62
Sejarah Arsitektur Komputer Eri Prasetyo http://staffsite.gunadarma.ac.id/eri

Sejarah Arsitektur Komputer - eri.staff.gunadarma.ac.ideri.staff.gunadarma.ac.id/Downloads/files/9523/Sejarah%2BArsitektur...Rangkaian terpadu pertama dengan teknik planar Kemajuan

Embed Size (px)

Citation preview

Sejarah Arsitektur Komputer

Eri Prasetyohttp://staffsite.gunadarma.ac.id/eri

Abakus, 3000 BC (?)

1642, add & sub, Blaise Pascal

1822Charles Babbage

Mechanical devices

• Based on Relays– Konrad Zuse (1910-1995)

Electromechanical Machines

Z1 / 1938,Z3 / 1941:mesin pemrograman Pertama di dunia

Z3 dan Z4 dapat dilihat di musium jerman , Padeborn

The Zuse Z3 & Z4

• First Generation– No mechanical components anymore– Vacuum Tubes

• Principle– Basic: Triode– Controllable flow within

diode by a fence– On / Off

• 1946: ENIAC machine– Electronic Numerical Integrator And Computer

Electronic Computers

Lee de Forest menemukan tabung elektronik

gate anodakatoda

Filamen pemanas

Filamen memanaskan katoda yang menyebarkan electrons : termo emission

Polarisasi gate menarik elektron

6,3v

Elektronika Tabung

1906

Lee de Forest

Penguatan signal

Elektronika tabung

Masalah Utama :Tegangan besarMudah panas

Ukuran komponen ≈300 V

≈50 VGrille

Plaque

Cathode

6,3v

Audio Amplifier

Radio Pemancar

Aplikasi Pertama

Radio penerima

Makan tempat

Luas 1500 m2

30 tonnes

Jumlah 17000 tabung

Daya 140 KW

5000 penambahan setiap detik

1945 Mesin hitung tabung I bernama (ENIAC) Electronic Numerical Integrator And Computer

Mesin Hitung tabung Pertama

Semi konduktor ????1874

K. F. Braun

Braun peletak dasar semi-conducteur

besi

selenium

1940 Schottky menemukan contact métal/semi-conducteur.

W. Schottky

1942 Produksi pertama dioda dengan bahan germanium berhasil untuk teknologi micromave dan radar

Ge

Pointe métallique

Masih digunakan sampai sekarang untuk HF

Dioda Pertama

Group dari Shockley mempunyai ide membuat dua dioda dari bahan yang sama (germanium).

Base

Emetor Collector

1947

Transistor bipolar

W. Schockley

Fenomena nama baru transistor = transfer + resistor

Transistor bipolar (2)

Sebuah awal fabrikasi (sangat berjasa )

InIn

Ge

Type n Type p

Base

Emetteur CollecteurKesulitan utama :

Reproduksi,ketebalan.

Transistor bipolar (3)

Temuan hasil penelitian lebih lanjut untuk bahan(Silikon atau Germanium).

Si amorphe

Purification Tirage

Si polycristallin Si monocristallin

Bell Labs memperkenalkan metode untuk merealisasiakn printing Silikon monocristallin dengan kemurnian 99,7%.

1952

Pemakaian pertama Silikon sebagai pengganti germanium1954

Transistor bipolar silikon

processeur 4-8 bits, cycle mémoire : 5 micro detik.

Seymour Cray menciptakan CDC 1604, komputer pertama secara komersial

1957

Komputer transistor pertama

1958 Jack Kilby dari Texas Instruments menciptakan rangkaian terpadu pertama dengan 5 komponen pasif.

Penemuan rangkaian terpadu ( IC)

R.N. Noyce

1960 Lab. Fairchild semiconductor menyempurnakan dengan teknik planar

Rangkaian terpadu pertama dengan teknik planar

Kemajuan Transistor

Di dalam transistor Planar, semua koneksi ada di permukaan dan pada sisi yang sama.

BaseEmetteur Collecteur

N

NP

Daya tarik transistors planar

Atalla dan Kahng dari Fairchild semiconductor peletak dasar transistor pertama MOS

Penemuan Transistor MOS

Source gate Drain

1960

Hofstein & Heiman dari RCA membuat pertama IC dengan transistors MOS (8 paires de NMOS)

1963

1.5 m

m

Le MOS est parfaitement symétrique et on appelle SOURCE (d'électrons) le coté le plus négatif

Structure MOS

Au début (1962) la grille était en Aluminium d'où le nom MOS: Métal/Oxyde/Semiconducteur

Substrat à la masse (à Vdd pour les PMos) P

N+ N+

Grille

Source Drain

Isolant

Conditions normales de fonctionnement :

