71
Sinteza corpilor cetonici Sinteza corpilor cetonici (cetogeneza) (cetogeneza) Principala cale de metabolizare a acetil Principala cale de metabolizare a acetil CoA – includerea în ciclul Krebs (în CoA – includerea în ciclul Krebs (în condiţiile în care scindarea lipidelor condiţiile în care scindarea lipidelor şi a glucidelor este echilibrată) şi a glucidelor este echilibrată) - - “lipidele ard în flacăra glucidelor” “lipidele ard în flacăra glucidelor” În lipsa glucidelor; inaniţie, diabet - În lipsa glucidelor; inaniţie, diabet - OA se utilizează pentru generarea Gl. OA se utilizează pentru generarea Gl. În lipsa OA, Acetil Co A recurge la În lipsa OA, Acetil Co A recurge la formarea corpilor cetonici: formarea corpilor cetonici: acetoacetatul, acetoacetatul, β β -hidrohibutiratul -hidrohibutiratul şi acetona şi acetona Sinteza lor are loc în ficat, dar se Sinteza lor are loc în ficat, dar se utilizează de ţesuturile periferice utilizează de ţesuturile periferice Au rol energetic (muşchiul cardiac, Au rol energetic (muşchiul cardiac, stratul cortical al rinichilor) stratul cortical al rinichilor)

sinteza AG.ppt

Embed Size (px)

Citation preview

Page 1: sinteza AG.ppt

Sinteza corpilor cetoniciSinteza corpilor cetonici(cetogeneza)(cetogeneza)

Principala cale de metabolizare a acetilPrincipala cale de metabolizare a acetil CoA CoA – includerea în ciclul Krebs (în condiţiile în – includerea în ciclul Krebs (în condiţiile în care scindarea lipidelor şi a glucidelor este care scindarea lipidelor şi a glucidelor este echilibrată)echilibrată) - “lipidele ard în flacăra - “lipidele ard în flacăra glucidelor”glucidelor”

În lipsa glucidelor; inaniţie, diabet - OA se În lipsa glucidelor; inaniţie, diabet - OA se utilizează pentru generarea Gl.utilizează pentru generarea Gl.

În lipsa OA, Acetil Co A recurge la formarea În lipsa OA, Acetil Co A recurge la formarea corpilor cetonici: corpilor cetonici: acetoacetatul, acetoacetatul, ββ--hidrohibutiratul şi acetonahidrohibutiratul şi acetona

Sinteza lor are loc în ficat, dar se utilizează Sinteza lor are loc în ficat, dar se utilizează de ţesuturile perifericede ţesuturile periferice

Au rol energetic (muşchiul cardiac, stratul Au rol energetic (muşchiul cardiac, stratul cortical al rinichilor)cortical al rinichilor)

Page 2: sinteza AG.ppt
Page 3: sinteza AG.ppt

cetogenezacetogeneza

Page 4: sinteza AG.ppt

Utilizarea corpilor Utilizarea corpilor cetonicicetonici

Acetoacetatul – 2 mol de Acetoacetatul – 2 mol de acetil CoA, utilizate ulterior acetil CoA, utilizate ulterior în ciclul Krebs (23 ATP)în ciclul Krebs (23 ATP)

A doua cale de activare a A doua cale de activare a acetoacetatului poate fi:acetoacetatului poate fi:

Acetona: Acetona: 1.1. pînă la propandiol (CH3-CHOH-pînă la propandiol (CH3-CHOH-

CH2OH) , scindat la fragmente CH2OH) , scindat la fragmente acetil şi formilacetil şi formil

2.2. Transformată în piruvat (prin Transformată în piruvat (prin hidroxilare dublă)hidroxilare dublă)

Page 5: sinteza AG.ppt

Cetonemie, cetonurieCetonemie, cetonurie Cetonemie- mărirea c% de corpi cetonici Cetonemie- mărirea c% de corpi cetonici

în sîngeîn sînge Cetonurie – apariţia CC în urinăCetonurie – apariţia CC în urină Diete bogate în lipide, sărace în glucide; Diete bogate în lipide, sărace în glucide;

inaniţie, diabet, dereglări gastrointestinale inaniţie, diabet, dereglări gastrointestinale la copii sau gravide; glucozurie renalăla copii sau gravide; glucozurie renală

Eliminarea hidroxibutiratului şi Eliminarea hidroxibutiratului şi acetoacetatului din organism (fiind anioni acetoacetatului din organism (fiind anioni la excreţie) conduce la pierderea de la excreţie) conduce la pierderea de cationi – Na- rezultă cetoacidozacationi – Na- rezultă cetoacidoza

Pierderea H2O – dehidratarea Pierderea H2O – dehidratarea organismuluiorganismului

Page 6: sinteza AG.ppt

Biosinteza Biosinteza lipidelorlipidelor

Page 7: sinteza AG.ppt

Obiectivele:Obiectivele: Biosintaza acizilor graşi:Biosintaza acizilor graşi:1.1. saturaţi cu număr par de atomi de carbon;saturaţi cu număr par de atomi de carbon;2.2. nesaturaţi cu număr par de atomi de carbon;nesaturaţi cu număr par de atomi de carbon;3.3. saturaţi cu număr impar de atomi de carbon.saturaţi cu număr impar de atomi de carbon. Enzimele, coenzimele, reglarea.Enzimele, coenzimele, reglarea. Biosinteza TAG: substanţele iniţiale, enzimele şi Biosinteza TAG: substanţele iniţiale, enzimele şi

coenzimele, reglarea.coenzimele, reglarea. Biosinteza fosfogliceridelor: substratele, reacţiile Biosinteza fosfogliceridelor: substratele, reacţiile

parţiale ale I şi a II căi; parţiale ale I şi a II căi; Biosinteza sfingolipidelor: precursorii, reacţiile Biosinteza sfingolipidelor: precursorii, reacţiile

principale, enzimele, reglarea.principale, enzimele, reglarea. Metabolismul colesterolului. Biosinteza Metabolismul colesterolului. Biosinteza

colesterolului – substratele, etapele, reacţiile colesterolului – substratele, etapele, reacţiile parţiale ale I etape (până la acidul mevalonic), parţiale ale I etape (până la acidul mevalonic), enzimele, coenzimele, reglarea. Căile de utilizare enzimele, coenzimele, reglarea. Căile de utilizare şi eliminare ale colesterolului.şi eliminare ale colesterolului.

