouthernhemispherewinter.Thebumpdownwardsin
calibrationimmediatelyaftereclipseendsislikelyduetosomeuncompensatedfront-end
thermaleffect.Asdiscussedin[27]-[29],thereremainsuncertaintyinradomeandreflector
emissivitythatisconfoundedwithnoisesourcedrift.Theseparationoftheerrorsand
correctionthereofaretopicsofon-goingcalibrationactivities.Nonetheless,thestabilityof
SMAPisconsistentwithAquarius,althoughthephysicalmechanismsandtemporal
characteristicsarenotyetfullyresolved.
VII. StokesImagery
SMAPprovidesglobalcoveragewitha3-dayrevisitonan8-dayrepeatorbitcycle.
AntennatemperaturedataaveragedoveronesuchcycleforallfourmodifiedStokes
parametersareshowninFig.19.ThesedataareduringthethirdweekofApril2016from
[20].TheimpactofmoistureinthesoilonantennatemperatureinFig.19(a)verticaland
(b)horizontalpolarizationsisquiteevidentacrossthenorthernhemisphere,includingthe
MidwestandtheStateofTexasintheUnitedStateswhereextremeprecipitationledto
floodingresultinginlowbrightnesstemperatures180-190Kshowninblueonthecoolend
ofthecolorscale.OtherphysicalfeaturesofnoteincludethehighemissivityoftheAmazon
rainforestandthedrySaharashowninredatthewarmendofthecolorscale.Note,the
colorscalewastruncatedat(168-282K)toemphasizecontrastinantennatemperatureof
land.Thistruncationnecessarilysaturatesatoceanantennatemperatures,where
dominanceofFresnelreflectivitywouldotherwisebeevidentincontrastbetweenvertical
andhorizontalpolarizations.Strongcontrast,however,isseeninregionsofseaicewith
190and230Kantennatemperaturesathorizontalandverticalpolarizations,respectively.
ThethirdStokesantennatemperatureFig.19(c)showsastrongdipolefeature
causedbyionosphericFaradayrotation.ThedipoleinthirdStokesarisesfromalignmentof
earth’smagneticfieldwithdirectionofpropagationofobservedmicrowaveemission.The
amplitudeofthirdStokesisstrongestoveroceanbecauseofthelowemissionandstrong
polarizationcausedbyitsFresnelreflectivityandweakeroverland(especiallyAmazonand
Congorainforests)duetohigheremissivityanddepolarizationduetoscattering.Thereare
alsoartifactsintheimageduetocombiningascendinganddescendingorbits.Thefourth
Stokesparameter,ontheotherhand,isnearlynon-existentinFig.19(d).Thecolorscaleis
slightlyoffsettoaccountforaglobalbias,likelyduetoantennacross-polarizationmixing.
Thecontinentsareslightlymorenegativethanoceanandtheiroutlinesareevident
becauseofantennacross-polmixing,whichcouplessomecombinationoffirstandsecond
intofourthStokes.Finally,thereareuniquepatternsoffourthStokesantennatemperature
overGreenlandandAntarctica,perhapsvestigesofthepolarimetricsignaturewitnessedby
WindSat[30].
VIII. Discussion
OneyearofnearlycontinuousoperationoftheSMAPL-bandmicrowaveradiometer
wasmarkedonMarch31,2016.Twokeytechnologies–the6-meterscanningreflectorand
theRFIdetectionandfilteringdigitalbackendwithpolarimetriccapabilities–combineto
maketheradiometerunique.Radiometerfootprintssampledat17-msprovideangular
NyquistsamplingandexhibitNEDT<1K.On-boardcalibrationcombinedwithgood
thermalstabilityyieldsexcellenton-orbitgainstability.Globalswathimageryofallfour
Stokesantennatemperaturesshowsgoodresults.Verticalandhorizontalpolarized
channelsdisplayexpectedbehaviorforland,oceanandicescenes.ThethirdStokeschannel
respondsstronglytoionosphericFaradayrotation.ThefourthStokeschannelindicates
littlecircularlypolarizedemission,exceptoverlargeicesheets.Theinstrumentcontinues
tooperateequallywellasofthiswriting.Thus,theradiometermeetsthekeyanddriving
missionrequirementsneededtomeasuresoilmoistureat40-kmspatialresolutionand
0.04volumetricuncertainty.
