Click here to load reader

Separator and hemistry pparatus - GSI · Comparison of separators old NASE (HECK) sep. working RITU separator. 3 GSIDarmstadt TU ... Magnet vacuum chamber – increase vertical and

  • View
    6

  • Download
    0

Embed Size (px)

Text of Separator and hemistry pparatus - GSI · Comparison of separators old NASE (HECK) sep. working RITU...

  • 1

    GSI Darmstadt TU Mü[email protected]

    REC

    SEP

    SHE

    CHEM

    TASCATASCATASCATASCA

    TASCA separator - Trans Actinide Separator and Chemistry Apparatus

  • 2

    GSI Darmstadt TU Mü[email protected]

    REC

    SEP

    SHE

    CHEM

    TASCATASCATASCATASCA

    2.00

    4.7

    2.5

    70

    45

    QvDhD

    BGS

    1.000.780.610.630.67Dispersion, cm/%

    4.74.83.84.34.0Length, m

    2.21.852.23.12.2Bro, max, Tm

    2545302323Bend. angle, deg

    102210107Solid angle, msr

    QvDQhQvDQhQvDQhQvDQhQvDvQhQvConfiguration

    RITUGARISHECKDGFRSSASSY IISeparator

    Comparison of separators

    old NASE (HECK) sep. working RITU separator

  • 3

    GSI Darmstadt TU Mü[email protected]

    REC

    SEP

    SHE

    CHEM

    TASCATASCATASCATASCA

    Problems to have high transmision

    connected to the initial beam:• Size of the beam

    • Energy and Angular spread of the beam

    • Energy and Angular spread of the beam in the target

    connected to the products of reactions:• Energy and angular spread of products in the target

    • Energy and angular straggling of products in the target

    • Energy and angular straggling of products in the gas

    • Charge value and spread of charge states in the gas

    connected to separator:• Ion – optical scheme

    • Vertical and horizontal acceptance of Dipole magnet

    • Vertical and horizontal acceptance of Quadrupole magnets

  • 4

    GSI Darmstadt TU Mü[email protected]

    REC

    SEP

    SHE

    CHEM

    TASCATASCATASCATASCA

    Input parameters

    for TRANSPORT and GICO calculations

    The studied test reaction is:• 48Ca(235 MeV) + 238U(0.5 mg/cm2) -> 286112 -> 283112 + 3n

    • 54% of 283112 will appear within ±40 mrad

    (according to simulations of K.E.Gregorich)

    Input parameters:• Horizontal and vertical beam size - ± 2.5 mm

    • Horizontal and vertical angle of the products - ± 40 mrad

    • Momentum dispersion - ± 5% (92% of all 283112)

    • Magnetic rigidity – 2.24 T*m

  • 5

    GSI Darmstadt TU Mü[email protected]

    REC

    SEP

    SHE

    CHEM

    TASCATASCATASCATASCA

    Summary data at the exit focus

  • 6

    GSI Darmstadt TU Mü[email protected]

    REC

    SEP

    SHE

    CHEM

    TASCATASCATASCATASCA

    Final decision: DQQ - configuration

    Where are the problems and how to solve them:Magnet vacuum chamber – increase vertical and horizontal aperture solution – calculate

    the magnet to skip shims (+10% in vertical aperture), new large vacuum chamber in vert. and horiz. sizes + RITU experience - large size chamber

    Quads vacuum chamber - increase vertical and horizontal aperture. It was two options cheap square chamber and expensive butterfly-like vacuum chamber.

    New more powerful power supply for Bending magnet.

  • 7

    GSI Darmstadt TU Mü[email protected]

    REC

    SEP

    SHE

    CHEM

    TASCATASCATASCATASCA

    TASCA magnet

    KOMPOT 3D mesh(number of calculated points

    128*63*59 = 475776)

    KOMPOT computation model

  • 8

    GSI Darmstadt TU Mü[email protected]

    REC

    SEP

    SHE

    CHEM

    TASCATASCATASCATASCA

    YokePole piece

    Distribution of B (in kGauss).Existing pole. I=700 A. Bmax=1.635T=16.35kGauss

    The KOMPOT magnetic field distributionVertical Section Horizontal Section

  • 9

    GSI Darmstadt TU Mü[email protected]

    REC

    SEP

    SHE

    CHEM

    TASCATASCATASCATASCA

    TASCA magnet (shims variations). Distribution of Induction in the central vertical section.