Page 8: sinteza AG.ppt

Sinteza AGSinteza AG Sinteza AG şi încorporarea lor în Tg Sinteza AG şi încorporarea lor în Tg

constituie mecanismul principal de stocare constituie mecanismul principal de stocare a excesului de glucide alimentare (Gl nu se a excesului de glucide alimentare (Gl nu se mai transformă în glicogen dar în Tg)mai transformă în glicogen dar în Tg)

EtapeleEtapele:: Sinteza de novo cu formarea acidului Sinteza de novo cu formarea acidului

palmiticpalmitic Elongarea acidului palmiticElongarea acidului palmitic Introducerea de legături duble în AGIntroducerea de legături duble în AG

Page 9: sinteza AG.ppt

Particularităţile sintezei Particularităţile sintezei AGAG Are loc în citozolAre loc în citozol

E – acid gras sintetaza – alcătuită din 8 E – acid gras sintetaza – alcătuită din 8 proteine (domenii)- 7 sunt enzime, a 8-a – proteine (domenii)- 7 sunt enzime, a 8-a – proteina proteina ((purtătoarepurtătoare)) transportatoaretransportatoare de de acilacil -ACP -ACP..

ACP cuprinde 2 grupe SHACP cuprinde 2 grupe SH::1.1. – –SH furnizat de un rest de cisteinilSH furnizat de un rest de cisteinil:: SH-Cis SH-Cis2.2. - SH- SH - - fosfopanteteina, ata fosfopanteteina, ataşşatatăă prin prin

leglegăătura fosfat-Sertura fosfat-Ser: SH-Pant: SH-Pant Ca iniţiator este acetil CoA (rezultat din Ca iniţiator este acetil CoA (rezultat din

glicoliză), pe cînd sursa majoră – malonil glicoliză), pe cînd sursa majoră – malonil CoACoA

rolul reducător îi revine NADPH+Hrolul reducător îi revine NADPH+H

Page 10: sinteza AG.ppt

Sinteza de novo cu Sinteza de novo cu formarea acidului palmiticformarea acidului palmitic

Etapele:Etapele:1.1. transferul lui Acetil CoA din transferul lui Acetil CoA din

mitocondrii în citozolmitocondrii în citozol2.2. Sinteza de malonil CoASinteza de malonil CoA3.3. Sinteza acidului palmiticSinteza acidului palmitic

Page 11: sinteza AG.ppt

TTransferul lui Acetil CoA din ransferul lui Acetil CoA din mitocondrii în citozolmitocondrii în citozol

Page 12: sinteza AG.ppt

Sinteza de malonil CoASinteza de malonil CoA acetil-CoA + HCOacetil-CoA + HCO33

+ + ATPATP ADPADP + + PPii + + malonil-CoA malonil-CoA

E- acetil CoAE- acetil CoACarboxilazaCarboxilaza citrat, citrat, InsulinaInsulina palmitoil CoApalmitoil CoAGlucagonulGlucagonul

Page 13: sinteza AG.ppt

Sinteza acidului palmiticSinteza acidului palmitic

Page 14: sinteza AG.ppt

Sinteza acidului palmiticSinteza acidului palmitic

Page 15: sinteza AG.ppt

Sinteza acidului palmiticSinteza acidului palmitic

Ciclu de reacţii este reluat: butiril+ACP Ciclu de reacţii este reluat: butiril+ACP se condensează cu malonil+ACP- formînd se condensează cu malonil+ACP- formînd în final C6-acil ACP.în final C6-acil ACP.

Catena AG creşte pînă la formarea Catena AG creşte pînă la formarea palmitil-S-ACPpalmitil-S-ACP

Page 16: sinteza AG.ppt

RReacţia sumară:eacţia sumară: Acetil-ACP+7 malonil-CoA +14 Acetil-ACP+7 malonil-CoA +14 NADPH+HNADPH+H

Palmitat +7CO2+14NADP Palmitat +7CO2+14NADP ++ + 8HSCoA+6H2O + 8HSCoA+6H2O

deoarece malonil CoA se sintetizează deoarece malonil CoA se sintetizează din acetil CoA:din acetil CoA:88 acetacetiil-CoA + 14l-CoA + 14 NADPH +NADPH +H H ++ + 7+ 7

ATPATP palmitate+ 14palmitate+ 14 NADPNADP++ + + 88HSHSCoACoA ++ 77 ADPADP ++ 77 PPii

Page 17: sinteza AG.ppt

Elongarea AGElongarea AG Localizată: reticulul endoplasmaticLocalizată: reticulul endoplasmatic AG este activat AG este activat La acidul preexistent (palmitil CoA) se ataşează malonil La acidul preexistent (palmitil CoA) se ataşează malonil

CoACoA

Page 18: sinteza AG.ppt

Biosinteza AG nesaturaţiBiosinteza AG nesaturaţi Pot fi sintetizaţi AC mononesaturaţi. Introducerea unei Pot fi sintetizaţi AC mononesaturaţi. Introducerea unei

duble legături are loc prin acţiunea unei monooxigenaze duble legături are loc prin acţiunea unei monooxigenaze (introduce gruparea hidroxil), urmată de deshidratare(introduce gruparea hidroxil), urmată de deshidratare

Acidul linoleic şi linolenic sunt esenţiali (exogen)Acidul linoleic şi linolenic sunt esenţiali (exogen) Acidul linoleic se transformă în acidul arahidonic conform Acidul linoleic se transformă în acidul arahidonic conform

reacţiilorreacţiilor

Page 19: sinteza AG.ppt
Page 20: sinteza AG.ppt

Sinteza Sinteza TAGTAG 2 căi:2 căi:1.1. calea monoacilglicerolului: are loc în peretele calea monoacilglicerolului: are loc în peretele

intestinal (enterocite)din produşi absorbiţi intestinal (enterocite)din produşi absorbiţi (resinteza lipidelor).(resinteza lipidelor).

