16
Section 4.8 - Antiderivatives If the following functions represent the derivative of the original function, find the original function. ( ) = 3 ( ) =3 2 ( ) = 1 3 3 + 2 ( ) = 2 + 2 ( ) = 3 βˆ’ ( ) =3 2 βˆ’ 1 ( ) = βˆ’ 2 + 4 ( ) =βˆ’ 2 3 + 4 ΒΏ βˆ’ 2 βˆ’ 3 + 4 Antiderivative – If F’(x) = f(x) on an interval, then F(x) is the antiderivative of f(x) for every value of x on the interval.

Section 4.8 - Antiderivatives

  • Upload
    isra

  • View
    172

  • Download
    26

Embed Size (px)

DESCRIPTION

Section 4.8 - Antiderivatives. If the following functions represent the derivative of the original function, find the original function. Antiderivative – If F’(x) = f(x) on an interval, then F(x) is the antiderivative of f(x) for every value of x on the interval. . - PowerPoint PPT Presentation

Citation preview

Page 1: Section 4.8 - Antiderivatives

Section 4.8 - AntiderivativesIf the following functions represent the derivative of the original function, find the original function.

𝐹 (π‘₯ )=π‘₯3𝑓 (π‘₯ )=3 π‘₯2

𝐹 (π‘₯ )=13 π‘₯

3+π‘₯2𝑓 (π‘₯ )=π‘₯2+2 π‘₯

𝐹 (π‘₯ )=π‘₯3βˆ’π‘₯𝑓 (π‘₯ )=3 π‘₯2 βˆ’1

𝐹 (π‘₯ )=π‘₯βˆ’2+4 π‘₯𝑓 (π‘₯ )=βˆ’ 2π‘₯3 +4ΒΏβˆ’ 2π‘₯βˆ’3+4

Antiderivative – If F’(x) = f(x) on an interval, then F(x) is the antiderivative of f(x) for every value of x on the interval.

Page 2: Section 4.8 - Antiderivatives

Section 4.8 - Antiderivatives

𝑓 (π‘₯ )=π‘₯3𝑓 β€² (π‘₯ )=3 π‘₯2

𝑓 (π‘₯ )=π‘₯3+2𝑓 β€² (π‘₯ )=3 π‘₯2

𝑓 (π‘₯ )=π‘₯3 βˆ’1𝑓 β€² (π‘₯ )=3 π‘₯2

𝑓 (π‘₯ )=π‘₯3+4𝑓 β€² (π‘₯ )=3 π‘₯2

Theorem: – If F(x) is an antiderivative of f(x) on an interval I, then the general antiderivative of f(x) is:

𝑓 (π‘₯ )=3 π‘₯2β†’ 𝐹 (π‘₯ )=π‘₯3+𝐢

State the derivative of each function.

Page 3: Section 4.8 - Antiderivatives

Section 4.8 - AntiderivativesAntiderivative Formulas where k is a constant

(from page 281 of the textbook)

Page 4: Section 4.8 - Antiderivatives

Section 4.8 - Antiderivatives

𝑓 (π‘₯ )=π‘₯5 𝐹 (π‘₯ )= π‘₯5+1

5+1+𝐢

𝑓 (π‘₯ )=sin(2 x )𝐹 (π‘₯ )=βˆ’ 12 cos (2 π‘₯ )+𝐢

𝑓 (π‘₯ )=π‘’βˆ’ 3π‘₯

𝐹 (π‘₯ )=βˆ’ 13𝑒

βˆ’3π‘₯+𝐢

Write the general antiderivative of each of the following functions.

ΒΏπ‘₯6

6+𝐢

Page 5: Section 4.8 - Antiderivatives

Section 4.8 - AntiderivativesIndefinite Integrals

∫ (5βˆ’ 6 π‘₯ ) 𝑑π‘₯=ΒΏΒΏ5 π‘₯βˆ’ 6 π‘₯1+1

1+1 +𝐢¿5 π‘₯βˆ’ 6 π‘₯2

2+𝐢¿5 π‘₯βˆ’ 3π‘₯2+𝐢

βˆ«βˆ’ 5𝑠𝑖𝑛𝑑 𝑑𝑑=ΒΏΒΏβˆ’5 (βˆ’π‘π‘œπ‘ π‘‘ )+𝐢¿5π‘π‘œπ‘ π‘‘+𝐢

∫ (2𝑒π‘₯βˆ’ 3π‘’βˆ’ 2π‘₯ )𝑑π‘₯=ΒΏΒΏ2𝑒π‘₯ βˆ’ 3π‘’βˆ’2π‘₯

βˆ’ 2+𝐢¿2𝑒π‘₯+

32 𝑒

βˆ’ 2π‘₯+𝐢

Page 6: Section 4.8 - Antiderivatives

Section 4.8 - AntiderivativesInitial Value Problems

Solve for the original equation if given and .

