28
September 19/20, 2007 SIS 100 Magnet cooling and cryogenic distribution

September 19/20, 2007 SIS 100 Magnet cooling and cryogenic distribution

Embed Size (px)

Citation preview

September 19/20, 2007

SIS 100Magnet cooling

andcryogenic distribution

September 19/20, 2007

Feed box

Feed

bo

x

Refrigerator

Distribution box

Reference

magnets

Feed

box

Supply line

Return line

shield cooling

transfer lines

4.4 K

4.3 K

50-80 K

. . .

. . .

. . . . .

. .

. . . . .

. .

. . . . .. .

. . . . .. .

. . . . .

. . .

Each sextant consists:18 Dipoles28 Quadrupoles24 Correctors? Scraper4 warm sections

Length: 180 m

SIS100

No collimators at cryogenic temperature

September 19/20, 2007

User 1 User 2 User i

supply

return

p

SIS100 cooling scheme

conditionsinletgeometryQmfp ,,

Maximal p = ? => dipole

All other users have to be adopted to this pressure drop p by:• introducing an orifice at the inlet (small rage due to manufacturing accuracy and/ or • Combination of different users

September 19/20, 2007

SIS100 cooling scheme

System requires nearly no pressure drop along the supply lines to achieve the same pressure head along the sector for every component.

psupply < 50 mbarpsuction< 20 mbar

dsupply = 0,038 m (0,045m) dsuction= 0,070 m (0,060 m)

September 19/20, 2007

Maximal flow given by the geometry <=> flow impedance

Minimal flow given by flow regime: slug or plug flow have to be avoided to reach equal temperature distribution within the coilpressure control

Vapour fraction at yoke outlet should be kept between .9 and 1., to achieve an energy efficient operation

SIS100 cooling dipole

September 19/20, 2007

Internal heat exchangerRecooler between supply line and magnet cooling

length string [m] 200length magnet [m] 2,4

supply line supply tube magnet

material Stainlessdiameter [m] 0,038 0,045thickness [m] 0,0015cross section [m 2̂] 0,0011 0,0016 0,000162pressure [Pa] 150000 1,10E+05Temperature [K] 4,5 4,5 4,31void fraction [-] 0 0,3

density [kg/m 3̂] 120,7 45,4Prandtl [-] 1,009

viscostity i [Pa s] 3,08E-06heat conductivity [W/mK] 0,0190 0,2644

mass flow rate [kg/s] 0,05 0,075 0,002Re [-] 5,44E+05 6,89E+05 [-] 0,0128 0,0123Nu [-] 881,4 1071,6

[W/m 2̂K] 441,1 452,8 176,2 1000

k [W/m 2̂K] 111,84 112,58A [m 2̂/m] 0,018T [K] 0,2

Q [W/m] 0,40 0,41

Approx. 50mdipole/200msextant= 0,25 => Qmax,supply=0.1 W/m

Supply line

September 19/20, 2007

SIS100 inlet conditions

4,40

4,42

4,44

4,46

4,48

4,50

4,52

0 20 40 60 80 100 120 140 160

length of a sector [m]

Te

mp

erat

ure

[K

]

no pressure loss

20kPa pressure lossUser 1 User 2 User i

supply

return

p

Q.

Subcooledfrom feed box

towards feed box

= 0.1W/m

September 19/20, 2007

Two traditional Nuclotron magnets:

Tests

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 5 10 15 20 25 30 35 40

Heat load [W]

pre

ssu

re d

rop

[b

ar]

Cycle 2c'

Cycle 1,2a

Cycle 3

Cycle 4,5'

sta

ble

ope

ratio

n

Cycle 3b

September 19/20, 2007

SIS100 cooling dipole

Curved double layer dipole

WkbBaP coildyn 3.911max1,

WkbBaP yokedyn 6.3022max2,

WP coilstat 1,

Cycle 2cB= 0 -> 1.9 TB=4T/scycle=1.8 s

.