2.2. calea glicerolfosfatului: în toate ţesuturile calea glicerolfosfatului: în toate ţesuturile (activă: ţesutul adipos şi ficat)(activă: ţesutul adipos şi ficat)

AG sunt incorporaţi în TAG sub formă activă de AG sunt incorporaţi în TAG sub formă activă de acilCoA:acilCoA:

R-COOH + ATP + HS-CoA R-COOH + ATP + HS-CoA +H2O+H2O R-CO~SCoA R-CO~SCoA + AMP + + AMP + 2 P2 Pii

E- acil Co A sintetazaE- acil Co A sintetaza

Page 21: sinteza AG.ppt

1. calea 1. calea monoacilglicerolului monoacilglicerolului

TG împreună cu FL,Col, proteine TG împreună cu FL,Col, proteine sunt incorparate în CM şi secretaţi sunt incorparate în CM şi secretaţi mai departe în vasele limfatice.mai departe în vasele limfatice.

Page 22: sinteza AG.ppt

calea glicerolfosfatuluicalea glicerolfosfatului

Page 23: sinteza AG.ppt

originea glicerol originea glicerol fosfatului fosfatului

În ficat:În ficat: În ţesut adipos, ficatÎn ţesut adipos, ficat

Page 24: sinteza AG.ppt

Sinteza glicerofosfolipidelorSinteza glicerofosfolipidelor 2 căî de sinteză:2 căî de sinteză: Sinteza Sinteza de novo - de novo - utilizează ca utilizează ca

intermediar comun acidul fosfatidicintermediar comun acidul fosfatidic Calea de rezervă – o sinteză din Calea de rezervă – o sinteză din

produse formateproduse formate Particularitatea biosintezei FL este Particularitatea biosintezei FL este

participarea precursorilor în forme participarea precursorilor în forme active de derivaţi ai citidin fosfatului active de derivaţi ai citidin fosfatului (CDP) ca CDP-colina, CDP-(CDP) ca CDP-colina, CDP-etanolamina, CDP-diglicerid.etanolamina, CDP-diglicerid.

Page 25: sinteza AG.ppt

Sinteza Sinteza de novode novo

Page 26: sinteza AG.ppt
Page 27: sinteza AG.ppt

2. sinteza din produse 2. sinteza din produse formateformate

Page 28: sinteza AG.ppt

Sinteza sfingolipidelorSinteza sfingolipidelor Se formează din palmitoil CoA şi SerSe formează din palmitoil CoA şi Ser Sfingozina liberă se formează din Sfingozina liberă se formează din

ceramidă ceramidă Sinteza are loc pe suprafaţa Sinteza are loc pe suprafaţa

citozolică a membranelor reticulului citozolică a membranelor reticulului endoplasmaticendoplasmatic

Page 29: sinteza AG.ppt
Page 30: sinteza AG.ppt

Sinteza sfingolipidelorSinteza sfingolipidelor

Page 31: sinteza AG.ppt

Sinteza ColesteroluluiSinteza Colesterolului Se sintetizează din Acetil-CoASe sintetizează din Acetil-CoA Necesită 18 moli de Acetil-CoA şi 18 de ATPNecesită 18 moli de Acetil-CoA şi 18 de ATP Principalul organ de metabolizare este ficatul, Principalul organ de metabolizare este ficatul,

dar are loc şi în intestin, suprarenale, dar are loc şi în intestin, suprarenale, tegumentetegumente

Are loc în 3 etape:Are loc în 3 etape:1.1. Sinteza acidului mevalonicSinteza acidului mevalonic2.2. mevalonatul prin mai multe reacţii - 3∆-mevalonatul prin mai multe reacţii - 3∆-

izopentenil pirofosfat. 6 molecule de 3∆-izopentenil pirofosfat. 6 molecule de 3∆-izopentenil pirofosfat – scualenizopentenil pirofosfat – scualen

3.3. Scualenul se supuine ciclizării – lanosterol -- ColScualenul se supuine ciclizării – lanosterol -- Col

Page 32: sinteza AG.ppt
Page 33: sinteza AG.ppt
Page 34: sinteza AG.ppt

H2CC

CH3HO

CH2C

O O

CH2 OH

H2CC

CH2 CH2 O P O P O

O

O

O

O

CH3

H2CC

CH3HO

CH2C

O O

CH2 O P O P O

O

O

O

O

CO2

ATPADP + Pi

2 ATP2 ADP

mevalonate

5-pyrophosphomevalonate

(2 steps)

isopentenyl pyrophosphate

Page 35: sinteza AG.ppt

H2CC

CH2 CH2 O P O P O

O

O

O

O

CH3

H3CC

CH CH2 O P O P O

O

O

O

O

CH3

isopentenyl pyrophosphate

dimethylallyl pyrophosphate

CH CH2CH3C

CH3

CH CH2CCH2

CH3

CH CH2 O P O P O

O

O

O

O

CCH2

CH3

2

O

NADP+

O2 H2O

HO

H+

NADPH

NADP+ + 2 PP i

NADPH

2 farnesyl pyrophosphate

squalene 2,3-oxidosqualene lanosterol

O

NADP+

O2 H2O

HO

H+NADPH

squalene 2,3-oxidosqualene lanosterol

H O H O

lan o ste ro l cho leste ro l

1 9 s tep s

Page 36: sinteza AG.ppt

REGLAREA REGLAREA ŞŞI I PATOLOGIAPATOLOGIA

METABOLISMULMETABOLISMULUI LIPIDICUI LIPIDIC

Page 37: sinteza AG.ppt

ObiectiveleObiectivele Metabolismul eicosanoizilor. Căile ciclooxigenazică şi lipooxigenazică ale Metabolismul eicosanoizilor. Căile ciclooxigenazică şi lipooxigenazică ale