∫ 𝑑2 𝑦𝑑 π‘₯2 =∫ 2βˆ’ 6 π‘₯  

𝑑𝑦𝑑π‘₯ =2π‘₯βˆ’ 6π‘₯2

2+𝐢

𝑑𝑦𝑑π‘₯ =2π‘₯βˆ’3 π‘₯2+𝐢

4=2 (0 ) βˆ’3 (0)2+𝐢

4=𝐢𝑑𝑦𝑑π‘₯ =2π‘₯βˆ’3 π‘₯2+4

∫ 𝑑𝑦𝑑π‘₯=∫2 π‘₯βˆ’3 π‘₯2+4  

𝑦=2π‘₯2

2βˆ’ 3 π‘₯3

3+4 π‘₯+C

𝑦=π‘₯2βˆ’π‘₯3+4 π‘₯+C

1=(0)2βˆ’ (0 )3+4 (0)+C

1=𝐢𝑦=π‘₯2βˆ’π‘₯3+4 π‘₯+1

Page 7: Section 4.8 - Antiderivatives

Section 5.1 – Area and Estimating Finite SumsEstimating Area Under a Curve

Approximate the area under the curve from to using 2 rectangles.

.

Left-hand endpoints

1 2

Right-hand endpoints Midpoints

1 2 1 2

π΄π‘Ÿπ‘’π‘Ž=h h𝑒𝑖𝑔 𝑑 βˆ™ h𝑙𝑒𝑛𝑔𝑑 = 𝑓 (π‘₯) βˆ™ βˆ† π‘₯

πΈπ‘ π‘‘π‘–π‘šπ‘Žπ‘‘π‘’π‘‘ π΄π‘Ÿπ‘’π‘Žπ‘ˆπ‘›π‘‘π‘’π‘Ÿ h𝑑 π‘’πΆπ‘’π‘Ÿπ‘£π‘’= h𝑑 π‘’π‘ π‘’π‘šπ‘œπ‘“ h𝑑 π‘’π‘Žπ‘Ÿπ‘’π‘Žπ‘œπ‘“ π‘Žπ‘™π‘™ π‘Ÿπ‘’π‘π‘‘π‘Žπ‘›π‘”π‘™π‘’π‘ π΄= 𝑓 (0 ) βˆ™1+ 𝑓 (1) βˆ™1𝐴=1 βˆ™ 1+2 βˆ™1𝐴=3

𝐴= 𝑓 (1 ) βˆ™1+ 𝑓 (2)βˆ™ 1𝐴=2βˆ™ 1+5 βˆ™1𝐴=7

𝐴= 𝑓 ( .5 ) βˆ™1+ 𝑓 (1.5) βˆ™1𝐴=1.25 βˆ™ 1+3.25 βˆ™ 1𝐴=4.5

Page 8: Section 4.8 - Antiderivatives

Section 5.1 – Area and Estimating Finite SumsEstimating Area Under a Curve

Approximate the area under the curve from to using 4 rectangles.

.

Left-hand endpoints Right-hand endpoints Midpoints

π΄π‘Ÿπ‘’π‘Ž=h h𝑒𝑖𝑔 𝑑 βˆ™ h𝑙𝑒𝑛𝑔𝑑 = 𝑓 (π‘₯) βˆ™ βˆ† π‘₯

πΈπ‘ π‘‘π‘–π‘šπ‘Žπ‘‘π‘’π‘‘ π΄π‘Ÿπ‘’π‘Žπ‘ˆπ‘›π‘‘π‘’π‘Ÿ h𝑑 π‘’πΆπ‘’π‘Ÿπ‘£π‘’= h𝑑 π‘’π‘ π‘’π‘šπ‘œπ‘“ h𝑑 π‘’π‘Žπ‘Ÿπ‘’π‘Žπ‘œπ‘“ π‘Žπ‘™π‘™ π‘Ÿπ‘’π‘π‘‘π‘Žπ‘›π‘”π‘™π‘’π‘ π΄= 𝑓 (0 ) βˆ™ .5+ 𝑓 ( .5 ) .5+ f (1 ) .5+ 𝑓 (1.5 ) .5 ΒΏ3.75