Acknowledgments
SMAPismanagedforNASA'sScienceMissionDirectorateinWashingtonbyJPL,
withinstrumenthardwareandsciencecontributionsmadebyNASA'sGoddardSpaceFlight
CenterinGreenbelt,Maryland.JPLbuiltthespacecraftandisresponsibleforproject
management,systemengineering,radarinstrumentation,missionoperationsandthe
grounddatasystem.NorthropGrummanAstroAerospaceDivisionmadethereflectorand
boomassembly.Goddardisresponsiblefortheradiometerinstrumentandsciencedata
products.
References
[1] D.Entekhabi,E.G.Njoku,P.E.O’Neill,etal.,“TheSoilMoistureActivePassive(SMAP)
Mission,”Proc.IEEE,Vol.98,No.5,pp.704-716,May2010.
[2] Kerr,Y.H.etal.,``TheSMOSMission:ANewToolforMonitoringKeyElementsofthe
GlobalWaterCycle,''Proc.IEEE,vol.98,pp.666-687,2010.
[3] G.Lagerloefetal.,“TheAquarius/SAC-DMission:DesignedtoMeettheSalinityRemote
SensingChallenge,”Oceanography,vol.21,no.1,pp.68–81,Mar.2008.
[4] NationalResearchCouncil.EarthScienceandApplicationsfromSpace:National
ImperativesfortheNextDecadeandBeyond.Washington,DC:TheNationalAcademies
Press,2007.[Online].Available:http://dx.doi.org/10.17226/11820.
[5] D.Entekhabietal.,"TheHydrosphereState(Hydros)SatelliteMission:anEarthSystem
PathfinderforGlobalMappingofSoilMoistureandLandFreeze/Thaw,"Trans.IEEE
Geosci.Rem.Sens.,vol.42,no.10,pp.2184-2195,Oct.2004.
[6] "NASASoilMoistureRadarEndsOperations,MissionScienceContinues",NASA/JPL,
2016.[Online].Available:http://www.jpl.nasa.gov/news/news.php?feature=4710.
[Accessed:28-Mar-2016].
[7] P.N.Mohammedetal.,"SMAPL-BandMicrowaveRadiometer:RFIMitigationPrelaunch
AnalysisandFirstYearOn-OrbitObservations,"inIEEETrans.Geosci.Rem.Sens.,vol.54,
no.10,pp.6035-6047,Oct.2016.
[8] P.W.Gaiseretal.,"TheWindSatSpacebornePolarimetricMicrowaveRadiometer:
SensorDescriptionandEarlyOrbitPerformance,"Trans.IEEEGeosci.Rem.Sens.,vol.42,
no.11,pp.2347-2361,Nov.2004.
[9] T.Kawanishietal.,"TheAdvancedMicrowaveScanningRadiometerfortheEarth
ObservingSystem(AMSR-E),NASDA'scontributiontotheEOSforglobalenergyand
watercyclestudies,"Trans.IEEEGeosci.Rem.Sens.,vol.41,no.2,pp.184-194,Feb.
2003.
[10] D.M.LeVine,G.S.E.Lagerloef,F.R.Colomb,S.H.YuehandF.A.Pellerano,"Aquarius:An
InstrumenttoMonitorSeaSurfaceSalinityfromSpace,"Trans.IEEEGeosci.Rem.Sens.,
vol.45,no.7,pp.2040-2050,July2007.
[11] S.Brown,C.Ruf,S.Keihm,A.Kitiyakara,“JasonMicrowaveRadiometerPerformance
andOn-OrbitCalibration,”MarineGeodesy,vol.27,no.1-2,pp.199-220,2004.
[12] S.MisraandC.S.Ruf,``DetectionofradiofrequencyinterferencefortheAquarius
radiometer,''IEEETrans.Geosc.Rem.Sens.,vol.46,pp.3123--3128,2008.
[13] J.R.Piepmeier,J.T.Johnson,P.N.Mohammed,D.Bradley,C.Ruf,M.Aksoy,R.Garcia,D.
Hudson,L.Miles,M.Wong,"Radio-FrequencyInterferenceMitigationfortheSoil
MoistureActivePassiveMicrowaveRadiometer,"inTrans.IEEEGeosci.Rem.Sens.,
vol.52,no.1,pp.761-775,Jan.2014.
[14] J.R.PiepmeierandGasiewski,A.J.,"DigitalCorrelationMicrowavePolarimetry:
AnalysisandDemonstration,"Trans.IEEEGeosci.Rem.Sens.,vol.39,no.11,pp.2392-
2410,Nov.2001.