biosintezei lor. Inactivarea.biosintezei lor. Inactivarea. Metabolismul vitaminelor liposolubile: sursele alimentare, necesităţile Metabolismul vitaminelor liposolubile: sursele alimentare, necesităţile

diurne, transformărilediurne, transformările Reglarea metabolismului lipidelor la nivelul celulei.Reglarea metabolismului lipidelor la nivelul celulei. Reglarea neurohormonală a metabolismului lipidelor. Rolul lipotropinelor, Reglarea neurohormonală a metabolismului lipidelor. Rolul lipotropinelor,

ACTH, hormonilor tiroizi, insulinei, glucagonului, glucocorticoizilor şi ACTH, hormonilor tiroizi, insulinei, glucagonului, glucocorticoizilor şi catecolaminelor.catecolaminelor.

Relaţiile reciproce dintre metabolismul energetic, glucidic şi lipidic.Relaţiile reciproce dintre metabolismul energetic, glucidic şi lipidic. Dereglările digestiei şi absorbţiei lipidelor. Steatoreea pancreatică, hepatică Dereglările digestiei şi absorbţiei lipidelor. Steatoreea pancreatică, hepatică

şi intestinală.şi intestinală. Dislipidemiile:Dislipidemiile: a) hipolipoproteinemiile familiale – afecţiunea Tangier, a) hipolipoproteinemiile familiale – afecţiunea Tangier, - şi - şi --

lipoproteinemia familială;lipoproteinemia familială; b) hiperlipoproteinemiile primare şi familiale;b) hiperlipoproteinemiile primare şi familiale; c) hiperlipoproteinemiile secundare (dobândite) – în diabet zaharat, c) hiperlipoproteinemiile secundare (dobândite) – în diabet zaharat,

alcoolism, afecţiuni ale glandelor endocrine. alcoolism, afecţiuni ale glandelor endocrine. Cauze, mecanismele dereglării metabolismului lipidelor, manifestările Cauze, mecanismele dereglării metabolismului lipidelor, manifestările

biochimice.biochimice. 6. Lipidozele tiszlare:6. Lipidozele tiszlare: a) ereditare – Neimann-Pick, Tay-Sachs, Krabbe, Gaucher, Farber, a) ereditare – Neimann-Pick, Tay-Sachs, Krabbe, Gaucher, Farber,

leucodistrofia metacromatică, gangliozidoza GM1;leucodistrofia metacromatică, gangliozidoza GM1; b) dobândite – obezitate, ateroscleroză, alcoolism. b) dobândite – obezitate, ateroscleroză, alcoolism. Cauze, mecanismele dereglării metabolismului lipidelor, manifestările Cauze, mecanismele dereglării metabolismului lipidelor, manifestările

biochimice.biochimice. 7. A-, hipo- şi hipervitaminozele A, D, E, K – cauze, manifestări metabolice.7. A-, hipo- şi hipervitaminozele A, D, E, K – cauze, manifestări metabolice. 8. Rolul eicosanoizilor în procesele inflamatorii, reacţiile alergice, dereglările 8. Rolul eicosanoizilor în procesele inflamatorii, reacţiile alergice, dereglările

fluidităţii sanguine.fluidităţii sanguine.

Page 38: sinteza AG.ppt

Metabolismul Metabolismul eicosanoiziloreicosanoizilor

Page 39: sinteza AG.ppt

ATP-dependent carboxylation provides energy ATP-dependent carboxylation provides energy input. input. TheThe COCO22 is lost later during condensation with is lost later during condensation with the growing fatty acid. the growing fatty acid. The spontaneous decarboxylation drives the The spontaneous decarboxylation drives the condensation reaction. condensation reaction.

H 3C C SC o A

O

C H 2 C SC o A

O

O O C

acetyl-C oA

m alonyl-C oA

The input to fatty acid The input to fatty acid synthesis is synthesis is acetyl-acetyl-CoACoA, which is , which is carboxylated to carboxylated to malonyl-CoAmalonyl-CoA. .

Page 40: sinteza AG.ppt

HCOHCO33 + + ATPATP + acetyl-CoA+ acetyl-CoA ADPADP + P+ Pii + +

malonyl-CoAmalonyl-CoA

ll

Enzyme-biotin HCO3

- + ATP

ADP + Pi Enzyme-biotin-CO2

-

O CH3-C-SCoA acetyl-CoA O -O2C-CH2-C-SCoA malonyl-CoA

ll

Enzyme-biotin

1

2

Page 41: sinteza AG.ppt

Biotin Biotin is linked to the enzyme by an amide bond is linked to the enzyme by an amide bond between the terminal carboxyl of the biotin side between the terminal carboxyl of the biotin side chain and the chain and the -amino group of a -amino group of a lysinelysine residue. residue. The combined biotin and lysine side chains act as a The combined biotin and lysine side chains act as a long flexible armlong flexible arm that allows the biotin ring to that allows the biotin ring to translocate between the 2 active sites. translocate between the 2 active sites.

CHCH

H2CS

CH

NHC

N

O

(CH2)4 C NH (CH2)4 CH

CO

NH

O

CO

O

Carboxybiotin lysine residue

Page 42: sinteza AG.ppt

Acetyl-CoA CarboxylaseAcetyl-CoA Carboxylase, which converts acetyl-, which converts acetyl-CoA to malonyl-CoA, is the CoA to malonyl-CoA, is the committed stepcommitted step of the of the fatty acid synthesis pathway. fatty acid synthesis pathway.