1 2 1 2 1 2

𝐴= 𝑓 ( .5 ) βˆ™ .5+ 𝑓 (1 ) .5+f (1.5 ) .5+ 𝑓 ( 2 ) .5 ΒΏ5.75𝐴= 𝑓 ( .25 ) βˆ™ .5+ 𝑓 ( .75 ) .5+ f (1.25 ) .5+ 𝑓 (1.75 ) .5 ΒΏ 4.625

LH

RHMid

Page 9: Section 4.8 - Antiderivatives

Section 5.1 – Area and Estimating Finite SumsAverage Value of an Integral

Average Value: Given a closed interval for a continuous function, the average value is the function value that when multiplied by the length of the interval produces the same area as that under the curve.

π΄π‘£π‘’π‘Ÿπ‘Žπ‘”π‘’π‘‰π‘Žπ‘™π‘’π‘’(𝐴𝑉 )=π‘Žπ‘Ÿπ‘’π‘Žπ‘’π‘›π‘‘π‘’π‘Ÿ h𝑑 π‘’π‘π‘’π‘Ÿπ‘£π‘’

h𝑙𝑒𝑛𝑔𝑑 π‘œπ‘“ h𝑑 𝑒 π‘–π‘›π‘‘π‘’π‘Ÿπ‘£π‘Žπ‘™

AV AVAV

Page 10: Section 4.8 - Antiderivatives

Section 5.1 – Area and Estimating Finite SumsAverage Value of an Integral

Estimate the average value for the function on the interval using four midpoint subintervals (rectangles) on equal width.

π‘¨π’—π’†π’“π’‚π’ˆπ’†π‘½π’‚π’π’–π’†(𝑨𝑽 )=𝒂𝒓𝒆𝒂𝒖𝒏𝒅𝒆𝒓 π’•π’‰π’†π’„π’–π’“π’—π’†π’π’†π’π’ˆπ’•π’‰π’π’‡ π’•π’‰π’†π’Šπ’π’•π’†π’“π’—π’‚π’

π‘¬π’”π’•π’Šπ’Žπ’‚π’•π’†π’… 𝑨𝒓𝒆𝒂𝑼𝒏𝒅𝒆𝒓 𝒕𝒉𝒆π‘ͺ𝒖𝒓𝒗𝒆

𝐴=21

𝐴𝑉=214 =5.25

𝐴= 𝑓 ( .5 ) βˆ™1+ 𝑓 (1.5 ) βˆ™ 1+ f (2.5 ) βˆ™1+ 𝑓 (3.5 ) βˆ™ 1

1 2 3 4

.

π΄π‘£π‘’π‘Ÿπ‘Žπ‘”π‘’π‘‰π‘Žπ‘™π‘’π‘’(𝐴𝑉 )=21

4 βˆ’ 0

Page 11: Section 4.8 - Antiderivatives

Section 5.2 – Sigma Notation and Limits of Finite Sums

Sequence – a function whose domain is positive integers.

Sigma Notation

𝑓 (π‘₯ )=2π‘₯+1𝑓 (π‘₯ ) ,𝑔 (π‘₯ ) , h(π‘₯ ) π‘Žπ‘› ,𝑏𝑖 ,π‘π‘˜

g

h (π‘₯ )= π‘₯+6π‘₯2+2 π‘₯+3

π‘Žπ‘›=2𝑛+1𝑏𝑖=𝑖2 βˆ’3 𝑖+7

π‘π‘˜=π‘˜+6

π‘˜2+2π‘˜+3

Sigma Notation – A mathematical notation that represents the sum of many terms using a formula.

Page 12: Section 4.8 - Antiderivatives

Section 5.2 – Sigma Notation and Limits of Finite Sums

Examples

βˆ‘π’=𝟏

πŸ’πŸπ’

2 (1 )+2 (2 )+2 (3 )+2(4)2+4+6+8

2+2+2+2+2+212

Sigma Notation

20

βˆ‘π’Œ=𝟏

πŸ”πŸ

βˆ‘π’Š=𝟏

πŸ‘(π’ŠΒΏΒΏπŸβˆ’πŸ‘ π’Š+πŸ•)ΒΏ

)

πŸ“+πŸ“+πŸ•πŸπŸ•

Page 13: Section 4.8 - Antiderivatives

Section 5.2 – Sigma Notation and Limits of Finite Sums

Express the sums in sigma notation.