[15] P.E.O'Neill,E.G.Njoku,T.J.Jackson,S.Chan,andR.Bindlish,“SMAPAlgorithm
TheoreticalBasisDocument:Level2&3SoilMoisture(Passive)DataProducts,”Jet
PropulsionLaboratory,CaliforniaInstituteofTechnology,Pasadena,CA,JPLD-66480,
2015.[Online.]Availableat
http://nsidc.org/data/docs/daac/smap/sp_l2_smp/index.html
[16] S.H.Yueh,"EstimatesofFaradayrotationwithpassivemicrowavepolarimetryfor
microwaveremotesensingofEarthsurfaces,"Trans.IEEEGeosci.Rem.Sens.,vol.38,
no.5,pp.2434-2438,Sep2000.
[17] Piepmeier,J.R.etal.SMAPAlgorithmTheoreticalBasisDocument:L1BRadiometer
Product.SMAPProject,NASAGSFCSMAP-ALGMS-RPT-006Rev.B,NASAGoddardSpace
FlightCenter,Greenbelt,MD.Feb.2016.[Online.]Availableat
http://nsidc.org/data/docs/daac/smap/sp_l1b_tb/index.html
[18] C.S.Ruf,S.J.KeihmandM.A.Janssen,“TOPEX/POSEIDONmicrowaveradiometer
(TMR):I.Instrumentdescriptionandantennatemperaturecalibration,”IEEETrans.
Geosci.RemoteSens.,vol.33,pp.125–137,Jan.1995.
[19] J.PengandC.S.Ruf,"CalibrationMethodforFullyPolarimetricMicrowave
RadiometersUsingtheCorrelatedNoiseCalibrationStandard,"inIEEETrans.Geosci.
Rem.Sens.,vol.46,no.10,pp.3087-3097,Oct.2008.
[20] Johnson,Chris,“TemperatureStabilityandControlRequirementsforThermal
Vacuum/ThermalBalanceTestingoftheAquariusRadiometer,”25thSpaceSimulation
Conference,Annapolis,MD,October20-23,2008.
[21] Piepmeier,J.R.,P.Mohammed,J.Peng,E.J.Kim,G.DeAmici,andC.Ruf.2015.SMAP
L1BRadiometerHalf-OrbitTime-OrderedBrightnessTemperatures,Version3.[March31-
April3,2015].Boulder,ColoradoUSA.NASANationalSnowandIceDataCenter
DistributedActiveArchiveCenter.http://dx.doi.org/10.5067/VIQYQV0AJATI.
[22] Mastropietro,A.J.,etal.,"PreliminaryEvaluationofPassiveThermalControlforthe
SoilMoistureActivePassive(SMAP)Radiometer,"41stInternationalConferenceon
EnvironmentalSystems(ICES),2011,AIAA2011-5070.
[23] Mikhaylov,R.,E.Kwack,R.French,D.Dawson,andP.J.Hoffman,"Implementationof
ActiveThermalControl(ATC)fortheSoilMoistureActiveandPassive(SMAP)
Radiometer,"44thInternationalConferenceonEnvironmentalSystems(ICES),2014,
ICES-2014-060.
[24] Brown,S.T.,S.Desai,W.LuandA.Tanner,"OntheLong-TermStabilityofMicrowave
RadiometersUsingNoiseDiodesforCalibration,"inIEEETrans.Geosci.Rem.Sens.,vol.
45,no.7,pp.1908-1920,May2007.
[25] Piepmeier,J.R.,L.HongandF.A.Pellerano,“AquariusL-BandMicrowaveRadiometer:
3YearsofRadiometricPerformanceandSystematicEffects,”IEEETrans.Geosci.Rem.
Sens.,vol.8,no.12,pp.5416-5423,Dec2015.
[26] F.J.WentzandD.M.LeVine,“Algorithmtheoreticalbasisdocument:Aquariussalinity
retrievalalgorithm,”RemoteSensingSystems,SantaRosa,CA,USA,RSSTech.Rep.
082912,2012[Online].AvailableFTP:ftp://podaac-
ftp.jpl.nasa.gov/allData/aquarius/docs/v2/AQ-014-PS-0017_AquariusATBD_Level2.pdf
[27] J.R.Piepmeieretal.,SMAPRadiometerBrightnessTemperatureCalibrationforthe
L1B_TBandL1C_TBBeta-LevelDataProducts,NASA’sSMAPProject,JetPropulsion
Laboratory,Pasadena,CA.Jul.2015.[Online.]
https://nsidc.org/data/smap/data_versions.
[28] J.R.Piepmeieretal.,SMAPRadiometerBrightnessTemperatureCalibrationforthe
L1B_TBandL1C_TBVersion2DataProducts,NASA’sSMAPProject,JetPropulsion
Laboratory,Pasadena,CA.Nov.2015.[Online.]
https://nsidc.org/data/smap/data_versions.