The mammalian enzyme is The mammalian enzyme is regulatedregulated, by , by phosphorylationphosphorylation allosteric control by local metabolites.allosteric control by local metabolites.

Conformational changesConformational changes associated with associated with regulation:regulation: In the In the activeactive conformation, Acetyl-CoA conformation, Acetyl-CoA

Carboxylase associates to form multimeric Carboxylase associates to form multimeric filamentousfilamentous complexes. complexes.

Transition to the Transition to the inactiveinactive conformation is conformation is associated with dissociation to yield the associated with dissociation to yield the monomericmonomeric form of the enzyme (protomer). form of the enzyme (protomer).

Page 43: sinteza AG.ppt

The The decreaseddecreased production of production of malonyl-CoAmalonyl-CoA prevents prevents energy-utilizing fatty acid synthesis when cellular energy-utilizing fatty acid synthesis when cellular energy stores are depleted. (AMP is abundant only energy stores are depleted. (AMP is abundant only when ATP has been extensively dephosphorylated.)when ATP has been extensively dephosphorylated.)

AMP-Activated Kinase catalyzes phosphorylation of Acetyl-CoA Carboxylase, causing inhibition.

Phosphorylated protomer of Acetyl-CoA Carboxylase (inactive) Dephosphorylated Polymer of Acetyl-CoA Carboxylase (active)

Citrate

Dephosphorylated, e.g., by insulin-

activated Protein Phosphatase

Palmitoyl-CoA

Phosphorylated, e.g., via AMP-activated Kinase when cellular stress or exercise depletes ATP.

Regulation of Acetyl-CoA Carboxylase

Page 44: sinteza AG.ppt

When AMP is high (ATP low), malonyl-CoA production is When AMP is high (ATP low), malonyl-CoA production is diminished, releasing fatty acid oxidation from inhibition. diminished, releasing fatty acid oxidation from inhibition. This will lead to This will lead to increased ATP productionincreased ATP production..

AMP-Activated KinaseAMP-Activated Kinase has a significant role has a significant role even in tissues (e.g., even in tissues (e.g., cardiac muscle) that do cardiac muscle) that do not significantly not significantly synthesize fatty acids. synthesize fatty acids. In such tissues In such tissues malonyl-malonyl-CoACoA, produced via one , produced via one isoform of Acetyl-CoA isoform of Acetyl-CoA Carboxylase, functions Carboxylase, functions mainly as an mainly as an inhibitorinhibitor of of fatty acid oxidationfatty acid oxidation. .

H3C C SCoA

O

CH2 C SCoA

O

OOC

acetyl-CoA

malonyl-CoA

ATP + HCO3

ADP + Pi

Acetyl-CoA Carboxylase (inhibited by

AMP-Activated Kinase)

Page 45: sinteza AG.ppt

A cAMP cascade, activated by glucagon & A cAMP cascade, activated by glucagon & epinephrine when blood glucose is low, may also epinephrine when blood glucose is low, may also result in phosphorylation of Acetyl-CoA Carboxylase result in phosphorylation of Acetyl-CoA Carboxylase via via cAMP-Dependent Protein KinasecAMP-Dependent Protein Kinase..With Acetyl-CoA Carboxylase inhibited, acetyl-CoA With Acetyl-CoA Carboxylase inhibited, acetyl-CoA remains available for synthesis of ketone bodies, remains available for synthesis of ketone bodies, the alternative metabolic fuel used when blood the alternative metabolic fuel used when blood glucose is low.glucose is low.

H3C C SCoA

O

CH2 C SCoA

O

OOC

acetyl-CoA

malonyl-CoA

Page 46: sinteza AG.ppt

The antagonistic effect of The antagonistic effect of insulininsulin, produced , produced when blood glucose is high, is attributed to when blood glucose is high, is attributed to activation of Protein Phosphatase. activation of Protein Phosphatase.

Phosphorylated protomer of Acetyl-CoA Carboxylase (inactive) Dephosphorylated Polymer of Acetyl-CoA Carboxylase (active)

Citrate

Dephosphorylated, e.g., by insulin-

activated Protein Phosphatase

Palmitoyl-CoA

Phosphorylated, e.g., via AMP-activated Kinase when cellular stress or exercise depletes ATP.

Regulation of Acetyl-CoA Carboxylase

Page 47: sinteza AG.ppt

Palmitoyl-CoAPalmitoyl-CoA (product of Fatty Acid Synthase) (product of Fatty Acid Synthase) promotes the promotes the inactive inactive conformation, diminishing conformation, diminishing production of malonyl-CoA, the precursor of fatty acid production of malonyl-CoA, the precursor of fatty acid synthesis. synthesis. This is an example of This is an example of feedback inhibitionfeedback inhibition..

Regulation of Acetyl-CoA Carboxylase by local metabolites:

Phosphorylated protomer of Acetyl-CoA Carboxylase (inactive) Dephosphorylated Polymer of Acetyl-CoA Carboxylase (active)

Citrate

Dephosphorylated, e.g., by insulin-

activated Protein Phosphatase

Palmitoyl-CoA

Phosphorylated, e.g., via AMP-activated Kinase when cellular stress or exercise depletes ATP.

Regulation of Acetyl-CoA Carboxylase

Page 48: sinteza AG.ppt

[Citrate] is high when there is adequate [Citrate] is high when there is adequate acetyl-CoA entering Krebs Cycle. acetyl-CoA entering Krebs Cycle. Excess acetyl-CoA is then converted via Excess acetyl-CoA is then converted via malonyl-CoA to fatty acids for storage. malonyl-CoA to fatty acids for storage.