βˆ‘π’Š=𝟏

πŸ—πŸ–π’Š

1+2+3+4+…+98

1+12+

13 +

14 +…+

170

Sigma Notation

βˆ‘π’Œ=𝟏

πŸ•πŸŽ πŸπ’Œ

1 βˆ’2+3 βˆ’ 4+β€¦βˆ’ 98

βˆ‘π’Š=𝟏

πŸ—πŸ–(βˆ’πŸ)π’Š+πŸπ’Š

1 βˆ’ 14 +

19 βˆ’ 1

16 +β€¦βˆ’ 149

βˆ‘π’Š=𝟏

πŸ•(βˆ’πŸ)π’Š+𝟏 𝟏

π’ŠπŸ

Page 14: Section 4.8 - Antiderivatives

Section 5.2 – Sigma Notation and Limits of Finite Sums

Linearity of Sigma

βˆ‘π’Š=𝟏

𝒏𝒄 π’‚π’Š=π’„βˆ‘

π’Š=𝟏

π’π’‚π’Š

Sigma Notation

βˆ‘π’Œ=𝟏

𝒏(πŸ‘π’ŒπŸ+πŸπ’Œβˆ’πŸ•)

βˆ‘π’Š=𝟏

𝒏(π’‚π’ŠΒ±π’ƒπ’Š)=ΒΏβˆ‘

π’Š=𝟏

π’π’‚π’ŠΒ±βˆ‘

π’Š=𝟏

π’π’ƒπ’Š ΒΏ

βˆ‘π’Œ=𝟏

π’πŸ‘π’ŒπŸ+βˆ‘

π’Œ=𝟏

π’πŸπ’Œβˆ’ βˆ‘

π’Œ=𝟏

π’πŸ•

Example

πŸ‘βˆ‘π’Œ=𝟏

π’π’ŒπŸ+πŸβˆ‘

π’Œ=𝟏

π’π’Œβˆ’ βˆ‘

π’Œ=𝟏

π’πŸ•β†’

Page 15: Section 4.8 - Antiderivatives

Section 5.2 – Sigma Notation and Limits of Finite Sums

βˆ‘π’Œ=𝟏

𝒏𝒄=𝒏 βˆ™π’„

Summation Rules

βˆ‘π’Œ=𝟏

π’π’ŒπŸ=

𝒏(𝒏+𝟏)(πŸπ’+𝟏)πŸ”

βˆ‘π’Œ=𝟏

π’π’Œ=

𝒏(𝒏+𝟏)𝟐

βˆ‘π’Œ=𝟏

π’π’ŒπŸ‘=ΒΏ(𝒏(𝒏+𝟏)

𝟐 )𝟐¿

Page 16: Section 4.8 - Antiderivatives

Section 5.2 – Sigma Notation and Limits of Finite Sums

βˆ‘π’Œ=𝟏

πŸ“πŸπŸ’=ΒΏΒΏ

Summation Rules Examples

βˆ‘π’Œ=𝟏

πŸπŸ“π’ŒπŸ=ΒΏΒΏ

βˆ‘π’Œ=𝟏

πŸ‘πŸπ’Œ=ΒΏΒΏ

βˆ‘π’Œ=𝟏

πŸ—π’ŒπŸ‘=ΒΏΒΏ

πŸ“πŸ βˆ™πŸ’=ΒΏπŸπŸŽπŸ’

πŸ‘πŸ(πŸ‘πŸ+𝟏)𝟐 =ΒΏπŸ“πŸπŸ–

πŸπŸ“(πŸπŸ“+𝟏)(𝟐 βˆ™πŸπŸ“+𝟏)πŸ” =ΒΏπŸπŸπŸ’πŸŽ

(πŸ—(πŸ—+𝟏)𝟐 )

𝟐=ΒΏπŸπŸŽπŸπŸ“

π’”π’–π’Ž(𝒔𝒆𝒒 (πŸ’ , 𝒙 ,𝟏 ,πŸ“πŸ’ ,𝟏 ))

π’”π’–π’Ž(𝒔𝒆𝒒 (𝒙 ,𝒙 ,𝟏 ,πŸ‘πŸ ,𝟏 ))

π’”π’–π’Ž(𝒔𝒆𝒒 ( π’™πŸ ,𝒙 ,𝟏 ,πŸπŸ“ ,𝟏 ))

π’”π’–π’Ž(𝒔𝒆𝒒 ( π’™πŸ‘ ,𝒙 ,𝟏 ,πŸ— ,𝟏 ))