    Existing pole without shims.

    I = 700 A. Bmax = 1.643 T = = 16.43 kGauss

    Existing pole with anti-shims.

    I = 700 A. Bmax = 1.666 T = = 16.66 kGauss

    Existing pole with shims.

    I =700 A. Bmax = 1.635 T = =16.35 kGauss

  • 10

    GSI Darmstadt TU Mü[email protected]

    REC

    SEP

    SHE

    CHEM

    TASCATASCATASCATASCAGSI Darmstadt TU Mü[email protected]

    REC

    SEP

    SHE

    CHEM

    TASCATASCATASCATASCA

    Magnetic field distributions in the central crossection of TASCA magnet

    -0.10-0.08-0.06-0.04-0.02 0.00 0.02 0.04 0.06 0.08 0.101.20

    1.25

    1.30

    1.35

    1.40

    1.45

    1.50

    1.55

    1.60

    1.65

    1.70

    1.75

    1.80

    B(T

    )

    dX(m)

    "500A"

    "600A"

    "700A"

    "750A"

    "800A"

    "850A"

    2.491.78850

    2.421.73800

    2.351.68750

    2.281.63700

    2.101.50600

    1.851.32500

    (T m)

    B

    (T)

    Current

    (A)

  • 11

    GSI Darmstadt TU Mü[email protected]

    REC

    SEP

    SHE

    CHEM

    TASCATASCATASCATASCA

    Dipole Magnet

    vacuum chamber design

  • 12

    GSI Darmstadt TU Mü[email protected]

    REC

    SEP

    SHE

    CHEM

    TASCATASCATASCATASCA

    Quadrupole vacuum

    chamber design

  • 13

    GSI Darmstadt TU Mü[email protected]

    REC

    SEP

    SHE

    CHEM

    TASCATASCATASCATASCA

    DQhQv - configuration with new input parameters

    ���� Horiz. ang. accept. ����

    ���� Vert. ang. accept. ����

    ���� Aver. ang. accept. ����

    ���� Solid angle ����

    ���� Ang. transmis. ����

    ���� Total transmis. ����

    ���� Horiz. image size ����

    ���� Vert. image size ����

    ���� Image area ����

    Present set-up:

    x'= 60mrad

    y'= 33mrad

    x'y'=45mrad

    SA= 6.4 msr

    T' = 58%

    T = 52%

    X = 12 cm

    Y = 2.2 cm

    S = 21 cm2

    Future TASCA:

    x'= 110mrad

    y'= 40mrad

    x'y'=65mrad

    SA= 13.3msr

    T' = 72%

    T = 65%

    X = 14 cm

    Y = 2.5 cm

    S = 27 cm2

    VARIABLE INPUT PARAMETERS:

    RESULTS OF CALCULATIONS:

    RESULT:

    New vacuum chambers (in dipole magnet and butterfly-like one in quads)

    � increase transmission by (minimum) 25%

  • 14

    GSI Darmstadt TU Mü[email protected]

    REC

    SEP

    SHE

    CHEM

    TASCATASCATASCATASCA

    ���� Horiz. ang. accept. ����

    ���� Vert. ang. accept. ����

    ���� Aver. ang. accept. ����

    ���� Solid angle ����

    ���� Ang. transmis. ����

    ���� Total transmis. ����

    ���� Horiz. image size ����

    ���� Vert. image size ����

    ���� Image area ����

    Present set-up:

    x'= 21mrad

    y'= 33mrad

    x'y'=26mrad

    SA= 2.6 msr

    T' = 33%

    T = 30%

    X = 2.5 cm

    Y = 2.5 cm

    S = 5 cm2

    Future TASCA:

    x'= 34mrad

    y'= 40mrad

    x'y'=37mrad

    SA= 4.3 msr

    T' = 44%

    T = 40%

    X = 3 cm

    Y = 3 cm

    S = 7 cm2

    DQvQh - configuration with new input parameters

    VARIABLE INPUT PARAMETERS:

    RESULTS OF CALCULATIONS:

    RESULT:

    New vacuum chambers (in dipole magnet and butterfly-like one in quads)