P

Fonctionnement d’un NMOS

N+ N+

Isolant

Vgs > 0 et Vds > 0

Vgs > 0 Vds > 0GrilleSource Drain

Accumulation de charges positives sur la grille

P

Fonctionnement d’un NMOS

N+ N+

Isolant

Vgs > 0 Vds > 0GrilleSource Drain

Création d’un champ électrique E sur la capacité MOS

P

Fonctionnement d’un NMOS

N+ N+

Isolant

Vgs > 0 Vds > 0GrilleSource Drain

E

Trous majoritaires du substrat repoussés

P

Fonctionnement d’un NMOS

N+ N+

Isolant

Vgs > 0 Vds > 0GrilleSource Drain

E

Electrons minoritaires du substrat attirés vers la grille

P

Fonctionnement d’un NMOS

N+ N+

Isolant

Vgs > 0 Vds > 0GrilleSource Drain

E

Création d’un canal de type N sous l’isolant (couche d’inversion)

P

Fonctionnement d’un NMOS

N+ N+

Isolant

Vgs > 0 Vds > 0GrilleSource Drain

EId

Caractéristiques

Caractéristiques similaires à celle d’un transistor JFET

Vds (V)

Id (mA)Vgs = 8 V La valeur de Vgs > 0 influence

directement la densité de porteurs minoritaires attirés sous la capacité MOS

Vgs = 6 V

Vgs = 2 V

La valeur de Vds > 0 influencedirectement la valeur du champ Eet donc de la saturation de Id

Cas du MOS à appauvrissement

Pour Vgs = 0, existence du canal N entre la source et le drain

Vds (V)

Id (mA)Vgs = 4 V

L’existence du canal garantit une conduction du transistor pour des valeurs négatives et positives de Vgs

Vgs = 2 VVgs = 0 VVgs = -2 VVgs = -4 V

Caractéristiques

Caractéristiques similaires à celle d’un transistor JFET

Vds (V)

Id (mA)Vgs = 8 V

Vgs = 6 V

Vgs = 2 V

3 zones de fonctionnement : Zone ohmique, Pincement, Saturation.

kelebihan :

Tempat ringkas

Syst

ème

élec

tron

ique

Circuitélectronique

Composant:Circuit intégré

Mengapa terpadu ?

Hemat energi

modular

Lebih Aman

ORGANIZATION

• Pertanyaan :

• Bagimana bentuk mesin komputasinya ?

• Bagaimana mengontrolnya ?

• Original Work ( 1946 )

• Burks, Goldstine, von Neumann:Mulai diskusi untuk merancang logika instrumen komputasi elektronik

• Hasil :

• von Neumann Architecture

• Arsitektur yang sangat dominan – bahkan sampai sekarang

• Dikembangkan 1952 oleh von Neumann– Mesin pertama berbasiskan prinsip

rancangannya– Institute for Advanced Studies computer

The IAS machine

• General purpose machine– Independent of applications– Flexible & Programmable

• 4 main units– Control unit (Instruction counter)– Arithmetic unit (Accumulator)– Input/Output unit (Connection to the outside)– Main memory

• Interconnected by simple buses

The von Neumann architecture

ArithmeticUnit

ControlUnit

Input/OutputUnit

E.g. Storage

Instructions / Program

MainMemory

Addresses

AC IRSR

PC

Von Neumann – Overview

• System structure is application independent– Fully programmable

• Programs and Data are stored in the same memory– Main Memory– Can be manipulated by the machine

• Main memory is divided into cells– Equal size– Consecutively numbered (addresses)

Von Neumann – Details (1)

• Program is composed of a sequence of instructions– Read one after the other from main memory

• Program execution can be altered– Conditional or unconditional jumps– Change the current execution– Done by loading new value into PC register

Von Neumann – Details (2)

• Usage of binary numbers– Just two values allowed per digit: 0/1– Easy to implement: voltage yes or no

Von Neumann – Details (3)

• Still the dominant architecture in current systems– Used in all popular systems / chips

• Only minor modifications– Control und Arithmetic unit combined

Result: CPU (Central Processing Unit)– New memory paths between memory and I/O

Direct Memory Access (DMA)• Additions to the concept

– Multiple arithmetic units / Multiple CPUs– Parallel processing

Von Neumann – Today

• Vacuum tubes replaced– Transistors– Smaller, more power efficient– DEC PDP-1, IBM 7094– Still large machines

• Next step: Integrated Circuits– Many transistors packed on one die– High density & reliability, low power– IBM 360 family & first Intel chips

• Many subsequent improvements

Technology Development

• Layered design– Base: Silicon– Light sensitive layers– Projection of masks– Erase parts using acid

IBM

Manufacturing

Clean room fabrication Any particle can cause

errors Special fabs required Rising costs

• Main trend: smaller and faster– Trend still continues today– Processor speeds now over 3 GHz, but problems

arise…

10 ns100 MHzVery large scale integration

1978-5

100 ns10 MHzLarge scale integration

1972-19774

1 µs1 MHzSmall and medium integrated circuits

1965-19713

5 µs200 KHzTransistor1958-19642

25 µs40 KHzVacuum tube1946-19571

Time/OpsSpeedTechnologyDatesGen.