WP yokestat 2,

September 19/20, 2007

SIS100 cooling

Coili

Yoke

supply

return

2

2v

d

lp

i

Pressure drop calculations

3.0Re3964.000540.0(Re) f Hermann, 2.104 < Re < 2.106

1vl

0,1,0,, xpvxpvxxpvxpv outoutoutoutoutoutout

September 19/20, 2007

SIS100 cooling

Pressure drop measurement

N 2

M a gne tflowm e te r

p0

2

4

6

8

10

12

14

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

mass flow rate [g/s]

pre

ssu

re d

rop

[b

ar]

Reihe1

Reihe2

Reihe3

calculated

September 19/20, 2007

SIS100 cooling

Tin=4.5K; Pin=1.56 bar; Psuction=1.1 bar; m=2.45g/s; coil= 63s, Yoke= 12 s

4,1

4,2

4,3

4,4

4,5

4,6

4,7

4,8

4,9

3 4 5 6 7 8 9

Entropy [J/gK]

Te

mp

era

ture

[K

]

x=0,25 x=0,5 x=0,75x=0 x=1

p=1 bar

p=1,3 bar

p=1,5 bar

September 19/20, 2007

SIS100 cooling

Tin=4.5K; Pin=1.56 bar; Psuction=1.1 bar; m=2.45g/s; coil= 66s, Yoke= 12 s

4,2

4,3

4,4

4,5

4,6

4,7

4,8

3,4 4,4 5,4 6,4 7,4 8,4 9,4

Entropy [J/gK]

Te

mp

era

ture

[K

]

d_i=0.0047m

d_i=0.0047m

x=0,5x=0

x=1

p=1,25 bar

p=1,5 bar

2,182,4501,900

1,56

1,51

p_in

p=1,0 bar

Tin=4.5K; Pin=1.51 bar; Psuction=1.12 bar; m=2.18g/s; coil= 68s, Yoke= 13 s

September 19/20, 2007

SIS100 cooling

Tin=4.5K; Pin=1.56 bar; Psuction=1.1 bar; m=2.45g/s; coil= 66s, Yoke= 12 s

Tin=4.4K; Pin=1.56 bar; Psuction=1.1 bar; m=2.56g/s; coil= 66s, Yoke= 12 s

4,2

4,3

4,4

4,5

4,6

4,7

4,8

3,4 4,4 5,4 6,4 7,4 8,4 9,4

Entropy [J/gK]

Te

mp

era

ture

[K

]

d_i=0.0047m

d_i=0.0047m

x=0,5x=0

x=1

p=1,25 bar

p=1,5 bar

2,182,4502,5550

1,56

1,56

p_in

p=1,0 bar

September 19/20, 2007

Tin = 4.51K

SIS100 cooling

4,4

4,5

4,6

4,7

4,8

4,9

5

5,1

1,0 1,5 2,0 2,5 3,0 3,5 4,0

mass flow [g/s]

max

. co

il te

mp

erat

ure

[K

]

1,41,61,82x=1x=0.9p_suction=1.1

inletpressure [bar]

field of operation

September 19/20, 2007

SIS100 cooling

Tin = 4.51K

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1,0 1,5 2,0 2,5 3,0 3,5 4,0

mass flow [g/s]

pre

ssu

re lo

ss

[ba

r]

1,41,61,82x=1x=0.9p_suction=1.1

inletpressure [bar]

field of operation

September 19/20, 2007

SIS100 cooling

Tin = 4.51K

4

4,2

4,4

4,6

4,8

5

5,2

5,4

5,6

5,8

6

1,0 1,5 2,0 2,5 3,0 3,5 4,0

mass flow [g/s]

ou

tle

t te

mp

era

ture

[K]

1,41,61,82x=1x=0.9p_suction=1.1

inletpressure [bar]

superheating

liquid left in the

field of operation

September 19/20, 2007

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1,0 1,5 2,0 2,5 3,0 3,5 4,0

mass flow [g/s]

pre

ssu

re lo

ss [

bar

]

1,4

1,6

1,8

2x=1

x=0.9

p_suction=1.1

inletpressure [bar]

field of operation

Tin = 4.5K

SIS100 cooling

September 19/20, 2007

SIS100 cooling

September 19/20, 2007

Curved double layer option• There is a common range of pressures of operation, where both magnets, the first and the last will work, but

• The heat load onto the supply line should not exceed .08 W/m in the magnet cryostats. This should be possible be special shielding from the return line.