Glucose-6-phosphatase glucose-6-P glucose Gluconeogenesis Glycolysis pyruvate fatty acids

acetyl CoA ketone bodies cholesterol oxaloacetate citrate

Krebs Cycle

CitrateCitrate allosterically allosterically activatesactivates Acetyl- Acetyl-CoA Carboxylase. CoA Carboxylase.

Page 49: sinteza AG.ppt

Fatty acid synthesisFatty acid synthesis from acetyl-CoA & malonyl- from acetyl-CoA & malonyl-CoA occurs by a series of reactions that are:CoA occurs by a series of reactions that are: in in bacteriabacteria catalyzed by catalyzed by 6 different enzymes 6 different enzymes

plus a separate acyl carrier protein (ACP) plus a separate acyl carrier protein (ACP) in in mammalsmammals catalyzed by individual domains of catalyzed by individual domains of

a very large polypeptide that includes an ACP a very large polypeptide that includes an ACP domain.domain.Evolution of the mammalian Fatty Acid Synthase Evolution of the mammalian Fatty Acid Synthase apparently has involved apparently has involved gene fusiongene fusion. .

NADPHNADPH serves as serves as electron donorelectron donor in the two in the two reactions involving substrate reduction. reactions involving substrate reduction. The NADPH is produced mainly by the Pentose The NADPH is produced mainly by the Pentose Phosphate Pathway. Phosphate Pathway.

Page 50: sinteza AG.ppt

Fatty AcidFatty AcidSynthase Synthase prosthetic groups: prosthetic groups: the the thiolthiol of the side- of the side-

chain of a chain of a cysteinecysteine residue of residue of Condensing Enzyme Condensing Enzyme domain.domain.

the the thiolthiol of of phosphopantetheiphosphopantetheinene, equivalent in , equivalent in structure to part of structure to part of coenzyme A.  coenzyme A. 

N

N N

N

NH2

O

OHO

HH

H

CH2

H

OPOPOH2C

O

O O

O

P

O

O O

C

C

C

NH

CH2

CH2

C

NH

CH3H3C

HHO

O

CH2

CH2

SH

O

-mercaptoethylamine

pantothenate

ADP-3'- phosphate

Coenzyme A

phosphopantetheine

H3N+ C COO

CH2

SH

H

cysteine

Page 51: sinteza AG.ppt

PhosphopantetheinPhosphopantetheinee (Pant) is covalently (Pant) is covalently linked via a phosphate linked via a phosphate ester to a serine OH ester to a serine OH of the of the acyl carrier acyl carrier proteinprotein domain of domain of Fatty Acid Synthase. Fatty Acid Synthase. 

TheThe long flexible long flexible armarm of of phosphopantetheine phosphopantetheine helps its thiol to move helps its thiol to move from one active site to from one active site to another within the another within the complex. complex. 

OPOH2C

O

OC

C

C

NH

CH2

CH2

C

NH

CH3H3C

HHO

O

CH2

CH2

SH

O

CH2 CH

NH

C O

-mercaptoethylamine

pantothenate

serine residue

phosphopantetheine of acyl carrier protein

phosphate

Page 52: sinteza AG.ppt

As each of the substrates acetyl-CoA & malonyl-CoA As each of the substrates acetyl-CoA & malonyl-CoA bind to the complex, the initial attacking group is bind to the complex, the initial attacking group is the oxygen of a the oxygen of a serineserine hydroxylhydroxyl group of the group of the Malonyl/acetyl-CoA Transacylase enzyme domain. Malonyl/acetyl-CoA Transacylase enzyme domain. Each acetyl or malonyl moiety is transiently in ester Each acetyl or malonyl moiety is transiently in ester linkage to this serine hydroxyl, before being linkage to this serine hydroxyl, before being transferred into thioester linkage with the transferred into thioester linkage with the phosphopantetheine thiolphosphopantetheine thiol of the acyl carrier of the acyl carrier protein (ACP) domain. protein (ACP) domain. Acetate is subsequently transferred to a Acetate is subsequently transferred to a cysteine cysteine thiolthiol of the Condensing Enzyme domain. of the Condensing Enzyme domain.

Condensing Malonyl/acetyl-CoA Dehydratase Enoyl -Ketoacyl ACP Thioesterase Enzyme (Cys) Transacylase (Ser) Reductase Reductase (Pant) N- -C

Order of domains in primary structure of mammalian Fatty Acid Synthase

Page 53: sinteza AG.ppt

The The condensationcondensation reaction (step 3) reaction (step 3) involves decarboxylation of the malonyl involves decarboxylation of the malonyl moiety, followed by attack of the resultant moiety, followed by attack of the resultant carbanion on the carbonyl carbon of the carbanion on the carbonyl carbon of the acetyl (or acyl) moiety. acetyl (or acyl) moiety.

Pant

SH

Cys

SH

Pant

SH

Cys

S

C

CH3

O

Pant

S

Cys

S

C

CH3

OC

CH2

COO

O

Pant

S

Cys

SH

C

CH2

C

O

CH3

O

acetyl-S-CoA HS-CoA malonyl-S-CoA HS-CoA CO2

1 2 3

1 Malonyl/acetyl-CoA-ACP Transacylase 2 Malonyl/acetyl-CoA-ACP Transacylase 3 Condensing Enzyme (-Ketoacyl Synthase)

Page 54: sinteza AG.ppt

4.4. The The -ketone is -ketone is reducedreduced to an alcohol by e to an alcohol by e transfer from NADPH. transfer from NADPH.

5.5. DehydrationDehydration yields a trans double bond. yields a trans double bond. 6.6. ReductionReduction by NADPH yields a saturated chain. by NADPH yields a saturated chain.

