37
Simulation of NMR Experiments with SPINEVOLUTION Mikhail Veshtort 2008

Simulation of NMR Experiments with SPINEVOLUTION

  • Upload
    others

  • View
    16

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Simulation of NMR Experiments with SPINEVOLUTION

Simulation of NMR Experiments withSPINEVOLUTION

Mikhail Veshtort2008

Page 2: Simulation of NMR Experiments with SPINEVOLUTION

Exact Simulations in NMR

• Extraction of structural parameters• Design of new experiments• Theoretical insights

Before you do anything – simulate it !

Page 3: Simulation of NMR Experiments with SPINEVOLUTION

SPINEVOLUTION

• General NMR simulation program• Highly efficient

– New methodology for NMR computations– Advanced numerical techniques– Computer Science: optimized code, data flow, etc.

• Easy to use

Page 4: Simulation of NMR Experiments with SPINEVOLUTION

-60500CH9

-9460CH8

-1600CH7

822000246CH6

1330035.0CH5

6386.16CH4

73.41.27CH3

19.10.33CH2

8.80.13CH1

SIMPSONSPINEVOLUTIONSpin system

1.2 GHzATHLON

CPU

CPU time,seconds

Problem:TPPM -

decoupled13C line shape

SPINEVOLUTION vs. SIMPSON

Page 5: Simulation of NMR Experiments with SPINEVOLUTION

How to Learn

• Try examples• Do the problems/exercises• Read the JMR paper• Read the Reference• Visit or subscribe to the spinev-discuss forum• Use it in your work and study

Page 6: Simulation of NMR Experiments with SPINEVOLUTION

!(0) "d!

dt= #i H(t),![ ] " Tr(!(t)I+

)

!(0)

Data Points:

evolution path

evolution path

Simulation of NMR Experiment

Page 7: Simulation of NMR Experiments with SPINEVOLUTION

)()()( tUtiHtUdt

d!=

U(t2,t1) = e

! iHN"t...e

!iH2"te! iH1"t

Strategy of the Simulation

• Local integration

• Construction of the long-term evolution– Time domain– Frequency domain

• Powder averaging– Weighted sum– Interpolative integration

Page 8: Simulation of NMR Experiments with SPINEVOLUTION

• Pulse sequence: RF cycles• Pulse sequence: Sampling• Spinning: Rotor cycles

Periodicity:

Simulation of NMR ExperimentExperiment Pulse Sequence

Page 9: Simulation of NMR Experiments with SPINEVOLUTION

n ! tseq = m !" R

tseq

Elementary Pulse Sequence

• Fixed group of pulses: RF cycle– Delays are treated as pulses of zero power– Duration

• Characterized by sampling pattern:– Dimension– Sampling direction– Sampling rate

• Rotor-synchronized:

Page 10: Simulation of NMR Experiments with SPINEVOLUTION

Canonical Representation of NMRExperiments

Pulse Sequences:

5Evolution Path:

!0"

! "(3,4)

31

(!,",#)

2 4

Page 11: Simulation of NMR Experiments with SPINEVOLUTION

Data Dimensions

• Pulse Sequence dimensions• Parameter scan dimensions• Trajectory• Initial density matrices & observables

Page 12: Simulation of NMR Experiments with SPINEVOLUTION

π/2 - pulse followed by acquisition:timing(usec) 5 (20)1024power(kHz) 50 0phase(deg) 0 0freq_offs(kHz) 0 0

timing(usec) (50)256D1 5 (rfdr.pp)x2 5 (20)1024D2power(kHz) 0 50 * 50 0phase(deg) 0 0 * 0 0freq_offs(kHz) 0 0 * 0 0

2D experiment:

Pulse Sequence: Examples

Page 13: Simulation of NMR Experiments with SPINEVOLUTION

spinev filename [options]

filename_re.datfilename_im.dat

Data Fitting / Optimizationspinev filename [options]

filename,other files

filename,other files

filename_re.fitfilename_im.fitfilename_re.whtfilename_im.wht

filename.par

Running a Simulation

Page 14: Simulation of NMR Experiments with SPINEVOLUTION

Main Input File

• System• Pulse Sequence• Variables• Options

****** The System *******spectrometer(MHz) 400spinning_freq(kHz) 8.0channels C13nuclei C13 C13 C13 C13 C13 C13atomic_coords leu.corcs_isotropic leu.cscsa_parameters *j_coupling leu.jquadrupole *dip_switchboard *csa_switchboard *exchange_nuclei *bond_len_nuclei *bond_ang_nuclei *tors_ang_nuclei *groups_nuclei ******** Pulse Sequence *************************************CHN 1timing(usec) (0)2048D1 0.5 (rfdr8.pp)x2 0.5 (0)1024D2power(kHz) 0 500 * 500 0phase(deg) 0 270 * 90 0freq_offs(kHz) 0 0 * 0 0******* Variables ******************************************variable spinning_freq=8variable taur=1000/spinning_freqvariable pulse_1_1_1=taur/6variable pulse_1_5_1=taur/3******* Options **************************************rho0 F1xobservables F1pEulerAngles rep100.datn_gamma 12line_broaden(Hz) 0 0 60 60zerofill *FFT_dimensions 1c 2options -re