•To achieve a similar operational field, following groups for the correction elements are proposed by H. Khodzhibagiyan:

• Module M1: a quadrupole, pickup and steerer• Module M2: a quadrupole, pickup and multipole• Module M3: a quadrupole, multipole and collimator• Module M4: a quadrupole, steerer and collimator

• The beam pipe cooling should be handled as a separate consumer and be put into the modules M1..M4

SIS100 cooling

September 19/20, 2007

SIS100 cooling

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1

duty cycle/max. cycle [-]

heat

load

/ max

. hea

tload

[-]

0

0,2

0,4

0,6

0,8

1

1,2

requ

ired

pres

sure

hea

d/ d

esig

n pr

essu

re

head

[-]

staticpower 2linear

Dipole: static load 7W, load in cycle 2c: 35.7 WQuadrupole: static load 4W, load in cycle 2c: 18.7 WCorrectors: ?Beam pipe cooling:?Scraper: ?

September 19/20, 2007

Dipole1

Quadru-pole

600 m

supply line

return line

p supply, beam pipe cooling

p suction

p1

p14

1

preturn line

beam pipe cooling

p supply, quadrupole

p supply, dipole

180 m

September 19/20, 2007

Feed box

Feed

bo

x

Refrigerator

Distribution box Feed

box

Supply line

Return line

shield cooling

transfer lines

4.4 K

4.3 K

50-80 K

. . .

. . .

. . . . .

. . . . . . .

. .

. . . . .. .

. . . . .. .

. . . . .

. . .

• Feed box on tunnel level in niche=> short reaction time for the control valves• Transfer lines through the tunnel• as few valves as possible in the non accessible area

September 19/20, 2007

• Distribution box on tunnel level in niche=> Smaller space requirements in the transfer section• Transfer lines through the tunnel• valves in the non accessible area

Feed box

Feed

bo

x

Refrigerator

Feed

box

Supply line

Return line

shield cooling

transfer lines

4.4 K

4.3 K

50-80 K

. . .

. . .

. . . . .

. .

. . . . .

. .

. . . . .. .

. . . . .. .

. . . . .

. . .D

istribution

box

September 19/20, 2007

SIS100 cooling

-> T

o R

efr

ige

rato

r

Supply line

Return line

motive gas

shield cooling

transfer lines

bus bar

4.4 K

4.3 K

4.4 K

50-80 K

Feed box

PS PS

compressor

...

...

September 19/20, 2007

September 19/20, 2007

0,5

0,52

0,54

0,56

0,58

0,6

0,62

0,64

0,66

4 5 6 7 8 9 10 11

heat load on coil [W]

pre

ssu

re d

rop

[b

ar]

0,24 0,3 0,31

Classic Nuclotron

Prototype specification

liron

coil iron

Qcoil

. Qiron

.

lcoil

pin, Tin, xin, m.

pout, Tout, xout

Pressure drop versus heat load on the coil for a constant overall heat load of 30 W.

September 19/20, 2007

4,2

4,3

4,4

4,5

4,6

4,7

4,8

3,4 4,4 5,4 6,4 7,4 8,4 9,4

Entropy [J/gK]

Te

mp

era

ture

[K

]

first

middle

end

equal

x=0,5x=0

x=0,9

p=1,25

p=1,5 bar

1,70501,70501,705

1,672

1,669

1,6718

p_in

1,6713

p=1,0 bar

liron

Qcoil

.

lcoil

Qironlastfirst middle

T-s-Diagram for three different load distribution onto the coil. The pressure drop variation caused by this load variation is below 2 mbar (or .5%).