    � increase transmission by (minimum) 25%

  • 15

    GSI Darmstadt TU Mü[email protected]

    REC

    SEP

    SHE

    CHEM

    TASCATASCATASCATASCA

    RESULT:We are not sensitive to a large spot sizeof the primary heavy-ion beam

    Beam spot size dependence of the 112 transmission

    4 6 8 10 12

    56.1

    56.2

    56.3

    56.4

    56.5

    56.6

    56.7

    56.8

    Tra

    nsm

    issio

    n o

    f 1

    12

    (%

    )

    Beam size (mm)

    - horizontal variation, vertical fixed 4 mm

    - vertical variation, horizontal fixed 4 mm

  • 16

    GSI Darmstadt TU Mü[email protected]

    REC

    SEP

    SHE

    CHEM

    TASCATASCATASCATASCA

    CONCLUSIONS:

    • DQQ–configuration is the optimized configuration for TASCA – most efficient and most universal

    • We increased the size of the vacuum chamber in the dipole magnet

    • We increased the size of the vacuum chamber in the quadrupoles – butterfly-type with large acceptance

    • This increased the transmission of 112 by at least 25%

    • The TASCA dipole magnet with new power supply can operate

    up to magnetic rigidities of 2.5 Tm

  • 17

    GSI Darmstadt TU Mü[email protected]

    REC

    SEP

    SHE

    CHEM

    TASCATASCATASCATASCA

    What are we have now:• Dipole magnet and quadrupoles were tested

    • Vacuum chambers for all magnets will come this month

    • Two detector chambers are in the cave • All power supplies for Dipole magnet, Q1 and Q2• Vacuum pumps and equipment• Computers and parts of control system

    Our future plans:• Monte-Carlo simulations of transmission with higher accuracy

    are still actual• Current year – continue to constructing TASCA separator based

    on existing components and new vacuum chambers

    • Vacuum system constructing• Writing Control system

    • Following two years - testing TASCA separator

  • 18

    GSI Darmstadt TU Mü[email protected]

    REC

    SEP

    SHE

    CHEM

    TASCATASCATASCATASCA

    DQhQv-

    configuration

    DQvQh-

    configuration

    Recoils beam shape in TASCA

    vacuum chambers

  • 19

    GSI Darmstadt TU Mü[email protected]

    REC

    SEP

    SHE

    CHEM

    TASCATASCATASCATASCA

    Energy distribution of products from a target

    GSI Darmstadt TU Mü[email protected]

    REC

    SEP

    SHE

    CHEM

    TASCATASCATASCATASCA

    The studied reaction is:48Ca(235 MeV)+238U(0.5 mg/cm2) -> 286112 -> 283112 + 3ndifferent target materials

    20 22 24 26 28 30 32 34 36 38 40 42 44

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.16

    0.18

    0.20

    0.22

    0.24

    0.26

    Pro

    bab

    ility

    /1 M

    eV

    Energy (MeV)

    B - K.E.Gregorich

    D - LISE U

    E - LISE UF4

    G - Popeko UF4

    H - LISE UO2

    1231A.Popeko

    536UF4 K.E.G.

    635.5UO2(LISE)

    635UF4(LISE)

    436.5U (LISE)

    FWHM

    (MeV)

    TKE112(MeV)

  • 20

    GSI Darmstadt TU Mü[email protected]

    REC

    SEP

    SHE

    CHEM

    TASCATASCATASCATASCA

    6025UF4 K.E.G.

    4022U (LISE)

    7028A.Popeko

    4024UF4(LISE)

    4023UO2(LISE)

    FWHM

    (mrad)

    Peak

    Angle

    (mrad)

    Angular straggling of products in the target

    The studied test reaction is:48Ca(235 MeV)+238U(0.5 mg/cm2) -> 286112 -> 283112 + 3n

    beam energy at the target center

    0 10 20 30 40 50 60 70 80 90 1001101201301401500.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0.09

    0.10

    Pro

    ba

    bili

    ty/a

    ngle

    Angle, mrad

    Un - metallic U (LISE)

    UO2n - UO2 (LISE)

    UF4n - UF4 (LISE)

    UF4Kenn - UF4 (K.Gregorich)

    UF4Pn - UF4 (Popeko)