Page 15: Simulation of NMR Experiments with SPINEVOLUTION

****** The System *******spectrometer(MHz) 400spinning_freq(kHz) 8.0channels C13nuclei C13 C13 C13 C13 C13 C13atomic_coords leu.corcs_isotropic leu.cscsa_parameters *j_coupling leu.jquadrupole *dip_switchboard *csa_switchboard *exchange_nuclei *bond_len_nuclei *bond_ang_nuclei *tors_ang_nuclei *groups_nuclei *

The System

Page 16: Simulation of NMR Experiments with SPINEVOLUTION

% Leu from N-Ac-VL crystal structure3.734 6.733 2.822 C32/C'3.522 7.597 1.589 C17/CA 4.043 6.870 0.351 C14/CB 4.541 7.765 -0.791 C12/CG 3.423 8.516 -1.497 C28/CD1 5.340 6.943 -1.789 C8 /CD2

leu.cor

Supplementary Files

Page 17: Simulation of NMR Experiments with SPINEVOLUTION

% Chemical Shifts at 400MHz4.232 C'-7.699 CA-9.654 CB-10.329 CG-11.043 CD1-11.137 CD2

lue.cs

1 2 402 3 403 4 404 5 404 6 40

lue.j

Supplementary Files

Page 18: Simulation of NMR Experiments with SPINEVOLUTION

******* Pulse Sequence ******************************CHN 1timing(usec) (0)2048D1 0.5 (rfdr8.pp)x2 0.5 (0)1024D2power(kHz) 0 500 * 500 0phase(deg) 0 270 * 90 0freq_offs(kHz) 0 0 * 0 0

Pulse Sequence

Page 19: Simulation of NMR Experiments with SPINEVOLUTION

RFDR Pulse Sequence rfdr8.pp

!R

30 0 0 04 125 0 060 0 0 04 125 90 060 0 0 04 125 0 060 0 0 04 125 90 060 0 0 04 125 90 060 0 0 04 125 0 060 0 0 04 125 90 060 0 0 04 125 0 030 0 0 0

Page 20: Simulation of NMR Experiments with SPINEVOLUTION

******* Variables *********************spinning_freq=8taur=1000/spinning_freqpulse_1_1_1=taur/6pulse_1_5_1=taur/3

Variables

• User-defined or Internal• Active or passive• Special type

– Signal– Pre-processing– Post-processing

• Matrices, scalars, or strings

Page 21: Simulation of NMR Experiments with SPINEVOLUTION

**** Options etc **************rho0 F1xobservables F1pEulerAngles rep100n_gamma 12line_broaden(Hz) 0 0 60 60zerofill *FFT_dimensions 1c 2options -re

Options

Page 22: Simulation of NMR Experiments with SPINEVOLUTION

Static CSA Powder Pattern****** The System *******spectrometer(MHz) 500channels C13nuclei C13csa_parameters 1 1 0.5 0 0 0******* Pulse Sequence *********CHN 1timing(usec) (200)512power(kHz) 0 phase(deg) 0 freq_offs(kHz) 0******* Variables ********************* Options ****************rho0 I1xobservables I1pEulerAngles asgind100on_gamma *FFT_dimensions 1options -re

Page 23: Simulation of NMR Experiments with SPINEVOLUTION

Specifying Crystallite Orientations

• 2 reference frames + Euler angles• Static solids: CL• Rotating solids: CR

Page 24: Simulation of NMR Experiments with SPINEVOLUTION

Powder Averaging Set Types

• Three-angle sets:• Two-angle sets:• β-angle only:

(!,",#,w)

(!,",w)(!,w)

s (t) =1

8! 2d"

0

2!

# d$ sin($)0

!

# d% s(",$,% ; t)0

2!

#

Page 25: Simulation of NMR Experiments with SPINEVOLUTION

Orientational Symmetry

• Reference frames: CL• No dependence on γCL in high-field approx.

• Ci (hemisphere)• D2h (octant)• D∞h (0 ≤ β ≤ π/2)

Static Powders

A20

L= A

2M

CD

M 0

(2) !CL"CL#CL( )

M =$2

2

%

DMK

(2) !CL"CL#CL( ) = e$ iM!

dMK

(2) "( )e$ iK#

Page 26: Simulation of NMR Experiments with SPINEVOLUTION

Orientational Symmetry

• Reference frames: CR• Special dependence on γCR

• Ci ( (α,β)-hemisphere + γ )• D2h ( (α,β)-octant + γ )• D∞h ( 0 ≤ β ≤ π/2 + γ )

Rotating Powders

A2,q (t) = A

2,q

(k )eik!Rt

k="2

2

#

A2,q

(k )=3

6Aaniso D

0k

(2)(!

PR) "

#A

6D2k

(2)(!

PR) + D"2k

(2)(!