[29] J.R.Piepmeieretal.,SMAPRadiometerBrightnessTemperatureCalibrationforthe
L1B_TBandL1C_TBVersion3DataProducts,NASA’sSMAPProject,JetPropulsion
Laboratory,Pasadena,CA.Apr.2016.[Online.]
https://nsidc.org/data/smap/data_versions.
[30] Li,L.,P.Gaiser,M.R.Albert,D.G.LongandE.M.Twarog,"WindSatPassiveMicrowave
PolarimetricSignaturesoftheGreenlandIceSheet,"IEEETrans.Geosci.Rem.Sens.,vol.
46,no.9,pp.2622-2631,Sept.2008.
Fig.1.SoilMoistureActivePassive(SMAP)observatoryinfullydeployconfiguration.ImageCredit:NASA/JPL-Caltech.
Fig.2.Footprintspacingnearsub-satellitetrack.
11 km x 28 kmspacing near
sub-satellite track
Sub-satellite trackEFOV
39 km x 47 km3-dB contours
(a) (b)
Fig.3.SMAPobservatory(a)solidmodelfrommechanicaldesignsoftwareand(b)meshmodelfor
3Dantennaanalysissoftware.
(a)
(b)
Fig.4.Antennapatterncutofhorizontalpolarizationalongtheantennascanningdirectionfor(a)
thefullpatternand(b)themainlobe.Comparisonisbetweencalculatedandmeasureddataforthe
1/10SMAPscalemodel.
Fig.5.RadiometerBlockDiagramincludingfeednetwork,RadiometerFront-End(RFE),Back-End
(RBE),andDigitalElectronics(RDE).Signalflowisfromrighttoleft.
Fig.6.FrequencyresponseofSMAPmicrowaveradiometer.ThisresponsecombinesRF,IFand
digitalfilters.Verticaldottedlinesindicatethespectrumallocationat1400to1427MHz.
frequency (MHz)1380 1400 1420 1440
resp
onse
(dBc
)
-140
-120
-100
-80
-60
-40
-20
0
Fig.7.TimingofradiometersamplingforaPRI,apacket,andafootprint.
Radiometer Integration Window ~300 μs
Pulse Repetition Interval (PRI) ~350 μs
Radar Transmit
PRI 1 PRI 2 PRI 3 PRI 4
Radiometer Packet1.4 ms elapsed time
1.2 ms integration time
PRI
Packet
Footprint 1 2 3 4 5 6 7 8 9 10 11 12
4 Packets of Scene ObservationCal
Counts4 Packets of Scene ObservationCal
Counts
Fig.8.Representativefrequencyresponseofaveragingperformedinradiometeroperationand
processing.Thetworightmosttraces(dash-dotanddash)showthelow-passresponseoftheon-
boardboxcarintegratoroveroneandfourPRI,respectively.Thesolidtraceshowsthefrequency
responseofthecalibratedantennatemperaturesfoundintheLevel1B_TBdataproduct.Finally,the
dottedlinemarked“antenna”showstheequivalentlow-passresponseoftheantennabeam
(sweepingalong-scaninazimuth)tonaturallyoccurringthermalradiation.
Frequency (Hz)100 101 102 103 104
Nor
mal
ized
PSD
(Hz-1
)
0
0.2
0.4
0.6
0.8
1 51 17 1.4 0.35 ms 39 13 km
PRI4PRIL1B_TBantenna
Frequency (Hz)
Fig.9.Simplifiedcalibrationmodelshowinglumpedlossesandphysicaltemperatures.
Fig.10.Spacecraftmodelshowsfeedhornviewingcoldspacewithstowedreflector.
Lreflector Treflector
Reflector
Lradome Tradome
Radome
Lfeed Tfeed
Feed
LOMT TOMT
OMT
Lcoup Tcoup
Coupler
Ldip Tdip
Diplexer
TA T ’A
TRFE TND Trx
Lswitch
+ +
ref. noise receiver switch source noise
Fig.11.Antennatemperature(V-pol)measuredinstowedconfigurationshowingpre-andpost-
launchcalibrationresultscomparedtomodeledcold-spaceantennatemperature.Theinitialresult
isbiased5Klowconsistentwithpre-launchcalibrationuncertainty.H-polmeasurementsshoweda
smaller1-Kdifference.