Pant

S

Cys

SH

C

CH2

C

O

CH3

O

Pant

S

Cys

SH

C

CH2

HC

O

CH3

Pant

S

Cys

SH

Pant

S

Cys

SH

NADPH NADP+NADPH NADP+

C

CH

HC

O

CH3

C

CH2

CH2

O

CH3

OH

H2O

4 5 6

4 -Ketoacyl-ACP Reductase 5 -Hydroxyacyl-ACP Dehydratase 6 Enoyl-ACP Reductase

Page 55: sinteza AG.ppt

Following Following transfertransfer of the growing fatty acid of the growing fatty acid from phosphopantetheine to the Condensing from phosphopantetheine to the Condensing Enzyme's cysteine sulfhydryl, the Enzyme's cysteine sulfhydryl, the cycle cycle begins againbegins again, with another malonyl-CoA. , with another malonyl-CoA.

Pant

S

Cys

SH

C

CH2

CH2

O

CH3

Pant

SH

Cys

S

C

CH2

O

CH2

CH3

Pant

S

Cys

S

C

CH2

O

CH2

CH3

C

CH2

COO

O

Malonyl-S-CoA HS-CoA

7 2

7 Condensing Enzyme 2 Malonyl/acetyl-CoA-ACP Transacylase (repeat).

Page 56: sinteza AG.ppt

Product release:Product release: When the fatty acid is 16 carbon atoms long, When the fatty acid is 16 carbon atoms long, a a ThioesteraseThioesterase domain catalyzes hydrolysis domain catalyzes hydrolysis of the thioester linking the fatty acid to of the thioester linking the fatty acid to phosphopantetheine. phosphopantetheine. The The 16-C16-C saturated fatty acid saturated fatty acid palmitatepalmitate is is the final product of the Fatty Acid Synthase the final product of the Fatty Acid Synthase complex. complex.

Page 57: sinteza AG.ppt

The The primary structureprimary structure of the mammalian Fatty Acid of the mammalian Fatty Acid Synthase protein is summarized above.Synthase protein is summarized above.Fatty Acid SynthaseFatty Acid Synthase in mammals is a in mammals is a homo-dimerhomo-dimer.   .   

Condensing Malonyl/acetyl-CoA Dehydratase Enoyl -Ketoacyl ACP Thioesterase Enzyme (Cys) Transacylase (Ser) Reductase Reductase (Pant) N- -C

Order of domains in primary structure of mammalian Fatty Acid Synthase

KR KR

DH DH KS KS MAT MAT

ER ER

Arrangement of domains in Fatty Acid Synthase

“arm” “leg”

X-RayX-Ray crystallographic crystallographic analysis at 4.5 Å analysis at 4.5 Å resolution shows the resolution shows the dimeric Fatty Acid dimeric Fatty Acid Synthase to have an Synthase to have an X-shapeX-shape, with , with domains arranged as domains arranged as summarized at right. summarized at right.

Page 58: sinteza AG.ppt

The solved structure does The solved structure does not resolvenot resolve the position the position of of ACPACP & & ThioesteraseThioesterase domains, predicted from domains, predicted from primary structure to be near primary structure to be near -Ketoacyl Reductase -Ketoacyl Reductase (KR) domains of lateral "arms" of the complex. (KR) domains of lateral "arms" of the complex.

Condensing Malonyl/acetyl-CoA Dehydratase Enoyl -Ketoacyl ACP Thioesterase Enzyme (Cys) Transacylase (Ser) Reductase Reductase (Pant) N- -C

Order of domains in primary structure of mammalian Fatty Acid Synthase

KR KR

DH DH KS KS MAT MAT

ER ER

Arrangement of domains in Fatty Acid Synthase

“arm” “leg”

These domains may These domains may be too flexible to be be too flexible to be resolved. resolved. KR = KR = -Ketoacyl -Ketoacyl Reductase; ER = Enoyl Reductase; ER = Enoyl Reductase; Reductase; DH = Dehydratase; DH = Dehydratase; KS = KS = -Ketoacyl Synthase -Ketoacyl Synthase (Condensing Enzyme); (Condensing Enzyme); MAT = Malonyl/Acetyl-MAT = Malonyl/Acetyl-CoA Transacylase. CoA Transacylase.

Page 59: sinteza AG.ppt

KR KR

DH DH KS KS MAT MAT

ER ER

Arrangement of domains in Fatty Acid Synthase

“arm” “leg”

Fatty Acid Synthase complex is somewhat Fatty Acid Synthase complex is somewhat asymmetricasymmetric..There is evidence for There is evidence for conformational changesconformational changes relating to catalysis. relating to catalysis. Protein flexibilityProtein flexibility may facilitate transfer of ACP- may facilitate transfer of ACP-attached reaction intermediates among the several attached reaction intermediates among the several active sites in each half of the complex. active sites in each half of the complex.

For images see:website (ETH Zurich)

website (Asturias lab, Scripps)

article (Maier, Jenni & Ban; requires subscription to Science).

Page 60: sinteza AG.ppt

ExploreExplore with Chime the structure of with Chime the structure of the the E. coli E. coli -Ketoacyl-ACP Synthase -Ketoacyl-ACP Synthase III, equivalent to the domains of the III, equivalent to the domains of the mammalian Fatty Acid Synthase that mammalian Fatty Acid Synthase that catalyze the initial acetylation and catalyze the initial acetylation and condensation reactions. condensation reactions.