PR)$% &'

()*

+,-dkq .RL( )

Page 27: Simulation of NMR Experiments with SPINEVOLUTION

Sets Available in SPINEVOLUTION

EulerAngles b500oEulerAngles a200b500hEulerAngles rep168EulerAngles asg5151o ~ asgind100oEulerAngles sophe5151 ~ sopheind100EulerAngles leb5810 ~ lebind65EulerAngles filename

Page 28: Simulation of NMR Experiments with SPINEVOLUTION

DEMO

• What different sets look like

Page 29: Simulation of NMR Experiments with SPINEVOLUTION

Weighted Sum vs. Interp. Integration

spinev csa -ws spinev csa

Page 30: Simulation of NMR Experiments with SPINEVOLUTION

CW NMR******* Pulse Sequence *************CHN 1timing(usec) 500100000power(kHz) 0.0001phase(deg) 90freq_offs(kHz) 0CHN Gtiming(usec) [100000]5001gradient(Gs/cm) [0]5001******* Variables ******************T1SQ_1_1=2000T2SQ_1_1=2000grad_offs=1freq=colmatrix("-0.025:1e-5:0.025")grad_1=freq/1.0708******* Options ********************rho0 0.25*I1zobservables I1poptions -oes -dt10000

Page 31: Simulation of NMR Experiments with SPINEVOLUTION

Relaxation Matrix

Page 32: Simulation of NMR Experiments with SPINEVOLUTION

Carr-Purecell Echo Train******* Pulse Sequence ***************CHN 1timing(usec) 0.5 [1000]2900power(kHz) 500 [0]2900 phase(deg) 90 [0]2900 freq_offs(kHz) 0 [0]2900******* Variables ********************T2SQ_1_1=1000sigma=0.006pulse_1_1_[100:200:2900]=1.0power_1_1_[100:200:2900]=500ave_par x/-0.02:0.0025:0.02/cs_iso_1=0.1+xave_wht=0.0025*exp(-0.5*(x/sigma)^2)/sqrt(2*pi)/sigma******* Options ***************************rho0 I1zobservables I1poptions -oes -re

Page 33: Simulation of NMR Experiments with SPINEVOLUTION

CSA Sidebands Fitting****** The System *******spectrometer(MHz) 500spinning_freq(kHz) 3.8channels Sn(74.56 -1/2)nuclei Sncsa_parameters 1 -600 0.1 0 0 0 ppm******* Pulse Sequence ******************CHN 1timing(usec) (0)32power(kHz) 0 phase(deg) 0 freq_offs(kHz) 0******* Variables ***********************************pulse_1_1_1=1000/spinning_freq/32signal_sf=40fit_par cs_ani_1 cs_asy_1 signal_sf******* Options *************************************rho0 I1xobservables I1pEulerAngles lebind29on_gamma 10FFT_dimensions 1options -re -fft1 -sz5 -ws -confint

Page 34: Simulation of NMR Experiments with SPINEVOLUTION

0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 1.8500000e+01 3.3000000e+01 4.6500000e+01 5.0750000e+01 3.7250000e+01 3.4000000e+01 4.2250000e+01 5.9250000e+01 4.5750000e+01 4.8500000e+01 7.3500000e+01 5.8000000e+01 6.6250000e+01 6.8500000e+01 1.1700000e+02 1.6075000e+02 2.0250000e+02 1.0425000e+02 3.1250000e+01 1.0500000e+01 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00

00000001111111111111111111100000

cs_ani_1=-45.7632cs_asy_1=0.144041signal_sf=43.0485*** RSS=594.756

SnC2O4_re.fit SnC2O4_re.wht

SnC2O4.par

SnC2O4.cls

cs_ani_1=-4.57632e+01 +/- 6.014e-01cs_asy_1= 1.44041e-01 +/- 3.654e-02signal_sf= 4.30485e+01 +/- 1.661e+00

Page 35: Simulation of NMR Experiments with SPINEVOLUTION

A!,"

!( )

Frequency bins:

!" !k,w

k{ }k=1

M

Frequency Domain Calculation

s!t( ) = A

!ei"!t

s t( ) =1

4!A"!# e

i2!$"td"

For each coherence:

Binning:

Page 36: Simulation of NMR Experiments with SPINEVOLUTION

REDOR via “Analytic” Calculations******* Pulse Sequence ******************************************CHN 1timing(usec) (100)100 power(kHz) 0 phase(deg) 0 freq_offs(kHz) 0 CHN 2 timing(usec) (redor1.pp) power(kHz) * phase(deg) * freq_offs(kHz) * ******* Variables ************************************************tauR=1/spinning_freqk=1/sqrt(6)w=k*(ID20_1_2(0,tauR/2)-ID20_1_2(tauR/2,tauR))/tauRsignal_re=cos(w*t_1)******* Options **************************************************rho0 I1xobservables I1pEulerAngles ^asgind30hoptions -re -am

H (t) = D20(t)

2

6IzSz

H =2I

zS

!R6

z

D20(t)dt

0

!R /2

" # D20(t)dt

!R /2

!R

"$%&

'&

()&

*&

Page 37: Simulation of NMR Experiments with SPINEVOLUTION

Demos

• NOESY• quad1_full• batch-fit• tppm-fit• struct• -calc mode