Time (hour/minute)22:30 22:45 23:00 23:15 23:30
TA (K
)-2
0
2
4
6
8
post-launch
pre-launch
modeled
Fig.12.Horizontallypolarizedbrightnesstemperature(K)measuredwithstatic(nonrotating)
antenna.Widthoftheswathis40-kmandisexaggeratedhereforclarity.
Fig.13.Radiometricresolution(NEDT)dailyaveraged(overland,ocean,andice)duringfirstyear
ofoperationsforallfourStokesbrightnesstemperatures.ThethirdandfourthStokesparameters
(topcurves)haveNEDT√2largerthanverticalandhorizontalpolarizationsasexpected.
Apr'15 Jul'15 Oct'15 Jan'16 Apr'16
NEDT
(K)
0.8
0.9
1
1.1
1.2
1.3
1.4
TA,3, TA,4
TA,v
TA,h
(a)
(b)
Fig.14.Temperaturesof(a)feednetworkand(b)internalreferenceloadandnoisesourcefor
horizontal-polarizationduringfirstyearofoperations.
Apr'15 Jul'15 Oct'15 Jan'16 Apr'16°C
10
15
20
25
30H-pol Feed Network
Feedhorn
OMT
Coupler
Diplexer
Tem
pera
ture
(oC
)
Apr'15 Jul'15 Oct'15 Jan'16 Apr'16
°C
19.9
20
20.1
20.2
20.3
20.4
20.5RFE
o C
Noise diode
Reference
Tem
pera
ture
(oC
)
F
(a)
(b)
Fig.15.Temperaturesof(a)feednetworkand(b)internalreferenceloadandnoisesourcefor
horizontal-polarizationoveronorbitonJune23,2015nearthepeakthermaleffectofeclipse
season.
00:30 01:00 01:30
°C
10
12
14
16
18
20
22H-pol Feed Network
CouplerOMT
Diplexer
FeedhornTe
mpe
ratu
re (o
C)
00:30 01:00 01:30
°C
20
20.05
20.1
20.15
20.2
20.25RFE
Noise diode
Reference
Tem
pera
ture
(oC
)
(a)
(b)
Fig.16.Noisesourcebiashistorymeasuredonan8-dayperiodduringfirstyearofoperations.(a)
Currentbiasvariationiswithin±1.1μAor±180ppmand(c)avalanchevoltagevaries±0.7mVor
±80ppm.
Apr'15 Jul'15 Oct'15 Jan'16 Apr'16"
i b (7A)
-2
-1
0
1
2
Apr'15 Jul'15 Oct'15 Jan'16 Apr'16
" V
Br (m
V)
-1.5
-1
-0.5
0
0.5
1
1.5
Fig.17.Radiometergainstabilityandgainaveragingfilterresponses.Therightmosttraceisthe
responseoftheon-boardsamplingofnoise-diodeandreferencecountsevery8.4ms.Thescience
processingsoftwareaverages5000gainestimatestogether,whichspan42seconds.Theorbitcycle
ismarkedat5900seconds.Thespectrumofgaincoefficientfluctuation,theleftmosttrace,reveals
anincreasingspectrumbelow1mHz.
Frequency (Hz)10-4 10-2 100 102
Nor
mal
ized
PSD
(Hz-1
)
0
0.2
0.4
0.6
0.8
15900 42 0.008 s
L1B averaginggain spectrum
10-4
5x 10-5
0
(ΔG
/G)2
(Hz-
1 )
Frequency (Hz)
on-board averaging
Fig.18.Radiometercalibrationstabilitycastasgaindriftduringfirstyearofoperationdetermined
fromcomparisontoglobally-averagedoceanmodel(lowercurve).ThetwostepsinAprilaredueto
intentionalchangeinphysicaltemperatureduringearlycommissioningactivities.Thestepnear
June14wasduetoanintentionalpowercycle.ThefinallargestepinJulyisduetoterminationof
radartransmission.Theuppercurveisthesamenoisesourcedriftwiththeradar-inducedsteps
removed.Theverticaldashedlinesindicatedthestartandfinishofsolareclipseseasonexperienced
bySMAPinthesouthernhemispherewinter.
Apr'15 Jul'15 Oct'15 Jan'16 Apr'16
"T N
D/TND(%)
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
Fig.19.SMAPradiometermodifiedStokesantennatemperaturesgriddedandaveragedduring1-7
September2015.Thefourpanelsshow(a)verticallypolarized,(b)horizontallypolarized,(c)third
and(d)fourthStokesparameters,respectively.
80 100 120 140 160 180 200 220 240 260 280 80 100 120 140 160 180 200 220 240 260 280
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3
(a) (b)
(c) (d)