Comparison of Technologies

• 2001: 30th Anniversary!• 4-Bit, 8-Bit Processors

– Intel 4004 (~1971)– Intel 8008

• 16-Bit Processors– Texas Instruments TMS 9900 (~1977)– Intel 8086– Zilog Z8000– Motorola MC68000– National Semiconductor NS16016

(~1978-1980)

Microprocessor History

- 2300 Transistors, 108 Khz

http://www.intel4004.com

Intel 4004

Intel 4004 – First MicrocomputerINTEL 4004 – First Microcomputer

INTEL 4004 – First Microcomputer

•16/32-bit Processors(external 16-bit Bus, internal 32 Bit Structure)

• Motorola MC68010• National Semiconductor NS16032

• Additional Functionality on the Chip•Direct Memory Access (DMA) (Intel 80186)• Virtual memory management

(MC68010, Intel 80286)• Optional Coprocessor (Intel 8086/80286,

NS16032)• Extended Address Space

Microprocessor History

• 32-bit Processors– CISC Processors

• Motorola MC680x0 • Intel i386 / i486 / Pentium • National Semiconductor NS32x32 • Concept of a Processor Family• Binary Compatibility• Compatible with 16 Bit Processors

– RISC Processors• Advanced Micro Devices Am29000 (~1987)• Sun Microsystems SPARC• MIPS technologies MIPS R2000 / MIPS R3000

Microprocessor History

Pentium 4 ( 55 Juta transistors )

• 64/32-bit Processors– SUN Microsystems SuperSPARC– Motorola 88110– IBM, Motorola PowerPC 601 (MPC601)

• “Modern” Processors– 64-bit Structure– Internal Parallelism

• Instruction pipelining• Arithmetic Pipelining

– Instruction and Data Caches– Advanced Memory and Peripheral Connections

Microprocessor History

ITANIUM ( 25.4 JUTA TRANSISTORS )

AMD Opteron (100 Million Transistors)

ITANIUM 2 ( 221 JUTA TRANSISTOR )

PowerManagement/Frequency

Boost(Foxton)

1MB L2I1MB L2I

Dual-core

2x12MB L3 2x12MB L3 cachescaches

with with PellstonPellston

2 Way2 WayMulti-threadingMulti-threading

ArbiterArbiter

90nm90nm

1.7 Billion 1.7 Billion TransistorsTransistors

Key Processor Features Intel’s first dual-core

processor Intel’s first processor

with >1 billion transistors 24 MB L3 cache Multi-threading Compatible with existing

Itanium 2-based systems

Targeting H2’2005

System Bus

Core

L3 Cache

Core

L3 Cache

System Bus

Core

L3 Cache

Core

L3 Cache

Core 1 Core 2

Multiple cores, Multiple threads Multiple cores, Multiple threads and L3 Cache on ONE dieand L3 Cache on ONE die

First Implementation of Key Features: Montecito

(From: http://www.intel.com)

Number of transistors doubles every 2.3 years(acceleration over the last 4 years: 1.5 years)

42 M transistors

2.25 K transistors

Increase: ~20K

Trends in transistor count

420000002000Pentium 4240000001999Pentium-III

75000001997Pentium-II31000001993Pentium1180000198980486

275000198580386120000198280286

2900019788086500019748080250019728008225019714004

# of transistorsYearModel

Technological Development

• Published in „Electronics“ in 1965– Revised in 1975

• Why does this work? (Dr. R. Isaac, IBM)– 50 % Lithography– 25 % Device and Circuit Innovation– 25 % Chip size reduction

• How long does this continue?– Problem 1: Power density– Problem 2: The Lithography Wall

Moore‘s Law (2)

• Can we compensate for loss or gain more– Architectural improvements– Massively Parallel Systems

• Example 1: ASCI Program in USA– Fastest machines in the world– Both military and research use– Capabilities grow faster than Moore‘s law

• Example 2: Hitachi RS 8000 @ LRZ/TUM– Innovative node design– Large number of individual processors

Breaking Moore‘s law

IBM Blue Gene / L, LLNL, 128k processors

Massively Parallel Systems

High Performance Clusters

• What applications can take use of this?– Long running

• Very often: Numerical simulations– High computational

demands– Often solving of special

physical equations (PDEs)

• Some other codes from imaging/business

• Climate Modeling

• Fluid Turbulences

• Pollution Disturbation

• Ocean Circulation

• Combustion Systems

• Semiconductor Modeling

• Vision and Cognition

Applications: Grand Challenges