Page 61: sinteza AG.ppt

-Oxidation & Fatty Acid -Oxidation & Fatty Acid SynthesisSynthesisComparedCompared

Oxidation Pathway Fatty Acid Synthesis

pathway location mitochondrial matrix cytosol

acyl carriers (thiols) Coenzyme-A phosphopantetheine

(ACP) & cysteine

e acceptors/donor FAD & NAD+ NADPH

-OH intermediate L D

2-C product/donor acetyl-CoA malonyl-CoA (& acetyl-CoA)

Page 62: sinteza AG.ppt

Fatty Acid Synthase is Fatty Acid Synthase is transcriptionally transcriptionally regulatedregulated. . In liver:In liver: InsulinInsulin, a hormone produced when blood , a hormone produced when blood

glucose is high, glucose is high, stimulatesstimulates Fatty Acid Synthase Fatty Acid Synthase expression.expression.Thus excess glucose is stored as fat.Thus excess glucose is stored as fat.Transcription factors that that mediate the Transcription factors that that mediate the stimulatory effect of insulin include stimulatory effect of insulin include USFsUSFs (upstream stimulatory factors) and (upstream stimulatory factors) and SREBP-1SREBP-1. . SREBPsSREBPs (sterol response element binding (sterol response element binding proteins) were first identified for their proteins) were first identified for their regulation of cholesterol synthesis.regulation of cholesterol synthesis.

Polyunsaturated Polyunsaturated fatty acidsfatty acids diminishdiminish transcription of the Fatty Acid Synthase gene in transcription of the Fatty Acid Synthase gene in liver cells, by suppressing production of SREBPs. liver cells, by suppressing production of SREBPs.

Page 63: sinteza AG.ppt

In fat cellsIn fat cells::Expression of SREBP-1 and of Fatty Acid Expression of SREBP-1 and of Fatty Acid Synthase is Synthase is inhibitedinhibited by by leptinleptin, a hormone , a hormone that has a role in regulating food intake and fat that has a role in regulating food intake and fat metabolism. metabolism. LeptinLeptin is produced by fat cells in response to is produced by fat cells in response to excess fat storage. excess fat storage. Leptin regulates body weight by decreasing Leptin regulates body weight by decreasing food intake, increasing energy expenditure, and food intake, increasing energy expenditure, and inhibiting fatty acid synthesis. inhibiting fatty acid synthesis.

Page 64: sinteza AG.ppt

ElongationElongation beyond the 16-C length of the palmitate beyond the 16-C length of the palmitate product of Fatty Acid Synthase occurs in mitochondria product of Fatty Acid Synthase occurs in mitochondria and endoplasmic reticulum (ER). and endoplasmic reticulum (ER). Fatty acid elongation within Fatty acid elongation within mitochondriamitochondria involves involves

the the -oxidation pathway-oxidation pathway running in reverse, but running in reverse, but NADPH serves as electron donor for the final NADPH serves as electron donor for the final reduction step. reduction step.

Polyunsaturated fatty acids esterified to CoA are Polyunsaturated fatty acids esterified to CoA are substrates for the substrates for the ER elongation machineryER elongation machinery, , which uses malonyl-CoA as donor of 2-carbon units. which uses malonyl-CoA as donor of 2-carbon units. The reaction sequence is similar to Fatty Acid The reaction sequence is similar to Fatty Acid Synthase but individual steps are catalyzed by Synthase but individual steps are catalyzed by separate proteinsseparate proteins. . A family of enzymes designated A family of enzymes designated Fatty Acid Fatty Acid ElongasesElongases catalyze the initial condensation step for catalyze the initial condensation step for elongation of saturated or polyunsaturated fattyelongation of saturated or polyunsaturated fatty acidsacids..

Page 65: sinteza AG.ppt

DesaturasesDesaturases introduce introduce double bondsdouble bonds at at specific positions in a fatty acid chain.specific positions in a fatty acid chain.

Mammalian cells are unable to produce Mammalian cells are unable to produce double bonds at certain locations, e.g., double bonds at certain locations, e.g., 1212. .

Thus some polyunsaturated fatty acids are Thus some polyunsaturated fatty acids are dietary essentialsdietary essentials, e.g., linoleic acid, 18:2 , e.g., linoleic acid, 18:2 cis cis 9,129,12 (18 C atoms long, with cis double (18 C atoms long, with cis double bonds at carbons 9-10 & 12-13). bonds at carbons 9-10 & 12-13).

CO

OH910

oleate 18:1 cis 9

Page 66: sinteza AG.ppt

Formation of a double bond in a fatty acid involves Formation of a double bond in a fatty acid involves the following endoplasmic reticulum membrane the following endoplasmic reticulum membrane proteins in mammalian cells:proteins in mammalian cells: NADH-cyt bNADH-cyt b5 5 ReductaseReductase, a flavoprotein with , a flavoprotein with

FADFAD as prosthetic group. as prosthetic group. Cytochrome bCytochrome b55, which may be a separate protein , which may be a separate protein

or a domain at one end of the desaturase. or a domain at one end of the desaturase. DesaturaseDesaturase, with an active site that contains , with an active site that contains two two

iron atomsiron atoms complexed by histidine residues. complexed by histidine residues.

CO

OH910

oleate 18:1 cis 9

Page 67: sinteza AG.ppt

The desaturase catalyzes a The desaturase catalyzes a mixed function mixed function oxidationoxidation reaction. reaction. There is a There is a 4-electron4-electron reduction of reduction of OO22 2 H2 H22OO as as a fatty acid is oxidized to form a double bond. a fatty acid is oxidized to form a double bond.

2e2e pass from pass from NADHNADH to the desaturase via the to the desaturase via the FAD-containing reductase & cytochrome b FAD-containing reductase & cytochrome b55, , the order of electron transfer being: the order of electron transfer being: NADHNADH FADFAD cyt bcyt b55 desaturasedesaturase

2e2e are extracted from the fatty acid as the are extracted from the fatty acid as the double bond is formed.double bond is formed.

E.g., the overall reaction for desaturation of E.g., the overall reaction for desaturation of stearate (18:0) to form oleate (18:1 cis stearate (18:0) to form oleate (18:1 cis 99) is:) is:stearate + NADH + Hstearate + NADH + H++ + O + O22 oleate + NADoleate + NAD++ + 2H+ 2H22OO

Page 70: sinteza AG.ppt
Page 71: sinteza AG.ppt